Showing posts with label Robert B. Laughlin. Show all posts
Showing posts with label Robert B. Laughlin. Show all posts

Wednesday, January 01, 2014

Genius Materials



Researchers working with magnetic fluids on the International Space Station are taking "smart materials" to the next level. With proper coaxing, molecules can assemble themselves into "genius materials" with surprising properties. This is opening a new frontier in material science. ScienceCasts: Genius Materials on the ISS

Tuesday, February 14, 2012

Music of the Quantum



The weird quantum nature of the atomic world challenges us to revise the way we view the world around us. We learn that our everyday world - built out of the myriad superposition of matter waves, has an unexpected capacity for new kinds of behavior and "self organization" that we are only just beginning to fathom. Music of the Quantum World









See Also: Superconductivity Dance Flash Mob

Friday, February 22, 2008

The Effect of Cosmic Particle Collisions



How many with holding views of Climate Change have ever considered Earth's place in the cosmos and it's affects created from cosmic particle collisions from space?

So this post is to help illuminate the subject a bit with past information so you get the understanding and where they are todays in terms of science's research. Also I wanted to include my own observation I made that were readily evident as we watch a forest get disseminated by beetle infestation.

So that is part of it, that climate may produce pictures on Glacier withdrawals in relation to previous year's pictures. What other contributions should be considered then?


Finding a heavenly key to climate change


Researchers at the European Organization for Nuclear Research (Cern) in Geneva are looking at how radiation from outer space could be affecting our environment.

A new cutting edge experiment aims to discover how exactly cosmic rays and the Sun may influence the formation of low level clouds, and possibly climate change.

More than two centuries ago, the British Astronomer Royal William Herschel noted a correlation between sunspots an indicator of solar activity and the price of wheat in England. He suggested that when there were few sunspots, prices rose.

However, up until recently, there was little to back up this hypothesis. Today, inside an unassuming some would say decrepit:looking building at Cern, the Cloud (Cosmics Leaving OUtdoor Droplets) experiment might help explain how the Sun affects the climate
.


See: Finding a heavenly key to climate change

Variation of Cosmic ray flux and Global cloud coverage by Henri Svensmark and Eigil Friis-Christensen, 26 NOvember 1996

Chaos and Complexity

Robert Betts Laughlin (born November 1, 1950) is a professor of Physics and Applied Physics at Stanford University who, together with Horst L. Störmer and Daniel C. Tsui, was awarded the 1998 Nobel Prize in physics for his explanation of the fractional quantum Hall effect.

Laughlin was born in Visalia, California. He earned a B.A. in Physics from UC Berkeley in 1972, and his Ph.D. in physics in 1979 at MIT, Cambridge, Massachusetts, USA. In the period of 2004-2006 he served as the president of KAIST in Daejeon, South Korea.

Laughlin shares similar views to George Chapline on the existence of black holes.
See: Robert B. Laughlin

The Emergent Age, by Robert Laughlin

The natural world is regulated both by fundamental laws and by powerful principles of organization that flow out of them which are also transcendent, in that they would continue to hold even if the fundamentals were changed slightly. This is, of course, an ancient idea, but one that has now been experimentally demonstrated by the stupendously accurate reproducibility of certain measurements - in extreme cases parts in a trillion. This accuracy, which cannot be deduced from underlying microscopics, proves that matter acting collectively can generate physical law spontaneously.

Physicists have always argued about which kind of law is more important - fundamental or emergent - but they should stop. The evidence is mounting that ALL physical law is emergent, notably and especially behavior associated with the quantum mechanics of the vacuum. This observation has profound implications for those of us concerned about the future of science. We live not at the end of discovery but at the end of Reductionism, a time in which the false ideology of the human mastery of all things through microscopics is being swept away by events and reason. This is not to say that microscopic law is wrong or has no purpose, but only that it is rendered irrelevant in many circumstances by its children and its children's children, the higher organizational laws of the world.


Understanding the occurrence of natural things happening within earth's environments has a resulting affect to one's children's children here within the very make up of reality. How would know what is happening and the resulting affect moving toward societies if you did not dig deeper and understand that a reductionist effect is very evident.

Predictability was moved toward "Mercuries orbit" while the oscillatory nature of events resonant deeper into society. WE had learnt to propel satellites through space using minimum booster propellants by understanding these relations.

