Showing posts with label Fly's Eye. Show all posts
Showing posts with label Fly's Eye. Show all posts

Saturday, June 07, 2014

The Fly's Eye

The concept is intriguing when it comes to how movement can been seen and some of the technologies that had used this very concept. But there is something more here then first seen by people that attracted my attention.

An image of a house fly compound eye surface by using scanning electron microscope

A compound eye may consist of thousands of individual photoreceptor units or ommatidia (ommatidium, singular). The image perceived is a combination of inputs from the numerous ommatidia (individual "eye units"), which are located on a convex surface, thus pointing in slightly different directions. Compared with simple eyes, compound eyes possess a very large view angle, and can detect fast movement and, in some cases, the polarisation of light.[24] (Even the trained human eye can determine the orientation of polarized light which manifests in a phenomenon called Haidinger's brush.) Because the individual lenses are so small, the effects of diffraction impose a limit on the possible resolution that can be obtained (assuming that they do not function as phased arrays). This can only be countered by increasing lens size and number. To see with a resolution comparable to our simple eyes, humans would require very large compound eyes, around 11 m in radius.[25]

Compound eyes fall into two groups: apposition eyes, which form multiple inverted images, and superposition eyes, which form a single erect image.[26] Compound eyes are common in arthropods, and are also present in annelids and some bivalved molluscs.[27] Compound eyes, in arthropods at least, grow at their margins by the addition of new ommatidia.[28]

I draw attention to the idea of polarization of light for obvious reasons especially when it comes to communication aspect of light transference. I know there are some who are better educated here.The question is to understand how any sensor that can pick up light differentiation,  as if,  the sun sweeps across the sky. You would understand that connected to this very focus then is the ability to pick up the very differentiation of light? You see?

If you know how to do that, then how would light communication affect receivers of information that is being broadcasted in the light? There is so much to consider here and that information is contained within this very blog.

***

See Also:

Thursday, October 10, 2013

History of The Fly's Eye Event


Two mirrors within the University of Utah's High Resolution Fly's Eye cosmic ray observatory. (Credit: Image  From University of Utah)

Most understand my curiosity with what is happening naturally around us in terms of High Energy Cosmic Events ( It should be stressed that the energy required to move these particles this fast is enormous. Millions of times more energy per particle than humans have been able to create. See- Closure).


The highest energy particle ever observed was detected by the Fly's Eye in 1991. With an energy of 3.5 x 1020eV (or 56J), the particle, probably a proton or a light nucleus, had 108 times more energy than particles produced in the largest earth-bound accelerators. See: Wayback Machine


So for me it is an interesting confirmation about what scientists do with regard to trying to understand these events. How much energy is involved and whether we can create models with which to understand the decay products that are created from.

The highest-energy cosmic ray ever detected was observed on October 15, 1991 by the Fly's Eye cosmic ray detector in Utah, USA. The detector is located in the desert in Dugway Proving Grounds 75 miles southwest of Salt Lake City. The Fly's Eye detects cosmic rays by observing the light that they cause when they strike the atmosphere. When an extremely high-energy cosmic ray enters the atmosphere, it collides with an atomic nucleus and starts a cascade of charged particles that produce light as they zip through the atmosphere. The charged particles of a cosmic ray air shower travel together at very nearly the speed of light, so the Utah detectors see a fluorescent spot move rapidly along a line through the atmosphere. By measuring how much light comes from each stage of the air shower, one can infer not only the energy of the cosmic ray but also whether it was more likely a simple proton or a heavier nucleus. See: The Fly's Eye Event


Animation of air shower detection in the Auger Engineering Array




See Also:

Saturday, March 10, 2007

Akeno Giant Air Shower Array (AGASA)

A Quantum Gravity in the Lab a meeting held in regardsEcho: DDR as a Test Model was introduced by Bee of Backreaction.

I thought it important that I give some background on what had transpired here to allow me to make certain comments in face of what they are proposing there in QGL.

An International Facility to Study the Highest Energy Cosmic Rays See:Pierre Auger Observatory

The historical background to this process is very enlightening when we come to investigate what the universe is doing in relation to what experiments on earth. This "correlation" is an important one these two experimental processes in how we see interactions of high energy particles.

One day, some bright, enterprising physicist, perhaps inspired by this article, will complete the theory, open the doorway, and use the power of pure thought to determine if string theory is a theory of everything, anything, or nothing.

Only time will tell if Einstein was correct when he said, "But the creative principle resides in mathematics. In a certain sense, therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed."
Michio Kaku
See: Window On the Universe

Having done this research on my own I was thinking already in context of the high energy particle collisions that were being recorded. In my blogging experience, I was some upset when I could no longer locate the article I did on the Fly's Eye and the oh my God Particle. "Revisited" help to point to this information obtained from wikipedia, but I had it long before.

John Ellis was again instrumental here in pointing to information from the Pierre Auger experiments and is supplied in the labels


shows arrival directions of cosmic rays with energies above 4 x 1019eV. Red squares and green circles represent cosmic rays with energies of > 1020eV , and (4 - 10) x 1019eV , respectively.
We observed muon components in the detected air showers and studied their characteristics. Generally speaking, more muons in a shower cascade favors heavier primary hadrons and measurement of muons is one of the methods used to infer the chemical composition of the energetic cosmic rays. Our recent measurement indicates no systematic change in the mass composition from a predominantly heavy to a light composition above 3 x 1017eV claimed by the Fly's Eye group.


