Showing posts with label Titan. Show all posts
Showing posts with label Titan. Show all posts

Tuesday, January 04, 2011

Sonification

The lessons of history are clear. The more exotic, the more abstract the knowledge, the more profound will be its consequences." Leon Lederman, from an address to the Franklin Institute, 1995

BBC article-Click on Image
See Also: LHC sound

***

Sonification is the use of non-speech audio to convey information or perceptualize data. Due to the specifics of auditory perception, such as temporal and pressure resolution, it forms an interesting alternative or complement to visualization techniques, gaining importance in various disciplines. It has been well established for a long time already as Auditory Display in situations that require a constant awareness of some information (e.g. vital body functions during an operation). Sonification as a method for exploration of data and scientific modeling is a current and ongoing research desideratum.

One of the first successful applications of sonification is the well-known Geiger counter, a device measuring ionizing radiation. The number and frequency of audible clicks are directly dependent on the radiation level in the immediate vicinity of the device.

Contents

Fields

Sonification is an interdisciplinary field combining:

Some existing applications and projects

Sonification techniques

Many different components can be altered to change the user's perception of the sound, and in turn, their perception of the underlying information being portrayed. Often, an increase or decrease in some level in this information is indicated by an increase or decrease in pitch, amplitude or tempo, but could also be indicated by varying other less commonly used components. For example, a stock market price could be portrayed by rising pitch as the stock price rose, and lowering pitch as it fell. To allow the user to determine that more than one stock was being portrayed, different timbres or brightnesses might be used for the different stocks, or they may be played to the user from different points in space, for example, through different sides of their headphones.

Many studies have been undertaken to try to find the best techniques for various types of information to be presented, and as yet, no conclusive set of techniques to be used has been formulated. As the area of sonification is still considered to be in its infancy, current studies are working towards determining the best set of sound components to vary in different situations.

Several different techniques for rendering auditory data representations can be categorized:

References

  1. ^ Thomas Hermann, Andy Hunt, and Sandra Pauletto. Interacting with Sonification Systems: Closing the Loop. Eighth International Conference on Information Visualisation (IV'04) : 879-884. Available: [1]. DOI= http://doi.ieeecomputersociety.org/10.1109/IV.2004.1320244.
  2. ^ Thomas Hermann, and Andy Hunt. The Importance of Interaction in Sonification. Proceedings of ICAD Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6–9, 2004. Available: [2]
  3. ^ Sandra Pauletto and Andy Hunt. A Toolkit for Interactive Sonification. Proceedings of ICAD Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6–9, 2004. Available: [3].

See also

External links


***

Radar echos from Titan's surface

This recording was produced by converting into audible sounds some of the radar echoes received by Huygens during the last few kilometers of its descent onto Titan. As the probe approaches the ground, both the pitch and intensity increase. Scientists will use intensity of the echoes to speculate about the nature of the surface.

***




Gravity is talking. LISA will listen.

The Cosmos sings with many strong gravitational voices, causing ripples in the fabric of space and time that carry the message of tremendous astronomical events: the rapid dances of closely orbiting stellar remnants, the mergers of massive black holes millions of times heavier than the Sun, the aftermath of the Big Bang. These ripples are the gravitational waves predicted by Albert Einstein's 1915 general relativity; nearly one century later, it is now possible to detect them. Gravitational waves will give us an entirely new way to observe and understand the Universe, enhancing and complementing the insights of conventional astronomy.
See:What Does Gravity Sound Like?

See Also: Gravitational Wave Detectors are Best Described as "Sounds.

Saturday, June 06, 2009

Hubble Reveals Potential Titanium Oxide Deposits at Aristarchus and Schroter's Valley Rille

Credit: NASA, ESA, and J. Garvin (NASA/GSFC)Aristarchus Crater in False Color

This color composite focuses on the 26-mile-diameter (42-kilometer-diameter) Aristarchus impact crater, and employs ultraviolet- to visible-color-ratio information to accentuate differences that are potentially diagnostic of ilmenite- (i.e, titanium oxide) bearing materials as well as pyroclastic glasses. The symphony of color within the Aristarchus crater clearly shows a diversity of materials — anorthosite, basalt, and olivine. The images were acquired Aug. 21, 2005. The processing was accomplished by the Hubble Space Telescope Lunar Exploration Team at NASA's Goddard Space Flight Center, Northwestern University, and the Space Telescope Science Institute. False-color images were constructed using the red channel as 502/250 nanometers; the green as 502 nanometers; and the blue as 250/658 nanometers. North is at the top in the image.




Credit: NASA, ESA and J. Garvin (NASA/GSFC)
This view of the lunar impact crater Aristarchus and adjacent features (Herodotus crater, Schroter's Valley rille) illustrates the ultraviolet and visible wavelength characteristics of this geologically diverse region of the Moon. The two inset images illustrate one preliminary approach for isolating differences due to such effects as composition, soil maturity, mixing, and impact ejecta emplacement. The color composite in the lower right focuses on the 26-mile-diameter (42-kilometer-diameter) Aristarchus impact crater, and employs ultraviolet- to visible-color-ratio information to accentuate differences that are potentially diagnostic of ilmenite- (i.e, titanium oxide) bearing materials as well as pyroclastic glasses.