The Roots of Chaos Theory

The roots of chaos theory date back to about 1900, in the studies of Henri Poincaré on the problem of the motion of three objects in mutual gravitational attraction, the so-called three-body problem. Poincaré found that there can be orbits which are nonperiodic, and yet not forever increasing nor approaching a fixed point. Later studies, also on the topic of nonlinear differential equations, were carried out by G.D. Birkhoff, A.N. Kolmogorov, M.L. Cartwright, J.E. Littlewood, and Stephen Smale. Except for Smale, who was perhaps the first pure mathematician to study nonlinear dynamics, these studies were all directly inspired by physics: the three-body problem in the case of Birkhoff, turbulence and astronomical problems in the case of Kolmogorov, and radio engineering in the case of Cartwright and Littlewood. Although chaotic planetary motion had not been observed, experimentalists had encountered turbulence in fluid motion and nonperiodic oscillation in radio circuits without the benefit of a theory to explain what they were seeing.

13:30 Lecture
Edward Norton Lorenz
Laureate in Basic Sciences
“How Good Can Weather Forecasting Become ? – The Star of a Theory”


So on the one hand if we are giving new perspective to the events of climate change and we look at what is happening not only with wheat fields in relation to sun spot activities, we need to understand it's effect, by the presence of natural events occurring as well.

Pine Beetle Infestation


Adult mountain pine beetle, Dendroctonus ponderosae


The Suzuki Foundation has published some of the most recent and most exhaustive research on mountain pine beetle epidemics in BC, but it appears the provincial government is only interested in receiving information from an industry perspective, he added.

“We actually were asked by the Premier’s office to attend tomorrow’s symposium, but when we received the agenda early this week we saw we weren’t on it. When I called to inquire, I was told we could observe from the audience but not present our report called Salvaging Solutions.

“I am absolutely flabbergasted and in fact insulted. In 25 years of attending such forums, as a Member of Parliament and for 10 years at the Suzuki Foundation, I have never been invited by a senior government official to travel 400 kilometres so that I can be window dressing. You have to wonder who on Earth is running Premier Campbell’s office and if they are really interested in gathering all of the best information on this issue.”


Photo by Lorraine Maclauchlan, Ministry of Forests, Southern Interior Forest Region
See:Mountain Pine Beetle Photos

Could Climate change play a role in this? If this is so, and is there some evidence that suggests, that our cold winters are not doing what they are supposed to be doing, this spread could go unabated?

The process of an event happening from space in terms of collision processes, and seeing this relation in terms of Cerenkov radiation, one gets a valuable sense of the process not only at the time of collision, but of what is disseminated, after the event itself happens.

Now while one may of focused on Cerenkov radiation, the effect of this process can be taken down not only to mean "cloud formation," but also, the environment suitable for new manifestations that are "conducive too" bug infestation.

Tuesday, February 12, 2008

Theoretical Excellence

Although Aristotle in general had a more empirical and experimental attitude than Plato, modern science did not come into its own until Plato's Pythagorean confidence in the mathematical nature of the world returned with Kepler, Galileo, and Newton. For instance, Aristotle, relying on a theory of opposites that is now only of historical interest, rejected Plato's attempt to match the Platonic Solids with the elements -- while Plato's expectations are realized in mineralogy and crystallography, where the Platonic Solids occur naturally.Plato and Aristotle, Up and Down-Kelley L. Ross, Ph.D.


This is the first introduction then that is very important to me about what is perceived as a mathematical framework. So it is not such an effort to think about our world and think hmmmm.... a mathematical abstract of our reality is there to be discovered. I first noticed this attribute in Pascal's triangle.

Nineteenth Century Geometry by Roberto Torretti

The sudden shrinking of Euclidean geometry to a subspecies of the vast family of mathematical theories of space shattered some illusions and prompted important changes in our the philosophical conception of human knowledge. Thus, for instance, after these nineteenth-century developments, philosophers who dream of a completely certain knowledge of right and wrong secured by logical inference from self-evident principles can no longer propose Euclidean geometry as an instance in which a similar goal has proved attainable. The present article reviews the aspects of nineteenth century geometry that are of major interest for philosophy and hints in passing, at their philosophical significance.


While I looked further into the world of Pythagorean developments I wondered how such an abstract could have ever lead to the world of non-euclidean geometries. There is this progression of the geometries that needed to be understood. It included so many people that we only now acknowledge the greatest names but it is in the exploration of "theoretical excellence" that we gain access to the spirituality's of the mathematical world.