Knowing that such high energy particles did indeed react with what we measure in the Sno or Ice Cube was just one more part of the neutrinos from the new physics that were being developed as well.

MAGIC is an imaging atmospheric Cherenkov telescope or IACT that has started measuring since the commissioning ended in late 2004. The project is funded primarily by the funding agencies BMFB (Germany), MPG (Germany), INFN (Italy), and CICYT (Spain).

Friday, January 27, 2006

Cosmic Rays Collisions and Strangelets Produced?


I like to think of
Enlightenment in another way Jaffe:)

While we had focused our attention on the airs about the earth, how would it been possible for us earthlings to push back the limitations on on our views that we could have seen cosmological data in context of all that we do in the environment?

See QuarkStars on this.

The collisions are strange: PHENIX can identify particles that contain strange quarks, which are interesting since strange quarks are not present in the original nuclei so they all must be produced. It is expected that a Quark-Gluon Plasma will produce a large amount of strange quarks. In particular, PHENIX has measured lambda particles. There are more lambda particles seen than expected.



I thought I would go over existing post I made in April of 2005 (se revised version below)and correct some of the links that would be more appropriate to information released in the Blogs of Reference Frame, Cosmic Variance and Not Even Wrong's site about "Amanda and ICECUBE."

Exotic physics finds black holes could be most 'perfect,' low-viscosity fluid

Son and two colleagues used a string theory method called the gauge/gravity duality to determine that a black hole in 10 dimensions - or the holographic image of a black hole, a quark-gluon plasma, in three spatial dimensions - behaves as if it has a viscosity near zero, the lowest yet measured.


These characteristics of superfluids are very interesting things to consider, as well as what is prodcuerd in "this action" as we are taken to the supefluid created. Think indeed, that this blackhole "is" the superfluid, and the strangelets, what are these? These never existed, until the superfluid was created?

But in the 10 dimensions of string theory, the fluid of a black hole isn't like other fluids. Space-time is considered to be flat in our perception, Son said, and five of the extra dimensions are compacted into a small, finite sphere. In the remaining dimension, however, space is curved. Evaporation doesn't occur in this dimension, he said, because as particles radiate from the fluid they strike the curved edge of the dimension and are sent bouncing back into the black hole.



These links help set up the thinking for information outside of LHC, that was given for perspective back earlier by John Ellis. The leading perspective on Microstate blackhole production was given then as well in the post with Quark Gluon perspectives, about strangelets produced.

While I had thought these relevant to Dark energy creation in our Cosmo, I did not point directly to the nature of these strangelets gathering at the center of our planet. You had to follow all these posts in order to understand the effect of microstate production, not only in RHIC or LHC, but in the cosmic perspective gained from Pierre Auger experiments as well.

I gave early history consideration so that you might understand a early concern of what mankind might have garnered in thinking, when in actuallity, this was happening naturally every time the cosmic rays penetrated the airs around the earth.

You might well see now that these considerations have been logically followed and there has not been much help as I had been laying the ground work for how perspective is garnered about gravitational considerations. These though are quickly dissipating blackholes created in the airs, around this planet.


Cosmic rays are nuclei and elementary particles always falling very fast on the earth from the universe. Enormous number of cosmic rays are always passing through our bodies. Cosmic rays was discovered by Victor Hess, who is an Austrian physicist, on 1912. He went up to the high altitude of 4000 meters by a balloon and found the ionization rate of the atmosphere is raised at the higher altitude by cosmic rays. After that, cosmic rays have been studied extensively and progressively, and mysteries in the Universe and the Nature are being revealed.

Cosmic rays come from the neighborhood of the Earth and also far galaxies. Galactic and extra galactic cosmic rays are considered to be accelerated at dynamical astronomical objects, such as supernova remnants, neutron stars,and active galactic nuclei. After far-reaching long traveling, they plunge into the atmosphere and bring about nuclear interactions with nuclei of oxygen and nitrogen in the air. The extraterrestrial cosmic rays which come from outside the earth are conventionally called primary cosmic rays, and newly produced particles via the nuclear interactions are called secondary cosmic rays. The main components of the secondary cosmic rays are muon, neutrino, electron, gamma ray, and neutron. While electrons and gamma rays are absorbed into the air, muons and neutrinos can be observed even under the ground.


Of course, this could all be speculation and misconceptions garnered in wrong thinking. So I'll leave it to the experts to correct the disemmination that would affront theoretical positions and hopefully I'll see such corrections. :)

Update: Bloggery updating does not seem to be working, so I will recreate the post here for examination.

4/16/2005

Cosmic ray experiments must overcome tremendous obstacles. The flux of particles above 1019 eV is extremely low (about 0.5 km-2yr-1sr-1), so detectors need to probe a large effective area to detect sufficient flux. This requires earthbound observatories. Consequently, the high energy particle is detected indirectly, as cosmic ray primaries entering the Earth's atmosphere interact with atmospheric nuclei to produce large cascades of relativistic secondary particles known as extensive air showers.



