When you look at the spacetime fabric the cosmological views makes it nice and neat for us, when we are tryng to comprehend the ripples and waves that are generated.
So how, you might ask, can multiple strings make up a proton if each has a mass of ten billion billion times that of a proton? The answer has to do with quantum jitter. According to the uncertainty principle in quantum mechanics, nothing is completely at rest. Quantum jitter actually has negative energy that cancels out much of a string's mass. In the case of the graviton, the cancellation is perfect, yielding a particle with zero mass. This is what was predicted since gravitons travel at the speed of light.
The microscopic view of gravitatinal wave generation asks that we look much closer at how we perceive the actions of the turbulence and uncertainty as we move closer for a introspective view of the compact spaces that the genration of graviton in place of the views such uncertainty might be generated.
Reviews Georg Riemann's view of curved spaces, which is the mathematical core of general relativity. Quantum geometry is the mathematical core of string theory, though it is not as ready-made as was Riemann's geometry for Einstein. Riemann drew on Gauss, Lobachevsky, Bolyai etc. and evaluated the measure of distances in curved space. Einstein concluded the curvature of space is gravity.
No comments:
Post a Comment