"I’m a Platonist — a follower of Plato — who believes that one didn’t invent these sorts of things, that one discovers them. In a sense, all these mathematical facts are right there waiting to be discovered."Donald (H. S. M.) Coxeter


While some would wonder what value this exploration into such mathematical abstracts, how could we describe for ourselves the ways things would appear at such levels microscopically reduced, has an elemental quality to it? Yes, I have gone to one extreme, and understand, it included so many different mathematics, how could we ever understand this effort and assign it's rightful place in history? Theoretics then, is this effort?

How Strange the elements of our world?


The crystalline state is the simplest known example of a quantum , a stable state of matter whose generic low-energy properties are determined by a higher organizing principle and nothing else. Robert Laughlin




This illustration depicts eight of the allotropes (different molecular configurations) that pure carbon can take:

a) Diamond
b) Graphite
c) Lonsdaleite
d) Buckminsterfullerene (C60)
e) C540
f) C70
g) Amorphous carbon
h) single-walled carbon nanotube


Review of experiments

Graphite exhibits elastic behaviour and even improves its mechanical strength up to the temperature of about 2500 K. Measured changes in ultrasonic velocity in graphite after high temperature creep shows marked plasticity at temperatures above 2200 K [16]. From the standpoint of thermodynamics, melting is a phase transition of the first kind, with an abrupt enthalpy change constituting the heat of melting. Therefore, any experimental proof of melting is associated with direct recording of the temperature dependence of enthalpy in the neighbourhood of a melting point. Pulsed heating of carbon materials was studied experimentally by transient electrical resistance and arc discharge techniques, in millisecond and microsecond time regime (see, e.g., [17, 18]), and by pulsed laser heating, in microsecond, nanosecond and picosecond time regime (see, e.g., [11, 19, 20]). Both kind of experiments recorded significant changes in the material properties (density, electrical and thermal conductivity, reflectivity, etc. ) within the range 4000-5000 K, interpreted as a phase change to a liquid state. The results of graphite irradiation by lasers suggest [11] that there is at least a small range of temperatures for which liquid carbon can exist at pressure as low as 0.01 GPa. The phase boundaries between graphite and liquid were investigated experimentally and defined fairly well.

Sunday, March 25, 2007

Heralded from the 21st Century: String Theory

I know not how, may find their way to the minds of humanity in Some Dimensionality, and may stir up a race of rebels who shall refuse to be confined to limited Dimensionality." from Flatland, by E. A. Abbott


It is sometimes important to know what race of rebels had been raised to realize that such a revolution in the making had started from a place of thinking that many others
began to think about as well?

Cycle of Birth, Life, and Death-Origin, Indentity, and Destiny by Gabriele Veneziano

In one form or another, the issue of the ultimate beginning has engaged philosophers and theologians in nearly every culture. It is entwined with a grand set of concerns, one famously encapsulated in an 1897 painting by Paul Gauguin: D'ou venons-nous? Que sommes-nous? Ou allons-nous? "Where do we come from? What are we? Where are we going?"
See here for more information.

It is important to know where such models began to influence the idea to generate theoretical model for an apprehension of how we view this universe? Given the study at hand here are the following people for consideration.

Whence began this journey and revolution?

LEONARD SUSSKIND:

And I fiddled with it, I monkeyed with it. I sat in my attic, I think for two months on and off. But the first thing I could see in it, it was describing some kind of particles which had internal structure which could vibrate, which could do things, which wasn't just a point particle. And I began to realize that what was being described here was a string, an elastic string, like a rubber band, or like a rubber band cut in half. And this rubber band could not only stretch and contract, but wiggle. And marvel of marvels, it exactly agreed with this formula.
I was pretty sure at that time that I was the only one in the world who knew this.


So we have to take stock of the movements that change democratic societies. To have found such governments will change and fall according to the plight of it's citizens in science. As it goes with "theoretical positions?"

Working to understand the development of the model in consideration was needed in order for one to understand why Lee Smolin methodology to work science from a historical perspective is one I favour as well. It is sometimes necessary to list these developmental phases in order to get to a position to speak with authority. Find that "with certainty" we can make certain comments? Find, we must be confronted again, to say, any progress will go from There.

The Revolution that Didn't Happen by Steven Weinberg

I first read Thomas Kuhn's famous book The Structure of Scientific Revolutions a quarter-century ago, soon after the publication of the second edition. I had known Kuhn only slightly when we had been together on the faculty at Berkeley in the early 1960s, but I came to like and admire him later, when he came to MIT. His book I found exciting.