It somehow seems appropriate, that having been given some hint fom John Ellis of his research and interests, that the historical record could some how be brought into view. The appearnce of these references enhance later log entries on this site. A sort of moving backwards to get to the esence of what has happened in astrophysics and the journey tounderstand the nergies involved that speak to the idea of particle shower creation that had been consistent with reductionistics view we have gone through in the research of string theory.


The highest energy particle ever observed was detected by the Fly's Eye in 1991. With an energy of 3.5 x 1020eV (or 56J), the particle, probably a proton or a light nucleus, had 108 times more energy than particles produced in the largest earth-bound accelerators. The origin of the particle is unknown. At such a high energy, and with its assumed charge, the path of this particle through the cosmos would have been relatively unaffected by galactic and intergalactic magnetic fields. Yet no plausible astrophysical source is known along the arrival direction, within the maximum possible source distance imposed by collisions with photons of the cosmic microwave background. This event remains a mystery! It is clear that it existed, but there is no obvious explanation for its source.


These are some of the links that follow the early hisotry of our observations, so that we underrstand well that such cosmic rays are still viable arena for the understanding of these interactions. Sean Carroll may create the April's fool joke on mass migration from particle reductionistionism to astrophycics, but the truth is what is learnt is very applicable to both arenas and what had been learnt, can never be forgotten as we move our observations to the FLY'EYE

  • Collision Course Creates Microscopic "Blackholes"


  • Pierre Auger Observatory


  • Cosmological and Microstate Blackholes


  • Early history developement is sometimes important to understand the trends that intermingle began in branches of High Energy Particle Research and Cosmic particle research. We understood well the limitation that we would run into for the size of the coliders necessary for such observations that having understod the limits reached in this regard we see where one branch will push us to consider the world around us and the inertactions developing towards the understanding of thes ecosmic showers that we are experiencing.


    Extremely energetic cosmic rays interact with the cosmic background photons via pair creation and photopion production and lose their energies during their trip. Therefore there is upper limit of distances which they can propagete in the space with a given energy. The above figure shows this limit (so called attenuation length) in case of cosmic ray protons. You see the 2x10^20 eV particles cannot propagate longer than 30 Mpc (100 million light years), which sets the limit concerning the location of possible sources.


    Other Information Shamelessly Boorrowed:

  • Search for Diffuse Cosmic Gamma Rays above 200 TeV
    Cassiday, G.L. et al.1991, Ap.J., 375,202.

  • A Search for Evidence of Point Sources in the Cherenkov Flash Data From Fly's Eye II
    Elbert, J.W. et al.1991, ICRC, 1,265.

  • Search for Point Sources of U.H.E. Gamma Rays Using the Utah Cherenkov Array
    Corbato, S.C. et al.1991, ICRC, 1,281.

  • The High Resolution Fly's Eye (Hires): Parameters and Motivation
    Borodovsky, J. et al.1991, ICRC, 2,688.

  • Description and Status of the High Resolution (Hires) Fly's Eye Experiment
    Au, W. et al.1991, ICRC, 2,692.

  • Observations of Real and Simulated Showers Using the First Two High Resolution Fly's Eye (Hires) Mirrors
    Borodovsky, J. et al.1991, ICRC, 2,696.

  • Study of Extensive Air Showers (EAS) Detected with the Fly's Eye and the UMC Air Shower Array
    Green, K.D. et al.1991, ICRC, 4,347.

  • Shower Simulations for the Fly's Eye
    Gaisser, T.K. et al.1991, ICRC, 4,413.

  • Limits on Deeply Penetrating Particles from the Fly's Eye Detector
    Cooper, R. et al.1991, ICRC, 4,623.
  • Wednesday, January 04, 2006

    Getting Ducks in a Row

    Energising the quest for 'big theory'
    By Paul Rincon

    We are at a point where experiments must guide us, we cannot make progress without them," explains Jim Virdee, a particle physicist at Imperial College London


    Good to see Joanne contributions here as well as Marks.

    Even though Dissident throws up tidbits for the "unlikely scenario of Blackholes" that devour? These were early fears that were propogated by those of us who did not understand. Maybe the new TV show will make itself known here? What has our past shown in this regard?

    Peter Steinberg

    Unfortunately, all of this is overstated. At RHIC we don't make a "real" black hole, in the sense envisioned by Einstein's General Theory of Relativity. Rather, Nastase's point of view is that RHIC collisions can be described by a "dual" black hole. But what does "dual" mean in this context? It's not "two-ness" in any sense, but rather indicates that one can write down a theory which describes the collision as a black hole, but in a completely different world than that we see around us. To make his model work, he (and many other researchers who are exploring this direction) make a calculation of a black hole in 10 dimensions in order to describe difficult (but gravitationally benign) aspects of the strong interaction in 4 dimensions.



    I was equally dismayed by the understanding that this methods were not understood by dissident, as to the value of Pierre Auger's views containing the very ideas that we see in the enviroment around us. Is it an alternative to how we see particle interactions? Of course. John Ellis made this point very clear, as I have demonstrated through out this site, gaining perspective as spoken by Ellis on information given.