The same is the case for the image of a section of Schroter's Valley (rille) in the upper right. Bluer units in these spectral-ratio images suggest enrichment in opaque phases in a relative sense. The magenta color indicates dark mantle material which scientists believe contains titanium-bearing pyroclastic material.

The symphony of color within the Aristarchus crater clearly shows a diversity of materials — anorthosite, basalt, and olivine. The impact crater actually cut through a mare highlands boundary with superposed pyroclastics - a unique geologic setting on the Moon! The distinctive tongue of material extending out of the crater's southeastern rim is thought to be very olivine-rich material, based on Earth-based spectra and Clementine visible and infrared imaging data.

North is at the top in these images.

These images were acquired Aug. 21, 2005. The processing was accomplished by the Hubble Space Telescope Lunar Exploration Team at NASA's Goddard Space Flight Center, Northwestern University, and the Space Telescope Science Institute. False-color images were constructed using the red channel as 502/250 nanometers; the green as 502 nanometers; and the blue as 250/658 nanometers.



(Clementine, USGS slide 11)
Clementine color ratio composite image of Aristarchus Crater on the Moon. This 42 km diameter crater is located on the corner of the Aristarchus plateau, at 24 N, 47 W. Ejecta from the plateau is visible as the blue material at the upper left (northwest), while material excavated from the Oceanus Procellarum area is the reddish color to the lower right (southeast). The colors in this image can be used to ascertain compositional properties of the materials making up the deep strata of these two regions.


***


APOLLO

The points of reference for the earth-moon measurement are the earth-based telescope—in this case, the 3.5 meter telescope at Apache Point, and in particular, the intersection of the telescope mount axes—and the small, suitcase-sized retroreflector array placed on the lunar surface by Apollo astronauts (pictured is the Apollo 11 reflector at Tranquility Base). A total of four lunar retroreflectors are functional: three Apollo reflectors from Apollo 11, 14, and 15 (three times bigger than 11 & 14), and one French-built, Soviet landed (unmanned) unit from the Luna 21 mission. A significant part of the challenge of lunar range modeling is converting this point-to-point measurement into a distance between the center-of-mass of the earth and the center-of-mass of the moon. It is only after this reduction that one can consider the interesting part of the problem: the dynamics of the earth-moon-sun system. For more general information on the technique, see this description of how the technique works and why we're performing this experiment.


Location of the reflector landing sites

APOLLO Laser First Light

Another picture from July 24, 2005. Larry Carey is seen standing on the catwalk performing aircraft spotting duties. Bruce Gillespie is the other spotter, hidden by the pine tree. On some viewing screens, the green beam may be barely visible leaving the dome. The beam is about as visible as the Milky Way. Part of Ursa Minor is at right, and Draco at upper left. Photo by Gretchen van Doren.


A picture from the August 2005 run by Gretchen van Doren, showing the laser beam making its way to the (over-exposed) moon. No, the moon is not exploding under the influence of our 2.3 Watt laser! The edge-brightening of the beam can be seen, as the telescope secondary mirror robs the beam of light in its center. Orion is seen at right.


A picture from the June 2006 run showing the back of the telescope, the APOLLO laser enclosure (left), the beam heading moon-ward, and the moon intself. The moon is actually a crescent, but so terrifically overexposed (16 seconds) that it looks rather round.


***


Question 4 : What is the structure of Mercury's core?


Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

More recently, Earth-based radar observations of Mercury have also determined that at least a portion of the large metal core is still liquid to this day! Having at least a partially molten core means that a very small but detectable variation in the spin-rate of Mercury has a larger amplitude because of decoupling between the solid mantle and liquid core. Knowing that the core has not completely solidified, even as Mercury has cooled over billions of years since its formation, places important constraints on the thermal history, evolution, and core composition of the planet.




Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

This MESSENGER image was taken from a distance of about 18,000 kilometers (11,000 miles) from the surface of Mercury, at 20:03 UTC, about 58 minutes after the closest approach point of the flyby. The region shown is about 500 kilometers (300 miles) across, and craters as small as 1 kilometer (0.6 mile) can be seen in this image.


The Gravity Field

Tuesday, December 11, 2007

The Other Side of the Coin

Susan Holmes- Statistician Persi Diaconis' mechanical coin flipper.

In football's inaugural kickoff coin toss, the coin is not caught but allowed to bounce on the ground. That introduces an extra complication, one mathematicians have yet to sort out.




Persi Diaconis See here.

The Ground State

There is always an "inverse order to Gravity" that helps one see in ways that we are not accustom too. The methods of "prospective measurements" in science have taken a radical turn? Satellites as a measure, have focused our views.



While one may now look at the "sun in a different way" it had to first display itself across the "neutrino Sudbury screen" before we knew to picture the sun now in the way we do. It was progressive, in the way the sun now forms a picture of what we now know in measure.

So you try and bring it all together under this "new way of seeing" and hopefully your account of "the way reality is," is shared by others who now understand what the heck I am doing?