Evidently others felt the same. Structure has had a wider influence than any other book on the history of science. Soon after Kuhn's death in 1996, the sociologist Clifford Geertz remarked that Kuhn's book had "opened the door to the eruption of the sociology of knowledge" into the study of the sciences. Kuhn's ideas have been invoked again and again in the recent conflict over the relation of science and culture known as the science wars.


So we know where the idea of science wars began do we not? What instigates conflict as a healthy perspective to progress of the sciences. We will see the story unfold within this blog.

For some reason people might of thought my views were just held to Lee Smolin and the work that I had been accumulating with regards to his views of the Universe. While I had shown the cover of his book countless times, I would like to say that I have accumulated "other books," like those of Brian Greene as well.

Does this make me an expert on the subject in question or what ever Lee Smolin has written? Of course not.

But the work I have been doing, has not been limited to what the authors themself have given to the public in their outreach writing books. I have been at this a few years now, so I would like people to think this is not just a jaunt of journalism, that has been given to the public in it's books but has been a labour of love to understand my place in the universe.

The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory
The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory (ISBN 0-375-70811-1) is a book by Brian Greene published in 2000 which introduces string theory and provides a comprehensive though non-technical assessment of the theory and some of its shortcomings.

Beginning with a brief consideration of classical physics, which concentrates on the major conflicts in physics, Greene establishes an historical context for string theory as a necessary means of integrating the probabilistic world of the standard model of particle physics and the deterministic Newtonian physics of the macroscopic world. Greene discusses the essential problem facing modern physics: unification of Einstein's theory of General Relativity and Quantum Mechanics. Greene suggests that string theory is the solution to these two conflicting approaches. Greene uses frequent analogies and mental experiments to provide a means for the layman to come to terms with the theory which has the potential to create a unified theory of physics.

The Elegant Universe was adapted for a three hour program in two parts for television broadcast in late 2003 on the PBS series NOVA.


Thanks Q9 for the link to "Elegant physicist makes string theory sexy." I was going to posted it the day when you gave it to me, but instead seeing that Clifford of Asymptotia had it (same day), I thought I wouldn't. But as fate has it I must.

The Fabric of the Cosmos: Space, Time, and the Texture of Reality (2004) is the second book on theoretical physics, cosmology and string theory written by Brian Greene, professor and co-director of Columbia's Institute for Strings, Cosmology, and Astroparticle Physics (ISCAP).[1]
Greene begins with the key question: What is reality? Or more specifically: What is spacetime? He sets out to describe the features he finds both exciting and essential to forming a full picture of the reality painted by modern science. In almost every chapter, Greene introduces its basic concepts and then slowly builds to a climax, which is usually a scientific breakthrough. Greene then attempts to connect with his reader by posing simple analogies to help explain the meaning of a scientific concept without oversimplifying the theory behind it.

In the preface, Greene acknowledges that some parts of the book are controversial among scientists. Greene discusses the leading viewpoints in the main text, and points of contention in the end notes. Greene has striven for balanced treatment of the controversial topics. In the end notes, the diligent reader will find more complete explanations relevant to points he has simplified in the main text.


Once you get this view of the gravitational connection between everything, the form of graviton, you get this preview of the bulk and what lensing may mean. It is hard not to think of "dimensional perspectives in relation to the energy" describing the particles of science in some way. Witten below in his "Strings Unravel" lets you know what string theory has accomplished.

Warped Passages is a book by Lisa Randall, published in 2005, about particle physics in general and additional dimensions of space (cf. Kaluza-Klein theory) in particular. The book has made it to top 50 at amazon.com, making it the world's first successful book on theoretical physics by a female author. See Where are my keys?

It's alway nice having one's own blog and nice that I can retained my dignity under the name of Plato. It keeps my personal life from being treated with disrespect at the whim of the stroke of a delete key. Of course I am willing to take my lumps understanding such a role as "older student." After being expose to the exchange between people in the tribe, it's thinking can do all kinds of damage to each other? But I would like to think that all sides remain cool to positions they hold in society

A Different Universe: Reinventing Physics from the Bottom Down by Robert B. LaughlinFrom the Publisher:
Why everything we think about fundamental physical laws needs to change, and why the greatest mysteries of physics are not at the ends of the universe but as close as the nearest ice cube or grain of salt.