    Plato:
    The Fly's Eye and the Oh My God Particle John Ellis was instrumental in opening up perspective here. What is happening outside of collision reductionist processes of the colliders


    I get a little philosophical myself sometimes, with the hope that "pure thought" can lead me to the very math structure that would be most appropriate. But like anything, there are so many maths in which to talk about the world in such an abstract way, one wonders if they are actually talking about reality? But they are are. :)

    If conceived as a series of ever-wider experiential contexts, nested one within the other like a set of Chinese boxes, consciousness can be thought of as wrapping back around on itself in such a way that the outermost 'context' is indistinguishable from the innermost 'content' - a structure for which we coined the term 'liminocentric'.


    The ideas around KK are also included, like most, I have a lot to learn. But the KK tower is explanatory about the a lot of things in relation to the energy values that are being assigned here? Just diffrent ways at looking at scattering amplitudes and counting might have looked if we took nature to gluonic perceptions? A granularaization? While at such levels then there are no geometries in which anything can emerge?

    DumbBiologist:
    There’s no other necessary connection to stringy physics except that it’s a KK theory (I guess the compactified dimensions can still be pretty big compared to the Planck length…perhaps they have to be?). It’s not obviously related to quantum gravity, anyway.



    So how do you include such "weak field "manifestation in your global perspective(standard model). Some things are recorded, and some can't be seen? So what is the glue that binds:)

    A collision had produced the "superfluid" has no place in quantum gravity issues?

    He4 came from information the beginning, that a Giddings or a Steinberg might have given us about the nature of the "source" of this collision? How would such a thing from this place have figured, this was a place in which to begin to count? So we write it in and hope that such views in context of this "unitary nature" will have revealled all the tragetories of the scatterings, to have said this is a complete view?


    Lubos Motl:
    When you add a force that you want to treat perturbatively, which should be possible if the success of QED is reproduced by your quantum theory of gravity and electromagnetism, then you are expanding around "g=0" where "g" is the gauge coupling. In quantum gravity, there is a new ultraviolet cutoff "g.M_{Planck}" above which the effective theory breaks down. If "g" goes to zero, then this scale goes to zero, too. The theory therefore breaks down at all scales. You can't expand around the point where gravity is the strongest force because a quantum theory of gravity in which gravity is stronger than other forces is inconsistent.

    Tuesday, November 15, 2005

    Oh My God Particle-Revisited

    I just wanted to drop this link here for now.


    The animation shows schematically the behavior of the gas molecules in the presence of a gravitational field. We can see in this figure that the concentration of molecules at the bottom of the vessel is higher than the one at the top of the vessel, and that the molecules being pushed upwards fall again under the action of the gravitational field.



    Gerard "t Hooft:

    The Holographical Mapping of the Standard Model onto the Blackhole Horizon

    Interactions between outgoing Hawking particles and ingoing matter are determined by gravitational forces and Standard Model interactions. In particular the gravitational interactions are responsible for the unitarity of the scattering against the horizon, as dictated by the holographic principle, but the Standard Model interactions also contribute, and understanding their effects is an important first step towards a complete understanding of the horizon’s dynamics. The relation between in- and outgoing states is described in terms of an operator algebra. In this paper, the first of a series, we describe the algebra induced on the horizon by U(1) vector fields and scalar fields, including the case of an Englert-Brout-Higgs mechanism, and a more careful consideration of the transverse vector field components.


    So we are still looking at the horizon here.

    In reference to the God Particle. This was first revealed in the 1991 Fly's eye experiment.

    Oh-My-God particle

    On the evening of October 15, 1991, an ultra-high energy cosmic particle was observed over Salt Lake City, Utah. Dubbed the "Oh-My-God particle" (a play on the nickname "God particle" for the Higgs boson), it was estimated to have an energy of approximately 3 × 1020 electronvolts, equivalent to about 50 joules—in other words, it was a subatomic particle with macroscopic kinetic energy, comparable to that of a fastball, or to the mass-energy of a microbe. It was most likely a proton travelling with almost the speed of light (in the case that it was a proton its speed was approximately (1 - 4.9 × 10-24)c – after traveling one light year the particle would be only 46 nanometres behind a photon that left at the same time) and its observation was a shock to astrophysicists.

    Since the first observation, by the University of Utah's Fly's Eye 2, at least fifteen similar events have been recorded, confirming the phenomenon. The source of such high energy particles remains a mystery, especially since interactions with blue-shifted cosmic microwave background radiation limit the distance that these particles can travel before losing energy (the Greisen-Zatsepin-Kuzmin limit).

    Because of its mass the Oh-My-God particle would have experienced very little influence from cosmic electromagnetic and gravitational fields, and so its trajectory should be easily calculable. However, nothing of note was found in the estimated direction of its origin.


    Why was it necessary to invoke God here as you did Wolfgang? This was around for some time, and now, such references have found their way into particle collisions perspectives? :)

    Quantum gravity is the field devoted to finding the microstructure of spacetime. Is space continuous? Does spacetime geometry make sense near the initial singularity? Deep inside a black hole? These are the sort of questions a theory of quantum gravity is expected to answer. The root of our search for the theory is a exploration of the quantum foundations of spacetime. At the very least, quantum gravity ought to describe physics on the smallest possible scales - expected to be 10-35 meters. (Easy to find with dimensional analysis: Build a quantity with the dimensions of length using the speed of light, Planck's constant, and Newton's constant.) Whether quantum gravity will yield a revolutionary shift in quantum theory, general relativity, or both remains to be seen


    One needs to keep perspective on what is happening here, and as a layman, it is extremely difficult. Yet, do I seem to understand what these season vets are doing? More then just reading the NYT times for sure :)

  • The Fly's Eye and the Oh My God Particle John Ellis was instrumental in opening up perspective here. What is happening outside of collision reductionist processes of the colliders
  • Tuesday, July 26, 2005

    Kilometric Radiation?