To get a simple physical understanding of what the acoustic oscillations are, it may be helpful to change the perspective. Normally, the common way of presenting the phenomenon has been in terms of standing waves where the analysis is done in Fourier space. But the baryon-photon fluid really is just carrying sound waves, and the dispersion relation is even pretty linear. So let’s instead think of things in terms of traveling waves in real spacehttp://72.14.253.104/search?q=cache:xLcnPGO6BDQJ:cmb.as.arizona.edu/~eisenste/acousticpeak/spherical_acoustic.ps+Fourier+space+when+I%27m+thinking+about+sound.&hl=en&ct=clnk&cd=1&gl=ca-Steward Observatory, University of Arizona
c 2005


"Uncertainty" has this way of rearing it's head once we reduce our perspective to the microscopic principals(sand), yet, on the other side of the coin, how is it that only 5% of mass determination allows us to see the universe mapped in the way it has in regards to the CMB?

There is this "entropic valuation" and with it, temperature. Some do not like the porridge "to hot or to cold," with regards to "living in a place" within the universe.

So I'll repeat the blog comment entry here in this blog so one can gather some of what I mean.

At 2:56 AM, December 11, 2007, Plato said...
As a lay person with regards to the complexity of the language(sound)and universe, it is sometimes reduced to "seeing in ways that are much easier to deal with," although of course, it may not be the same for everyone?:)

:)Something good science people "do not want to hear?"

Good link in html.

The launching of the sound waves is very similar to dropping a rock in a pond and seeing the circular wave come off (obviously that a gravity wave, not a compressional wave, but I’m focusing on the geometry). The difference here is that the area where the “rock” entered is still the most likely region to form galaxies; the spherical shell that it produced is only carrying 5% of the mass.

Hopefully, this demystifies the effect: we’re seeing the imprint of spherical sound waves launched from the sites of dark matter overdensities in the early universe. But also I hope it makes it more clear as to why this effect is so robust: the propagation of sound in the baryon-photon plasma is very simple, and all we’re doing is measuring how far it got.


"Mapping," had to begin somewhere. Whatever that may mean,one may think of Mendeleeev or Newlands.

Generally Grouping Order increases the density of objects within a frame of reference, resulting in a more pronounced single object.


"Sand with pebbles" on a beach? It had to arise from someplace?

The other side of the Coin is?

This recording was produced by converting into audible sounds some of the radar echoes received by Huygens during the last few kilometres of its descent onto Titan. As the probe approaches the ground, both the pitch and intensity increase. Scientists will use intensity of the echoes to speculate about the nature of the surface.


and not to be undone.

Mass results in an increase in the gravitational force exerted by an object. Density fluctuations on the surface of the Earth and in the underlying mantle are thus reflected invariations in the gravity field.As the twin GRACE satellites orbit the Earth together, these gravity field variations cause infinitesimal changes in the distance between the two. These changes will be measured with unprecedented accuracy by the instruments aboard GRACE leading to a more precise rendering of the gravitational field than has ever been possible to date.


Layman pondering.


So now that you have this "comprehensive view" I have gained on the way I am seeing the universe. You can "now see" how diverse the application of sound in analogy is. It is helping me to develop the "Colour of Gravity" as a artistic endeavour. I refrain from calling it "scientific" and be labelled a crackpot.

A Synesthesic View on Life.

Who knows how I can put these things together and come up with what I do. Yet, it had not gone unnoticed that such concepts could merge into one another, and come out with some tangible result as a "artistic effort." Some may be used to the paintings of Kandinsky(abstract), yet the plethora of imaging that unfolds in the conceptual framework might have been self evident, from such a chaotic mess of the layman's view here?

Tuesday, February 20, 2007

The Perfect Sphere

Before I begin I had to mention the following two entries below that I wanted to do but was short on time.

This recording was produced by converting into audible sounds some of the radar echoes received by Huygens during the last few kilometres of its descent onto Titan. As the probe approaches the ground, both the pitch and intensity increase. Scientists will use intensity of the echoes to speculate about the nature of the surface.


I am following behind on the different posts that I wanted to write. One of them in relation to the descent of a "measure gatherer" (sounds primitive doesn't it?) and the sound values produced from that "descent on Titan." Can make it "sound ancient" while current research is of value.

Almost, as if one is a cave dweller blowing dried paint over their hands, could possibly be thinking of fire and rays cast while their own shadows made them think of a sun that can enter the cave, and chains that need to be broken from thinking so circumspect..:)



The second one I wanted to talk about was in relation to Themis and the Aurora Borealis. The labels will hopefully help with my previous research that I had done as well as other perspectives that allowed me to see this sun earth relationship. Quasar has currently dealing with that topic further in "Coronal Mass Ejection" as well and Backreaction entitled, "NASA launch of THEMIS Satellite."

Anyway on to the essence of this post and why it is troubling to me. Many would not know what goes on in my head as I am currently looking at the relationship of the Bose Nova to the jet productions that issue from such spiralled tendency. Accretion disc and the idea of such spiralling, to a pipe that follows to making anti-matter productions?

See Water in Zero Gravity, by Backreaction
How did this all arise? So you see such an idea of the sphere in a vacuum is a point from which to begin the search for things that were not there before, so we now know that such collisions can indeed produce "new" information?