Not since Richard Feynman has a Nobel Prize-winning physicist written with as much panache as Robert Laughlin does in this revelatory and essential book. Laughlin proposes nothing less than a new way of understanding fundamental laws of science. In this age of superstring theories and Big-Bang cosmology, we're used to thinking of the unknown as being impossibly distant from our everyday lives. The edges of science, we're told, lie in the first nanofraction of a second of the Universe's existence, or else in realms so small that they can't be glimpsed even by the most sophisticated experimental techniques. But we haven't reached the end of science, Laughlin argues-only the end of reductionist thinking. If we consider the world of emergent properties instead, suddenly the deepest mysteries are as close as the nearest ice cube or grain of salt. And he goes farther: the most fundamental laws of physics-such as Newton's laws of motion and quantum mechanics -are in fact emergent. They are properties of large assemblages of matter, and when their exactness is examined too closely, it vanishes into nothing.
See Laughlin, Reductionism, Emergence

Out of all this uncertainty that exists at the level with which we think about in "those dimensions" what value any constructive diagram if it did not lead you to the understanding of the building blocks that a condense matter theorist may describe as manifesting in our reality?

The Year is 2020 and that's our Eyesight

Columbia physicist Brian Greene inhabits a multiple-perspective landscape modeled after M.C. Escher's artwork in a scene from "The Elegant Universe," a public-TV documentary based on Greene's book.
Q: Hawking has said that there could be a “theory of everything” produced in the next 20 years, or by 2020. Do you get that same sense? Or will there ever be a theory of everything?

A: Well, I always find it difficult to make predictions that are tied to a specific time frame, because as we all know, one of the exciting things about science is that you don’t know when the big break is going to happen. It could happen tomorrow, it could happen 10 years from now, it could happen a century from now. So you just keep pressing on, making progress, and hope that you reach these major milestones — ideally in your own lifetime, but who knows? So I don’t know if 2020 is the right number to say. But I would say that string theory has a chance of being that unified theory, and we are learning more and more about it. Every day, every week, every month there are fantastically interesting developments.

Will it all come together by 2020, where we can actually have experimental proof and the theory develops to the point that it really makes definitive statements that can be tested? I don’t know. I hope so. But hope is not the thing that determines what will actually happen. It’s the hard work of scientists around the world.


But anyway onto what I wanted to say and "being censored" I couldn't.

Clifford is defending his position on how Lee Smolin and Peter Woit have assigned a "perspective view" to string theory as a modelled approach. As a theoretical discovery of science, Clifford from my view, had to show that this process is still unfolding and that any quick decision as to giving String theory such a final vote of opinion from Lee Smolin was premature. I have supported Clifford in this view because of where we had been historically in the past years that the formulation of string theory has been given.

D-Branes by Clifford V. Johnson
D-branes represent a key theoretical tool in the understanding of strongly coupled superstring theory and M-theory. They have led to many striking discoveries, including the precise microphysics underlying the thermodynamic behaviour of certain black holes, and remarkable holographic dualities between large-N gauge theories and gravity. This book provides a self-contained introduction to the technology of D-branes, presenting the recent developments and ideas in a pedagogical manner. It is suitable for use as a textbook in graduate courses on modern string theory and theoretical particle physics, and will also be an indispensable reference for seasoned practitioners. The introductory material is developed by first starting with the main features of string theory needed to get rapidly to grips with D-branes, uncovering further aspects while actually working with D-branes. Many advanced applications are covered, with discussions of open problems which could form the basis for new avenues of research.


While Clifford's book I do not have, I understand that the "second revolution" was necessary to help us move to consider where string theory was to take us. It was progressing in the theoretics as a model to help us see science assuming the ways in which such models adjust us to possible new views in science. Clifford may not of liked the implication of a Grokking of a kind that would refer to consuming model approaches and then becoming what you eat?

Clifford:
I’ve found that different people have different takes on what it means to have a “theory of everything”. There is a popular idea (perhaps the most common) that this somehow means that this theory will describe (at least in principle) all known basic physical phenomena (constituents and their interactions, if you like) once and for all. Others mean something less ambitious, a theory that consistently describes the four fundamental forces and the things that interact with them, achieving a unification of all the forces and phenomena that we currently understand. I personally think that the first idea of a theory of everything is rather naive, and my personal hunch (and bias from what I’ve learned about the history of science) is that there is simply no such thing.