    So we use physics in ways to change the way we see? Here are some examles from the Cassini Project and Wikipedia.

  • Cassini Plasma Spectrometer (CAPS)
    The Cassini Plasma Spectrometer (CAPS) is a direct sensing instrument that measures the energy and electrical charge of particles such as electrons and protons that the instrument encounters. CAPS will measure the molecules originating from Saturn's ionosphere and also determine the configuration of Saturn's magnetic field. CAPS will also investigate plasma in these areas as well as the solar wind within Saturn's magnetosphere.[1]


  • Cosmic Dust Analyzer (CDA)

    The Cosmic Dust Analyzer (CDA) is a direct sensing instrument that measures the size, speed, and direction of tiny dust grains near Saturn. Some of these particles are orbiting Saturn, while others may come from other solar systems. The Cosmic Dust Analyzer onboard the Cassini orbiter is ultimately designed to help discover more about these mysterious particles, and significantly add to the knowledge of the materials in other celestial bodies and potentially more about the origins of the universe.[2]


  • Composite Infrared Spectrometer (CIRS)

    The Composite Infrared Spectrometer (CIRS) is a remote sensing instrument that measures the infrared light coming from an object (such as an atmosphere or moon surface) to learn more about its temperature and what it's made of. Throughout the Cassini-Huygens mission, CIRS will measure infrared emissions from atmospheres, rings and surfaces in the vast Saturn system to determine their composition, temperatures and thermal properties. It will map the atmosphere of Saturn in three dimensions to determine temperature and pressure profiles with altitude, gas composition, and the distribution of aerosols and clouds. This instrument will also measure thermal characteristics and the composition of satellite surfaces and rings.[3]


  • Ion and Neutral Mass Spectrometer (INMS)

    The Ion and Neutral Mass Spectrometer (INMS) is a direct sensing instrument that analyzes charged particles (like protons and heavier ions) and neutral particles (like atoms) near Titan and Saturn to learn more about their atmospheres. INMS is intended also to measure the positive ion and neutral environments of Saturn's icy satellites and rings.[4]


  • Imaging Science Subsystem (ISS)

    The Imaging Science Subsystem (ISS) is a remote sensing instrument that captures images in visible light, and some in infrared and ultraviolet light. The ISS has a camera that can take a broad, wide-angle picture and a camera that can record small areas in fine detail. Scientists anticipate that Cassini scientists will be able to use ISS to return hundreds of thousands of images of Saturn and its rings and moons. ISS includes two cameras; a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). Each uses a sensitive charge-coupled device (CCD) as its detector. Each CCD consists of a 1,024 square array of pixels, 12 μm on a side. The camera's system allows for many data collection modes, including on-chip data compression. Both cameras are fitted with spectral filters that rotate on a wheel—to view different bands within the electromagnetic spectrum ranging from 0.2 to 1.1 μm.[5]


  • Dual Technique Magnetometer (MAG)

    The Dual Technique Magnetometer (MAG) is a direct sensing instrument that measures the strength and direction of the magnetic field around Saturn. The magnetic fields are generated partly by the intensely hot molten core at Saturn's center. Measuring the magnetic field is one of the ways to probe the core, even though it is far too hot and deep to actually visit. MAG's goals are to develop a three-dimensional model of Saturn's magnetosphere, as well as determine the magnetic state of Titan and its atmosphere, and the icy satellites and their role in the magnetosphere of Saturn.[6]


  • Magnetospheric Imaging Instrument (MIMI)

    The Magnetospheric Imaging Instrument (MIMI) is both a direct and remote sensing instrument that produces images and other data about the particles trapped in Saturn's huge magnetic field, or magnetosphere. This information will be used to study the overall configuration and dynamics of the magnetosphere and its interactions with the solar wind, Saturn's atmosphere, Titan, rings, and icy satellites.[7]


  • Radio Detection and Ranging Instrument (RADAR)

    The Radio Detection and Ranging Instrument (RADAR) is a remote active and remote passive sensing instrument that will produce maps of Titan's surface and measures the height of surface objects (like mountains and canyons) by bouncing radio signals off of Titan's surface and timing their return. Radio waves can penetrate the thick veil of haze surrounding Titan. In addition to bouncing radio waves, the RADAR instrument will listen for radio waves that Saturn or its moons may be producing.[8]


  • Radio and Plasma Wave Science instrument (RPWS)

    The Radio and Plasma Wave Science instrument (RPWS) is a direct and remote sensing instrument that receives and measures the radio signals coming from Saturn, including the radio waves given off by the interaction of the solar wind with Saturn and Titan. The major functions of the RPWS are to measure the electric and magnetic wave fields in the interplanetary medium and planetary magnetospheres. The instrument will also determine the electron density and temperature near Titan and in some regions of Saturn's magnetosphere. RPWS studies the configuration of Saturn's magnetic field and its relationship to Saturn Kilometric Radiation (SKR), as well as monitoring and mapping Saturn's ionosphere, plasma, and lightning from Saturn's (and possibly Titan's) atmosphere.[9]