The action taken, although seems related to what Arivero is saying, and of course I already have much on this in terms of Han Jenny, and the taking of the Chaldni plate to spherical relations. As an experiment with a "balloons and dyes using sound" similar to "sand on that same chaldni plate."

The Perfect Sphere and Sonoluminence.

Taleyarkhan.A second internal inquiry has found no evidence of misconduct.Credit: Purdue News Service
Purdue University officials today announced that a second and final internal inquiry has cleared bubble-fusion researcher Rusi Taleyarkhan of all allegations of research misconduct. "I feel vindicated and exonerated," Taleyarkhan says. "It's been a pressure cooker for about a year." But controversy surrounding Taleyarkhan's work isn't likely to die down any time soon.

Taleyarkhan is the chief proponent of the controversial notion of sonofusion, which suggests that sound energy can collapse bubbles in a way that yields more energy than was initially put in (ScienceNOW, 4 March 2002). Last year, an article in Nature reported that several of Taleyarkhan's colleagues at Purdue were upset by their encounters with him, suggesting that he allegedly obstructed their work and tried to stop them from publishing results that contradicted his own.


There has been some contention about the results, but this is far from what I wanted to show in terms of the geometrics involved. Patience as to the energy produced from this interaction of "sound on the surface transferred inside" to cause a spherical collapse.


Experimental apparatus used by the team at the University of Stuttgart. PMT = photomultiplier tube, PZT = piezoelectric transducer. Picture credit: Physical Review Letters
German researchers have measured the duration and shape of a sonoluminescence pulse for the first time. Sonoluminescence - the emission of light by bubbles of gas trapped in a liquid and excited by sound waves - is one of the most puzzling phenomena in physics. Although first discovered in 1934, physicists have yet to discover the underlying light emitting process.


Seeing the tensorial action on the bubble moving sound inside, I had wondered about how such a collapse could increase the temperatures involved to produce this "super higgs fluid." Lubos Motl never gave this much thought and I of course am impressionable when it comes to the science mind. I could not shake it.

Ultrasound can produce temperatures as high as those on the surface of the Sun and pressures as great as those at the bottom of the ocean. In some cases, it can also increase chemical reactivities by nearly a millionfold.


So we "assign fluids" as one might the "vacuum in space" to illustrate what we have as our way with these bubbles? These claims have not been fantastical other then what the science had been designed for, yet I am drawn to the schematics and geometrics.

So yes the ways in which the size of the blackhole could all of sudden collapse is critical here, to producing further results in what is required of the new physics? So looking for "such experimental processes" is always part of my resolve to understand the geometrics involved.

Please be patient while I am learning.


Axisymmetry is also broken in the fluid bells, which assume the form of polyhedra


See further information in regards to Broken Symmetry.

So the idea here that was troubling was the way in which the symmetry was broken in terms of the fluid flows demonstrated by the Broken Symmetry examples.

My perception is much different here in that the dynamical relation of "the super fluid", may have it's correlation in the Navier stokes equations. This is by "insinuation on my part." How preposterous such a thing to think that the conditions had to be "spelt out first" in order for us to understand the "new physics" beyond the standard model?

Navier-Stokes Equations

The Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes, are a set of equations that describe the motion of fluid substances such as liquids and gases. These equations establish that changes in momentum in infinitesimal volumes of fluid are simply the product of changes in pressure and dissipative viscous forces (similar to friction) acting inside the fluid. These viscous forces originate in molecular interactions and dictate how viscous a fluid is. Thus, the Navier-Stokes equations are a dynamical statement of the balance of forces acting at any given region of the fluid.


Using the geometrical basis of my thought pattern established as a point in a circle, or a point with "no boundary", it seems it is very difficult to talk about the universe if one does not include the way in which such dynamicals can perpetuate the energy within this system.

In fact, in the reciprocal language, these tiny circles are getting ever smaller as time goes by, since as R grows, 1/R shrinks. Now we seem to have really gone off the deep end. How can this possibly be true? How can a six-foot tall human being 'fit' inside such an unbelievably microscopic universe? How can a speck of a universe be physically identical to the great expanse we view in the heavens above?

(Brian Greene, The Elegant Universe, pages 248-249)


Thus too, the understanding, that if you turn Einstein's equation E=mc2 inside/out then what had you done? All "matter states" have then been assigned a energy value? Qui! Non?

Plato:
Layman scratching head while faceless expression of Boltzmann puzzlement takes hold?

How is one suppose to find "a equilibrium" in such a "low entropic state?"

If we were to experimentally challenging any thinking with "relativistic processes" how could they have ever emerged out of the BB? Maybe, it was a "highly symmetric event" for any asymmetry to show itself as "discrete measures" defined in relation to the "energy of probable outcomes?"

Where did such reductionism begin for us to ask about the "cross over?"

We needed high energy perspective to realize that we were still talking about the universe. Are there any other processes within the cosmos that can be taken down to such rejuvenated qualities to new universes being born that while the arrow of time is pointed one way, that the universe itself allowed such expression to continue in the expansion rate, and the speed up?

A Higg's fluid? Something had to be "happening now" that would dictate?

Forgive me here for my ignorance in face of those better equipped.