So of course entertaining the idea of a "theory of everything" leaves a bad taste in some peoples mouth, and having them to reason that it is the naivity of such a thought, that I immediately felt insulted. Clifford saids,"this theory will describe (at least in principle) all known basic physical phenomena (constituents and their interactions, if you like) once and for all" and may have been the case for those less then spending the time and effort, would have probably been insulted as I was. I of course came to recognize the positive aspect of the second position Clifford assumes.

Bench Marks of theoretical Progress

Anyway there are positions that we can take when we look back and reassess everything that we have been doing in reading the public outreach, like so called "bench marks" to see if such progressions still have have a evolutionary way to go.

Edward Witten-Reflections on the Fate of Spacetime

Unravelling String Theory

But what is string theory? It may well be the only way to reconcile gravity and quantum mechanics, but what is the core idea behind it? Einstein understood the central concepts of general relativity years before he developed the detailed equations. By contrast, string theory has been discovered in bits and pieces — over a period that has stretched for nearly four decades — without anyone really understanding what is behind it. As a result, every bit that is unearthed comes as a surprise. We still don’t know where all these ideas are coming from — or heading to



See more here



So what shall we use to measure what had first seem so abstract in Susskind's mind as a "rubber band," or the start of Veneziano views on such strings at inception? We've come a long way.

Something that I perceived back in 2004 help to "shape my views on the way I speak" "today" allows for us to consider that strings take it's rightful place within the building blocks of matter, that following Robert Laughlins lead, it was that we shifted our times from the first three seconds of Steven Weinberg, to the "First three Microseconds" of strings within the process of the unfolding universe.

The resulting collisions between pairs of these atomic nuclei generate exceedingly hot, dense bursts of matter and energy to simulate what happened during the first few microseconds of the big bang. These brief "mini bangs" give physicists a ringside seat on some of the earliest moments of creation.
See How Particles Came to be?

While Laughlin may have not seen the continued relevance of particle reductionism it was leading to some amazing insights. I now wonder now, if held to the comparisons of this superfluid, how it would have appealed to him? I think Witten in last plate above recognized what had to be done.

Wednesday, September 13, 2006

What's on the Condense Matter Theorist's Mind?

The Theory of Everything


Prof. Robert B. Laughlin


The crystalline state is the simplest known example of a quantum , a stable state of matter whose generic low-energy properties are determined by a higher organizing principle and nothing else. Robert Laughlin


Thre are certain perspective that are different then what reductionism has done to serves it's purpose? Now such ideas lanquish because they seem unfitting. So you gain perspective by those who think about things differently and see what parameters rule the logic of their ideas.

In his book The End of Science John Horgan argues that our civilization is now facing barriers to the acquisition of knowledge so fundamental that the Golden Age of Science must must be thought of as over [38]. It is an instructive and humbling experience to attempt explaining this idea to a child. The outcome is always the same. The child eventually stops listening, smiles politely, and then runs off to explore the countless infinities of new things in his or her world. Horgan's book might more properly have been called the End of Reductionism, for it is actually a call to those of us concerned with the health of physical science to face the truth that in most respects the reductionist ideal has reached its limits as a guiding principle. Rather than a Theory of Everything we appear to face a hierarchy of Theories of Things, each emerging from its parent and evolving into its children as the energy scale is lowered. The end of reductionism is, however, not the end of science, or even the end of theoretical physics. How do proteins work their wonders? Why do magnetic insulators superconduct? Why is 3He a superfluid? Why is the electron mass in some metals stupendously large? Why do turbulent fluids display patterns? Why does black hole formation so resemble a quantum phase transition? Why do galaxies emit such enormous jets? The list is endless, and it does not include the most important questions of all, namely those raised by discoveries yet to come. The central task of theoretical physics in our time is no longer to write down the ultimate equations but rather but to catalogue and understand emergent behavior in its many guises, including potentially life itself. We call this physics of the next century the study of complex adaptive matter. For better or worse we are now witnessing a transition from the science of the past, so intimately linked to reductionism, to the study of complex adaptive matter, firmly based in experiment, with its hope for providing a jumping-off point for new discoveries, new concepts, and new wisdom.


So for me as I look at the state of the world I am asking what patterns were pre-esstablished that would govern the higg's mechanison and looking for such a "organizational attribute" would have settled the question as to why people gathered around the professor as Einstein crossed the room.