  • Radio Science Subsystem (RSS)

    The Radio Science Subsystem (RSS) is a remote sensing instrument that uses radio antennas on Earth to observe the way radio signals from the spacecraft change as they are sent through objects, such as Titan's atmosphere or Saturn's rings, or even behind the sun. The RSS also studies the compositions, pressures and temperatures of atmospheres and ionospheres, radial structure and particle size distribution within rings, body and system masses and gravitational waves. The instrument uses the spacecraft X-band communication link as well as S-band downlink and Ka-band uplink and downlink.[10]


  • Ultraviolet Imaging Spectrograph (UVIS)

    The Ultraviolet Imaging Spectrograph (UVIS) is a remote sensing instrument that captures images of the ultraviolet light reflected off an object, such as the clouds of Saturn and/or its rings, to learn more about their structure and composition. Designed to measure ultraviolet light over wavelengths from 55.8 to 190 nm, this instrument is also a valuable tool to help determine the composition, distribution, aerosol particle content and temperatures of their atmospheres. This sensitive instrument is different from other types of spectrometers because it can take both spectral and spatial readings. It is particularly adept at determining the composition of gases. Spatial observations take a wide-by-narrow view, only one pixel tall and 60 pixels across. The spectral dimension is 1,024 pixels per spatial pixel. Additionally, it is capable of taking so many images that it can create movies to show the ways in which this material is moved around by other forces.[11]


  • Visible and Infrared Mapping Spectrometer (VIMS)

    The Visible and Infrared Mapping Spectrometer (VIMS) is a remote sensing instrument that is actually made up of two cameras in one: one is used to measure visible wavelengths, the other infrared. VIMS captures images using visible and infrared light to learn more about the composition of moon surfaces, the rings, and the atmospheres of Saturn and Titan. VIMS also observes the sunlight and starlight that passes through the rings to learn more about ring structure. VIMS is designed to measure reflected and emitted radiation from atmospheres, rings and surfaces over wavelengths from 0.35 to 5.1 mm. It will also help determine the compositions, temperatures and structures of these objects. With VIMS, scientists also plan to perform long-term studies of cloud movement and morphology in the Saturn system, to determine the planet's weather patterns.[12]


  • So how does String/M theory change the way we see?


    The calorimeter design for GLAST produces flashes of light that are used to determine how much energy is in each gamma-ray. A calorimeter ("calorie-meter") is a device that measures the energy (heat: calor) of a particle when it is totally absorbed.


    Smolin added his contribution to the string theory discussion on the new Cosmicvariance.com site that has been created by a group of people that offer perspective. In this case Sean Carroll posted a thread on Two Cheers for String theory, provoked some iteresting responses by minds who are at the forefront of these conversations.

    I responded to this becuase I had been following both avenues Smolin spoke too, so I'll put my comment here as well.

    This topic thread was develope from my reactions based on those who call people who are trying hard to integrate views of the natural world with the physics ideology of the topic of Strings?M theory, these fellows present. If they can not show us these new views as Smolin offers for inspection then what use the models and theories if no onne wants to se these work in the world we undrstand well by seeing around us?

    While some people are looking for consistant means of determinations, others apply "conceptual situations" and bring forth comprehension of a kind. Now to this degree, that "gluonic perception is being adjusted" to see these values. The Smolins and others understood well the limitation of these views? Are there any?


    Radio sounds from the source

    All of the structures we observe in Saturn's radio spectrum are giving us clues about what might be going on in the source of the radio emissions above Saturn's auroras," said Dr. Bill Kurth, deputy principal investigator for the instrument. He is with the University of Iowa, Iowa City. Kurth made the discovery along with Principal Investigator Don Gurnett, a professor at the University. "We believe that the changing frequencies are related to tiny radio sources moving up and down along Saturn's magnetic field lines."


    Has Sound, Changed the way we See?

    Most of us understand the the aurora display do we not, and the resulting interactive play between the sun and the earth? The Auger experiment previously talked about and spoken too, by John Ellis, is a fine example of the diversity of interative features we can hope to see, as we examine the particle nature apart from the LHC rules of energy engagement, above and beyond the limits that have been imposed on us earthlings:)


    The Fly's Eye and the Oh My God Particle


    While the topic is produced for this conversation seems disjointed, the ideology of the string theorist is held to a boundry of thinking in my eyes that such a membrane( here I could link a toy model for comparison), and defined in this bubble context, as rudimentry as it appears in my mind's eye, it follows the developemental processes we see from the eulicidation Einstein offered us by joining Maxwell into the process unfolding in nature and to see the effect of any bulk production as a necessary step beyond the boudaries of this bubble?


    Now in contrast I see the soapy bubble and light refraction dispalyed in such a lovely continuous flow over it's surface, that to me, it does not make sense if such auroric dispalyes are not to give us new ideas about the interactive feature of the sun with earth? Conceptually, thes ideas of hitting metal plates and such present new ideas in how dispersion across that plate could represent other ideas. What are those. Wel that's what I am trying to do is free the mind from th econstraints we had put on it in sucha strick language accompany those that step ahead of us in their own specualtions educationally followed doctrine. What new light and thinking patterns follow these people?