So you are looking for "this point" where things cross over? It is highly supersymmetric, yet, we know that such matter states have been detailed and defined as "discrete" asymmetric matter states.

I made a comment above that needed to be looked at again so I am placing it here while it suffers it's fate in another location. The basis of the argument is an ole one indeed that has long been exchanged by Smolin and Susskind.

Now it is again one of those things that I am trying to make sense of while one could go off in a philosophical direction. While the "facts of the matter" and experimental results dictate my thinking here.

It's the fault of that ole' Platonic thinking, and the Pythagorean basis of the universe in expression thingy. The universe is very dynamical geometrically while one debates the essence of inflation and disregards what allows such an expression to bring "other ideas" into the fold. How this "eternal idea" can bring other factors in terms of the speed up into consideration, while one ponders why such a thing is happening?

Neutrino Oscillations? Hmmmm.......

Oscillating flavors The three neutrino mass eigenstates are presumed to be different coherent superpositions of the three flavor eigenstates (ne, nm, and nt) associated with the three charged leptons: the electron, the muon, and the tau. There is good evidence that only two of the three mass eigenstates contribute significantly to ne. In that approximation, one can write

Just another fancy way of looking at CNO and the law of Octaves? :) While some thought space was empty, there were aspects of that space "which was alive" regardless of the asymmetrical realization of the discrete matters?

I'm trying here. You needed a background for it?

The triple alpha process is highly dependent on carbon-12 having a resonance with the same energy as helium-4 and beryllium-8 and before 1952 no such energy level was known. It was astrophysicist Fred Hoyle who used the fact that carbon-12 is so abundant in the universe (and that our existence depends upon it - the Anthropic Principle), as evidence for the existence of the carbon-12 resonance. Fred suggested the idea to nuclear physicist Willy Fowler, who conceded that it was possible that this energy level had been missed in previous work on carbon-12. After a brief undertaking by his research group, they discovered a resonance near to 7.65 Mev.

Now I am not pro or against anything, just trying to make sense of the disparity of such anthropic reasonings. So what processes in Cern reveals such an idea? Muons?

What's that saying? The devil is in the details :)


So we want to define our relationship with the world in some computerized method? It has always been something of a struggle to explain how one may see the world as they lose the focus of distinctive sight and hearing and soon realize that if they are all amalgamated, you might get this idea of the gravitationally inclined atomized in some computerized process? Feelings?:)

You finally learnt something about yourself?


A thought crossed my mind. A fictional story?

It’s interesting what calorimetric measure can do when you are looking at cosmological events. So, the photon becomes descriptive in itself?

Of course speaking of Glast here. Building alliances?


Perhaps Quantum Gravity can be Handled by thoroughly reconsidering Quantum Mechanics itself?

You are working “to set” the course of events? So we have this description then of the universe and it’s “phase transitions.” It’s behind the “value of the photon in it’s description and escape velocity” and it’s value also “gravitationally linked?”

So technology now stops the photon in flight? We can then “colour our views with the gravitationally inclined?”:) A “philosophical take” on new computerized development with feeling?


The leading computer technologies here is not to diverge from what I moved too in terms of understanding the human condition. This is very important to me, and includes not only our biological functioning, but our resulting affect from the physiological one as well.

So while "you think" I hope to chart the colours spectrally induced oscillatory universe from the "photon stop over" and subsequent information held in that abeyance. Sure it's a story of fiction right now, but in time I would like to see this connection to reality.

It may only rest at this time in conceptual framework that was constructed from what was available in the physics and science at our disposal, while I had to move forward slowly.

It was important to understand why there would be such divergences in perspective and how these would be lined up? Some of course did not want to take the time, but it was important to me to understand the "philosophical position" taken.



One could just as well venture to the condense matter theorist and said, what building blocks shall we use? One should not think the "history of Platonism" without some "other influences" to consider. Least you assign it to a "another particular subject" in it's present incarnation? An Oscillatory String Universe?

So the evolution here is much more then the "circumspect of the biological function," but may possible include other things that have not been considered?

Physiologically, the "biological function" had some other relation? So abstract that I assigned the photon? So I said "feelings," while Einstein might assigned them to a "short or long time" considering his state of mind? :)

More thought of course here on the "fictional presentation" submitted previous. As a layman I have a problem in that regard. :)


So no one knows how to combine thermodynamics and general relativity? Hmmm....Boltzmann puzzle..hmmmmm...and I slowly drift off in thought.

Our work is about comparing the data we collect in the STAR detector with modern calculations, so that we can write down equations on paper that exactly describe how the quark-gluon plasma behaves," says Jerome Lauret from Brookhaven National Laboratory. "One of the most important assumptions we've made is that, for very intense collisions, the quark-gluon plasma behaves according to hydrodynamic calculations in which the matter is like a liquid that flows with no viscosity whatsoever."

How does relativity ever arise out of such a situation? If "tunnelling was to occur" where would it occur, and where would "this equilibrium" find comparative Lagrangian relations in the universe? These perspectives are leading to what we see in the WMAP polarization patterns?

Are there not "comparative features" that allows for the low entropic states, within the existing universe? Allows us to return to those same entropic states in their respective regions, while "feeding" the universe?