From a reductionsitic standpoint what was the "energy" doing as we used these colliders as mechanisims towards matter/mass comstituents discovery. Did this disavow our views on what was emergent from a point in spacetime?

So of course I will draw people's attention to what I think has to come into "expression" and how this is done. What is the "basis" of that expression and how we will see it explode into the sociological valuation that constitutes our society of exchanges.

I referred to John Nash here many times. What is it, he discovered at the heart of "negotiated processes?" What is the schematics of that expression that he identified in human behavior, as showing such schemas? Birds, that had some "higher organization pattern" that governed flock movement?

So are strings a emergent phenomena? You had to know their place in the scheme of things. Do your recognized the method as to the nergy valuation given? How such branching is effected, based on some "Feynman toy model discription" that revealed what about the early universe?

Edward Witten:
One thing I can tell you, though, is that most string theorist's suspect that spacetime is a emergent Phenomena in the language of condensed matter physics


What about pushing "perspective back" to the microseconds? At what point does the Universe make itself known? Had you already forgotten about the "first three microseconds?"

Thursday, September 07, 2006

Quantum Hall Effect

This article below was set in motion by Stefan's article,"Pencils, Black Holes, and the Klein Paradox", at Backreaction. B will have to offer her perspective on the blackhole analogy. I offer mine.:)



The fractional quantum Hall effect continues to be influential in theories about topological order.


It is interesting to see the interconnecting links of recent between the different blogs on the internet in terms of what information is being relayed back and forth without some understading of what is going on?

Number theory is the type of math that describes the swirl in the head of a sunflower and the curve of a chambered nautilus. Bhargava says it's also hidden in the rhythms of classical Indian music, which is both mathematical and improvisational. He sees close links between his two loves -- both create beauty and elegance by weaving together seemingly unconnected ideas.

As part of a Morning Edition series exploring the intersection of art and science, NPR's Richard Harris reports on the beauty of mathematics, its ties to art -- and the man who straddles both worlds.


So you learn to see relations where one might not of have before. "Computerization techniques" that would help us understand new ways in which transmit information?

An Ultimate Theory in Physics?

Shahn Majid's research explores the world of quantum geometry, on the frontier between pure mathematics and the foundations of theoretical physics. He uses mathematical structures from algebra and category theory to develop ideas concerning the structure of space and time. His research philosophy drives a search for the right mathematical language for a unified expression for the ideas of quantum physics, founded on the notion of non-commutative geometry

While above I may have introduced the particular interest of Majid's in terms of beats in nature and number counting, it is with some understanding that "poetical desire" can have come "other issues" which rise up from schemas of nature?

The subject in its modern form has also been connected with developments in several different fields of both pure mathematics and mathematical physics. In mathematics these include fruitful interactions with analysis, number theory, category theory and representation theory. In mathematical physics, developments include the quantum Hall effect, applications to the standard model in particle physics and to renormalization in quantum field theory, models of spacetimes with noncommuting coordinates. Noncommutative geometry also appears naturally in string/M-theory. The programme will be devoted to bringing together these different streams and instances of noncommutative geometry, as well as identifying new emerging directions


So I mean if you are into the Riemann Hypothesis, you might wonder how such patterns sought by Ulam would have been of interest to people like Robert Laughlin and his ideas on "emergence." What "number systems" would arise from the first principle?

In a Pascalian sense" you might understand this now, as isssuing from some inherent "ordered" chaos?

Ulam's interest was on a high energy event( we know what that was, don't we?)? So what order can come out of such chaos?




This is the essence of the problems with transmitting information while paying witness to the origins of the math brought forward to the mind's eye from an understanding of the "birthing of new universes?"

Update:

I never saw his "site topic Monday, September 04, 2006 until yesterday "after" constructing my post.

Links to "previous posts linked in quantum hall effect" should give some idea about previous knowledge regardless of PP Cook's posting. Just wanted to set that straight.

See:

P. P. Cooks, "To Commute or not to Commute..."

Friday, January 06, 2006

The Blackhole as a Superfluid: It's Viscosity

Now you must understand that thinking of any first principle is hard to refrain from, especially, if one had thought like I do, that the geometrical tendencies are inherent in the way this is handled, and that it leads to other things? "The equations of relativity fail, and new laws emerge." saids George Musser. " A quark-gluon plasma, in three spatial dimensions - behaves as if it has a viscosity near zero, the lowest yet measured."