    The auroral ionosphere is a natural emitter of radio waves, and many of these emissions are observable at ground level. Several types of radio emissions have been well documented using a variety of ground-based, stepped-frequency receivers (see reviews by LaBelle [1989] and LaBelle and Weatherwax, [1992]). In particular, auroral roar is a relatively narrowband emission at roughly 2 and 3 times the local electron cyclotron frequency ( ) [Kellogg and Monson, 1979; Kellogg and Monson, 1984; Weatherwax et al., 1993, 1995]. Much effort has been made in characterizing the seasonal, diurnal, and spectral characteristics of auroral roar to aid in determining its generation mechanism [e.g., Weatherwax et al., 1995.




    See also:

    http://www-pw.physics.uiowa.edu/plasma-wave/tutorial/examples.html

    News articles shamelessy borrowed:


  • Space Music

  • The Musical Sounds of Space

  • 'Sun Rings' Shares the Music of
    Space

  • Quartet, Choir Debut NASA's 'Space Music'

  • Out of This World

  • Music of the Stars

  • Music of the Spheres

  • NASA Music Out of This World

  • Sun Rings

  • Turning Sounds From Space Into a Symphony

  • Science and Music Merge for Fall Concert

  • UI Space Physicist's Sounds of Space Inspire Work of Art
  • Thursday, May 05, 2005

    "Centauro" event

    Gravity Wave Pulses From the Sun?

    Now what has happened here is that I am seeing from a purely gravitational consideration in light of the bulk. Our earth and in this space , considerations on the strengths and weaknessess of gravity in relation to the sun.



    We understand well the relationship in the cosmos, but have we taken this view and in recognition of cosmic particle collisions, understood the the microstate blackhole would have something to say in this weak field manifestation?

    For additional information on this process of cosmic particle collisions

  • The Fly's Eye and the Oh My God Particle


  • If some of physicists' favourite theories about extra dimensions are correct, it would also be possible for high-energy cosmic-ray particles from space to create black holes when they collide with molecules in the Earth's atmosphere. These black holes would be invisibly small, with a mass of only 10 micrograms or so. And they would be so unstable that they would explode in a burst of particles within around a billion-billion-billionth of a second.



    One of the mysterious "Centauro" events seen by the Brazil ­Japan collaboration operating X-ray emulsion chambers at an altitude of 5200 m on Mt Chacaltaya in the Bolivian Andes. Given the number of hadrons seen in the lower chamber (left) physicists are intrigued by the relative lack of corresponding electromagnetic effects in the upper chamber (right).


    Can Centauros or Chirons be the first observations
    of evaporating mini Black Holes?


    Among the various extensions of the Standard Model to energies beyond 1 TeV, one of the most attractive alternatives to the (Supersymmetric?) Great Desert Scenario is the TeV-gravity hypothesis with large extra dimensions [1]. According to it, matter particles and vector gauge bosons are open-string excitations, attached to a 3-brane (our world), which is embedded into compactified D-dimensional bulk space, where the closed-string excitations, including gravity, can propagate. This is the simplest possibility. Specific realizations of this idea and alternative scenaria may be found in [2]. Apart from a certain philosophic and aesthetic attraction of such models, they lead to the exciting possibility of experimental discovery of unification of the Standard Model with Quantum Gravity within the next few years, in the forthcoming accelerator, neutrino and cosmic-ray experiments [3, 4, 5].

    Moreover, one could even claim that Quantum Gravity phenomena are already present in existing cosmic-ray data [6]. In the present paper we shall argue that the long-known Centauro-like events (CLEs) may be due to the formation and subsequent evaporation of mini black holes (MBHs), predicted in TeV-gravity models.

    Wednesday, April 27, 2005

    The Calorimetric View?



    The Title, might seem somewhat strange, but a issue has developed for me that I see raised in the scourge of other intellectuals, who disavow the extra dimension scenario.

    So you have this view and you have this idea of missing energy? Where did it go and where did it come from? Pierre Auger linked previously and the Oh my god particle, raise this idea more in line with the vaster layout of this possibilty.

    You see these things are happening around us now, and you needed a much comprehensive view of this compacted dynamcial world? So the methods seen for determination help us to see what is happening in relation not only to particle reductionistic views, but of the relationship happening with Earth and the Sun. Our other Cosmic relations, that move here in the vast network of spacetime contortions that signal informative views from earlier times


    ATLAS and the LHC
    Describing the strong, weak and electromagnetic interactions in terms of gauge theories, the Standard Model (SM) of fundamental particles and their interactions has successfully explained and predicted many aspects of high-energy particle interactions. However, despite its tremendous successes, it remains theoretically unsatisfactory. The SM cannot answer what is the origin of particle masses, contains a large number of arbitrary parameters, and does not explain why there are so many types of quarks and leptons, among other questions. Perhaps as much as theoretical breakthroughs are needed in order to improve the SM, so are experimental observations on phenomena which can further constrain the SM or may reveal physics beyond it.