You had to look for the conditions that would be similar would you not? And "supporting evidence" to explain the current universe speeding up. These conditions would have to support that contention.



I am holding off producing any new posts until I can bring the discussion to a suitable ending where Lee Smolin admits the ideas are not yet completed in terms of of our understanding of the landscape?

Clifford has a good humour post about real estate in the extra dimensions. Of course you had to follow other discourses here to understand how one may view what is "current in the thinking?"

This "balance in perspective" is not just one or the other but on how such perspective is formed around it. So on the one hand you have this Anthropic approach in string theory, and then you have the "philosophical differences on the other?"

Your trying to explain it and in so doing revealing the train of thought that was established. One does not disavow the road leading to the physics established of course, and no where is this intentional on differing perspectives

Lee Smolin: "Here is a metaphor due to Eric Weinstein that I would have put in the book had I heard it before. Let us take a different twist on the landscape of theories and consider the landscape of possible ideas about post standard model or quantum gravity physics that have been proposed. Height is proportional to the number of things the theory gets right. Since we don’t have a convincing case for the right theory yet, that is a high peak somewhere off in the distance. The existing approaches are hills of various heights that may or may not be connected, across some ridges and high valleys to the real peak. We assume the landscape is covered by fog so we can’t see where the real peak is, we can only feel around and detect slopes and local maxima.

Tuesday, July 26, 2005

Kilometric Radiation?



So we use physics in ways to change the way we see? Here are some examles from the Cassini Project and Wikipedia.

  • Cassini Plasma Spectrometer (CAPS)
    The Cassini Plasma Spectrometer (CAPS) is a direct sensing instrument that measures the energy and electrical charge of particles such as electrons and protons that the instrument encounters. CAPS will measure the molecules originating from Saturn's ionosphere and also determine the configuration of Saturn's magnetic field. CAPS will also investigate plasma in these areas as well as the solar wind within Saturn's magnetosphere.[1]


  • Cosmic Dust Analyzer (CDA)

    The Cosmic Dust Analyzer (CDA) is a direct sensing instrument that measures the size, speed, and direction of tiny dust grains near Saturn. Some of these particles are orbiting Saturn, while others may come from other solar systems. The Cosmic Dust Analyzer onboard the Cassini orbiter is ultimately designed to help discover more about these mysterious particles, and significantly add to the knowledge of the materials in other celestial bodies and potentially more about the origins of the universe.[2]


  • Composite Infrared Spectrometer (CIRS)

    The Composite Infrared Spectrometer (CIRS) is a remote sensing instrument that measures the infrared light coming from an object (such as an atmosphere or moon surface) to learn more about its temperature and what it's made of. Throughout the Cassini-Huygens mission, CIRS will measure infrared emissions from atmospheres, rings and surfaces in the vast Saturn system to determine their composition, temperatures and thermal properties. It will map the atmosphere of Saturn in three dimensions to determine temperature and pressure profiles with altitude, gas composition, and the distribution of aerosols and clouds. This instrument will also measure thermal characteristics and the composition of satellite surfaces and rings.[3]


  • Ion and Neutral Mass Spectrometer (INMS)

    The Ion and Neutral Mass Spectrometer (INMS) is a direct sensing instrument that analyzes charged particles (like protons and heavier ions) and neutral particles (like atoms) near Titan and Saturn to learn more about their atmospheres. INMS is intended also to measure the positive ion and neutral environments of Saturn's icy satellites and rings.[4]


  • Imaging Science Subsystem (ISS)

    The Imaging Science Subsystem (ISS) is a remote sensing instrument that captures images in visible light, and some in infrared and ultraviolet light. The ISS has a camera that can take a broad, wide-angle picture and a camera that can record small areas in fine detail. Scientists anticipate that Cassini scientists will be able to use ISS to return hundreds of thousands of images of Saturn and its rings and moons. ISS includes two cameras; a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). Each uses a sensitive charge-coupled device (CCD) as its detector. Each CCD consists of a 1,024 square array of pixels, 12 μm on a side. The camera's system allows for many data collection modes, including on-chip data compression. Both cameras are fitted with spectral filters that rotate on a wheel—to view different bands within the electromagnetic spectrum ranging from 0.2 to 1.1 μm.[5]


  • Dual Technique Magnetometer (MAG)

    The Dual Technique Magnetometer (MAG) is a direct sensing instrument that measures the strength and direction of the magnetic field around Saturn. The magnetic fields are generated partly by the intensely hot molten core at Saturn's center. Measuring the magnetic field is one of the ways to probe the core, even though it is far too hot and deep to actually visit. MAG's goals are to develop a three-dimensional model of Saturn's magnetosphere, as well as determine the magnetic state of Titan and its atmosphere, and the icy satellites and their role in the magnetosphere of Saturn.[6]


  • Magnetospheric Imaging Instrument (MIMI)

    The Magnetospheric Imaging Instrument (MIMI) is both a direct and remote sensing instrument that produces images and other data about the particles trapped in Saturn's huge magnetic field, or magnetosphere. This information will be used to study the overall configuration and dynamics of the magnetosphere and its interactions with the solar wind, Saturn's atmosphere, Titan, rings, and icy satellites.[7]


  • Radio Detection and Ranging Instrument (RADAR)