That's important, is it not from a geometrical perspective, because from this Dirac's visionary quest might have said, that here lies the opportunity for such a notion to begin, hyperbolically, or spherically. One way, or the other??

Blackhole substances are perhaps the most-perfect fluids in existence because they have ultra-low viscosity.
No matter what you call it, though, that substance and others similar to it could be the most-perfect fluids in existence because they have ultra-low viscosity, or resistance to flow, said Dam Thanh Son, an associate physics professor in the Institute for Nuclear Theory at the University of Washington.

Son and two colleagues used a string theory method called the gauge/gravity duality to determine that a black hole in 10 dimensions - or the holographic image of a black hole, a quark-gluon plasma, in three spatial dimensions - behaves as if it has a viscosity near zero, the lowest yet measured.


Lubos Motl:
The quark picture is more ordinary and materialistic but the black hole picture with an extra dimension is actually more useful to understand some general laws, such as the bounds on viscosity.


The problem might have been missed, with what one might, or should have look at? Herein the condense matter specialist might have thought hey, a superfluid indeed, and we have created a blackhole of a kind? What is this Bound Viscosity?

Sungho Hong on December 6, 2003 :
There is an interesting proposal by Andreas Karch. With certain assumtions, he showed that the entropy bound implies the viscosity bound. Moreover, this relation seems true even beyond the assumptions that he made. An interesting point is that the tabletop experiments could test this. The viscosity of superfluid He4 misses the bound only by a factor of 10.


Thse ideas that begin to manifest, have been from venturing into ideas of expeirmentation. What had arisen from blackholes in our colliders?

Frozen Stars
Black holes may not be bottomless pits after all
By George Musser July 2003

Under the right conditions, a fluid can turn into a superfluid, governed by quantum mechanics even on macroscopic scales. Chapline, along with physicists Evan Hohlfeld, Robert B. Laughlin and David I. Santiago of Stanford University, has proposed that a similar process happens at event horizons. The equations of relativity fail, and new laws emerge. "If one thinks of spacetime as a superfluid, then it is very natural that in fact something physical does happen at the event horizon--that is, the classical event horizon is replaced by a quantum phase transition," Chapline says.


So you don't lose sleep, or the world is a nice place, la te da... because it is what it is?:) It's just a generalization, as any assumption of the data might have convinced one, either way? What is it's value?

One might have assume because of the time involved, that accumulation and gatherings, might have taken up residence at the center of the earth. So? Okay? :)

Monday, August 22, 2005

What Lies Beneath

The Bottom up approach?

R.B.Laughlin:
The paper by Senthil et al. [9] is an attempt to address this issue mathematically. It deals specifically with a suspicion many of us have had that quark confinement, one of the most cherished features of the standard model, may be a collective effect that emerges at a phase transition and thus not fundamental at all. The paper is complicated, an unfortunate side effect of the difficulty of the task, for it is not generally possible to deduce emergent phenomena from first principles. The best one can do is postulate them and then demonstrate plausibility by showing that small corrections get smaller as the measurement scale increases. Such convoluted arguments are ripe with opportunities for mistakes, regardless of how careful the authors have been, so the test of emergent universality that counts is always experimental. This, in turn, forces the theory to address not quark confinement itself but an allegory of it one might hope to test in a table-top experiment. The logic is maddeningly indirect, but unfortunately the only approach that is legitimately scientific.



Fig. 1. In quantum chromodynamics, a confining flux tube forms between distant static charges. This leads to quark confinement - the potential energy between (in this case) a quark and an antiquark increases linearly with the distance between them.



In the Q<->Q measure, the understanding of this distance in the metric was understandable?


Now this is March of 2000.


What Lies Beneath?



Still as a layman, such general talks need better clarification? If you set the stage from planck length, then how indeed does LQG arise here?

Here's another view.

Witten:One thing I can tell you, though, is that most string theorist's suspect that spacetime is a emergent Phenomena in the language of condensed matter physics.

http://online.kitp.ucsb.edu/online/kitp25/witten/oh/10.html

Robert Laughlin:The true origin of these rules is the tendancy of natural systems to organize themselves according to collective principles. Many phenomena in nature are like pointillist paintings. Observing the fine details yields nothing but meaningless fact. To cor rectly understand the painting one must step back and view it as a whole. In this situation a huge number of imperfect details can add up to larger entities of great perfection. We call this effect in the physical world emergence.

http://large.stanford.edu/rbl/lectures/index.htm