    The question I raised was in looking at where the missing energy had gone? This is a important question, becuase it speaks to what energy gone in/out, as not being equal? I take it, that all particle reductionistic interpretations would have surmized it's energy value, and then, had something left over that is accoutable? How would you know it's missing?

    Now I was looking a Cabi's ole post and from it, this lead me to look at the title of the connected paper for consideration.


    A Toroidal LHC ApparatuS


    Part of the counterpart of looking at particle creation would have been able to understand the part of the calorimeters that are used to measure the evidence produced. IN this context, it lead me to the Atlas information held at CERN. It also made me think of Glast determinations of early universe indications from the calorimeter located in the Glast satelitte. See the Looking Glast


    A Higgs Mechanism for Gravity, by Ingo Kirsch

    In this paper we elaborate on the idea of an emergent spacetime which arises due to the dynamical breaking of diffeomorphism invariance in the early universe. In preparation for an explicit symmetry breaking scenario, we consider nonlinear realizations of the group of analytical diffeomorphisms which provide a unified description of spacetime structures. We find that gravitational fields, such as the affine connection, metric and coordinates, can all be interpreted as Goldstone fields of the diffeomorphism group. We then construct a Higgs mechanism for gravity in which an affine spacetime evolves into a Riemannian one by the condensation of a metric. The symmetry breaking potential is identical to that of hybrid inflation but with the non-inflaton scalar extended to a symmetric second rank tensor. This tensor is required for the realization of the metric as a Higgs field. We finally comment on the role of Goldstone coordinates as a dynamical fluid of reference.


    Now I have not gone into in detail because I am somewhat slow and a bottom feeder trying very hard to gain perspective of the world these fellows like to deal with.

    So the water symbolically speaking, sound manifest, with those inhabiting a dynamical world, speak about the nature of matter constitutions. That come from some state of existance? Here the idea, that it could emerse from nothing (where do the graviton perceptions reside?), is again hard to swallow becuase, "preconstitutional states," had allowed such manifestations to emerge from something? It just seemed logical? Non!

    When you think this is going to be the end of it, I thought, I would recap, because I have given the containment(calorimetric) that such particle views, or early universe connections, might have brought forward in detectors methods?

    This would have satisfied Peter Woit I am sure, but this view is far from over. The rules have defined a greater context to the issue that points us to the deeper issue of what Gerard 't Hooft might have said was comprehensible features of computerized information consistancies. This would have been far from the truth. Blackhole particle production, would have said hold on? To have this comprehensive view, you needed to include a completed version of the standard model? Without the grvaiton in cvomputerized versions you see where the picture is far completed and you se where the extra dimensiona would have certain features that would have incorporated graviton perceptions in the bulk?



    The horizon would have been far from complete had the standard model not included this into the the energy in/out version. This would have been the thread(string) that connected the innner space of the blackhole with the particle production that would have dissipated/exploded in view? How would computerization meet this demand? LIGO?

    Friday, April 22, 2005

    Clementine Project Information


    Clementine was a joint project between the Strategic Defense Initiative Organization and NASA. The objective of the mission was to test sensors and spacecraft components under extended exposure to the space environment and to make scientific observations of the Moon and the near-Earth asteroid 1620 Geographos. The observations included imaging at various wavelengths including ultraviolet and infrared, laser ranging altimetry, and charged particle measurements. These observations were originally for the purposes of assessing the surface mineralogy of the Moon and Geographos, obtaining lunar altimetry from 60N to 60S latitude, and determining the size, shape, rotational characteristics, surface properties, and cratering statistics of Geographos.


    Look at Clementine and the moon. The way they measured gravity there( the satellite lag)? The geological perspective gained from mapping the moon? The frames of reference are thus quite dynamical when you use this perspective to gain new insights developed from the work of Einstein.

    Green Cheese?

    The Clementine gravity experiment used measurements of perturbations in the motion of the spacecraft to infer the lunar gravity field

    The complexity of measuring events in the cosmos, was to see information contained in what exists around us now. Using various locations they are trying to ascertain simultaneous correspondances in the signals from these cosmological locations, as a well as use the distance between these earth based locations.

    Gravity for instance, varies with Time

    Gravity is "flavor blind," so when a microscopic blackhole evaporates it produces all the Standard Model particles with equal probability. Once one accounts for spin and color, it turns out that particles produced when a blackhole decays are about 72 percent quarks and Gluons, 18 percent leptons, and the rest are bosons. Such a distinctive shower of particles would be hard to miss. So there is the possibility that the Pierre Auger Observatory will detect blackholes.
    Page 262, Out of this World, by Stephen Webb

    In a complex world of uncertainty this is hard to do, so you look for the ways to see how the cosmic rays create the situations for particle production. So you look for the origins of any number system that began, and how it was used to explain the natural world.

    An Excursion into the Dimensions of Numbered Systems

    An example here would be using Pascal's triangle. If you "blanket" using resonances pertaining to all number deveopements, then we might understand the harmonies created? Topological movements?

    In a euclidean world, the developing geometries will lead somewhere, but how did you every arrive from topological states to euclidean frames of reference? You had to understand the physics process.

    So from space to earth, the earth, a final physical state. But you understand that it existed in other states as well? That's where you learn to use the physics.