    The Radio Detection and Ranging Instrument (RADAR) is a remote active and remote passive sensing instrument that will produce maps of Titan's surface and measures the height of surface objects (like mountains and canyons) by bouncing radio signals off of Titan's surface and timing their return. Radio waves can penetrate the thick veil of haze surrounding Titan. In addition to bouncing radio waves, the RADAR instrument will listen for radio waves that Saturn or its moons may be producing.[8]


  • Radio and Plasma Wave Science instrument (RPWS)

    The Radio and Plasma Wave Science instrument (RPWS) is a direct and remote sensing instrument that receives and measures the radio signals coming from Saturn, including the radio waves given off by the interaction of the solar wind with Saturn and Titan. The major functions of the RPWS are to measure the electric and magnetic wave fields in the interplanetary medium and planetary magnetospheres. The instrument will also determine the electron density and temperature near Titan and in some regions of Saturn's magnetosphere. RPWS studies the configuration of Saturn's magnetic field and its relationship to Saturn Kilometric Radiation (SKR), as well as monitoring and mapping Saturn's ionosphere, plasma, and lightning from Saturn's (and possibly Titan's) atmosphere.[9]


  • Radio Science Subsystem (RSS)

    The Radio Science Subsystem (RSS) is a remote sensing instrument that uses radio antennas on Earth to observe the way radio signals from the spacecraft change as they are sent through objects, such as Titan's atmosphere or Saturn's rings, or even behind the sun. The RSS also studies the compositions, pressures and temperatures of atmospheres and ionospheres, radial structure and particle size distribution within rings, body and system masses and gravitational waves. The instrument uses the spacecraft X-band communication link as well as S-band downlink and Ka-band uplink and downlink.[10]


  • Ultraviolet Imaging Spectrograph (UVIS)

    The Ultraviolet Imaging Spectrograph (UVIS) is a remote sensing instrument that captures images of the ultraviolet light reflected off an object, such as the clouds of Saturn and/or its rings, to learn more about their structure and composition. Designed to measure ultraviolet light over wavelengths from 55.8 to 190 nm, this instrument is also a valuable tool to help determine the composition, distribution, aerosol particle content and temperatures of their atmospheres. This sensitive instrument is different from other types of spectrometers because it can take both spectral and spatial readings. It is particularly adept at determining the composition of gases. Spatial observations take a wide-by-narrow view, only one pixel tall and 60 pixels across. The spectral dimension is 1,024 pixels per spatial pixel. Additionally, it is capable of taking so many images that it can create movies to show the ways in which this material is moved around by other forces.[11]


  • Visible and Infrared Mapping Spectrometer (VIMS)

    The Visible and Infrared Mapping Spectrometer (VIMS) is a remote sensing instrument that is actually made up of two cameras in one: one is used to measure visible wavelengths, the other infrared. VIMS captures images using visible and infrared light to learn more about the composition of moon surfaces, the rings, and the atmospheres of Saturn and Titan. VIMS also observes the sunlight and starlight that passes through the rings to learn more about ring structure. VIMS is designed to measure reflected and emitted radiation from atmospheres, rings and surfaces over wavelengths from 0.35 to 5.1 mm. It will also help determine the compositions, temperatures and structures of these objects. With VIMS, scientists also plan to perform long-term studies of cloud movement and morphology in the Saturn system, to determine the planet's weather patterns.[12]


  • So how does String/M theory change the way we see?


    The calorimeter design for GLAST produces flashes of light that are used to determine how much energy is in each gamma-ray. A calorimeter ("calorie-meter") is a device that measures the energy (heat: calor) of a particle when it is totally absorbed.


    Smolin added his contribution to the string theory discussion on the new Cosmicvariance.com site that has been created by a group of people that offer perspective. In this case Sean Carroll posted a thread on Two Cheers for String theory, provoked some iteresting responses by minds who are at the forefront of these conversations.

    I responded to this becuase I had been following both avenues Smolin spoke too, so I'll put my comment here as well.

    This topic thread was develope from my reactions based on those who call people who are trying hard to integrate views of the natural world with the physics ideology of the topic of Strings?M theory, these fellows present. If they can not show us these new views as Smolin offers for inspection then what use the models and theories if no onne wants to se these work in the world we undrstand well by seeing around us?

    While some people are looking for consistant means of determinations, others apply "conceptual situations" and bring forth comprehension of a kind. Now to this degree, that "gluonic perception is being adjusted" to see these values. The Smolins and others understood well the limitation of these views? Are there any?


    Radio sounds from the source

    All of the structures we observe in Saturn's radio spectrum are giving us clues about what might be going on in the source of the radio emissions above Saturn's auroras," said Dr. Bill Kurth, deputy principal investigator for the instrument. He is with the University of Iowa, Iowa City. Kurth made the discovery along with Principal Investigator Don Gurnett, a professor at the University. "We believe that the changing frequencies are related to tiny radio sources moving up and down along Saturn's magnetic field lines."


    Has Sound, Changed the way we See?

    Most of us understand the the aurora display do we not, and the resulting interactive play between the sun and the earth? The Auger experiment previously talked about and spoken too, by John Ellis, is a fine example of the diversity of interative features we can hope to see, as we examine the particle nature apart from the LHC rules of energy engagement, above and beyond the limits that have been imposed on us earthlings:)


    The Fly's Eye and the Oh My God Particle


    While the topic is produced for this conversation seems disjointed, the ideology of the string theorist is held to a boundry of thinking in my eyes that such a membrane( here I could link a toy model for comparison), and defined in this bubble context, as rudimentry as it appears in my mind's eye, it follows the developemental processes we see from the eulicidation Einstein offered us by joining Maxwell into the process unfolding in nature and to see the effect of any bulk production as a necessary step beyond the boudaries of this bubble?


    Now in contrast I see the soapy bubble and light refraction dispalyed in such a lovely continuous flow over it's surface, that to me, it does not make sense if such auroric dispalyes are not to give us new ideas about the interactive feature of the sun with earth? Conceptually, thes ideas of hitting metal plates and such present new ideas in how dispersion across that plate could represent other ideas. What are those. Wel that's what I am trying to do is free the mind from th econstraints we had put on it in sucha strick language accompany those that step ahead of us in their own specualtions educationally followed doctrine. What new light and thinking patterns follow these people?

    The auroral ionosphere is a natural emitter of radio waves, and many of these emissions are observable at ground level. Several types of radio emissions have been well documented using a variety of ground-based, stepped-frequency receivers (see reviews by LaBelle [1989] and LaBelle and Weatherwax, [1992]). In particular, auroral roar is a relatively narrowband emission at roughly 2 and 3 times the local electron cyclotron frequency ( ) [Kellogg and Monson, 1979; Kellogg and Monson, 1984; Weatherwax et al., 1993, 1995]. Much effort has been made in characterizing the seasonal, diurnal, and spectral characteristics of auroral roar to aid in determining its generation mechanism [e.g., Weatherwax et al., 1995.




    See also:

    http://www-pw.physics.uiowa.edu/plasma-wave/tutorial/examples.html

    News articles shamelessy borrowed:


  • Space Music

  • The Musical Sounds of Space

  • 'Sun Rings' Shares the Music of
    Space

  • Quartet, Choir Debut NASA's 'Space Music'

  • Out of This World

  • Music of the Stars

  • Music of the Spheres

  • NASA Music Out of This World

  • Sun Rings

  • Turning Sounds From Space Into a Symphony

  • Science and Music Merge for Fall Concert

  • UI Space Physicist's Sounds of Space Inspire Work of Art
  • Saturday, January 15, 2005

    Seeing Beyond the Mass and Density?


    Fig.1: Generally Grouping Order increases the density of objects within a frame of reference, resulting in a more pronounced single object.


    To see beyond what we have taken for granted it is important that you understand how we got to the way we are. Above the diagram helps you too orientate these views in accordance with established sciences.

    A lot of thought have been going through my mind about what is currently being manifested all around us in terms of all the wavelengths that we are inundating to our environment. Television, cell phones, electric grid lines and all the sorts and I am wondering if, we have basically interrupted, the process in nature that is natural, and supplemented it with human kinds fabrications?

    Lets just focus on matter distinctions then for now and how such inundations above might have found some comparative views in what nature decided to do for us. In how it density variations would have aligned themselves over the planet during it's formation?



    The distribution of mass over the Earth is non-uniform. GRACE will determine this uneven mass distribution by measuring changes in Earth’s gravity field.The term mass refers to the amount of a substance in a given space, and is directly correlated to the density of that substance. For example, a container filled with a more dense material, like granite, has more mass than that same container filled with water. Because mass and density are directly related, there is also a direct relationship between density and gravity. An increase in density results in an increase in mass, and an increase in mass results in an increase in the gravitational force exerted by an object. Density fluctuations on the surface of the Earth and in the underlying mantle are thus reflected invariations in the gravity field.As the twin GRACE satellites orbit the Earth together, these gravity field variations cause infinitesimal changes in the distance between the two. These changes will be measured with unprecedented accuracy by the instruments aboard GRACE leading to a more precise rendering of the gravitational field than has ever been possible to date.


    In looking up the word "in variation" you won't have much luck, but in context of the sentence, it forces you to look back towards the center, from the surface. I think this is right?

    Quite early in the developing aspects of my research, I was drawn to statement of the above in regards to mass/density, which could have represented to me the vibration inherent, as sound, in how we would determine this mass? Was it unreasonable to look at what nature had bestowed upon us and wonder, that if such sounding processes within the mantle would have allowed us to determine where the structural integrity of the planet would have sufficed in taking accountability of proper building perspectives.

    Clementine color ratio composite image of Aristarchus Crater on the Moon. This 42 km diameter crater is located on the corner of the Aristarchus plateau, at 24 N, 47 W. Ejecta from the plateau is visible as the blue material at the upper left (northwest), while material excavated from the Oceanus Procellarum area is the reddish color to the lower right (southeast). The colors in this image can be used to ascertain compositional properties of the materials making up the deep strata of these two regions. (Clementine, USGS slide 11)

    Preparing the mind for information about gravitational fields were extremely important to me because if gravity discernment in terms of the planets density fluctuations were evident from mass/ density consideration, then how would we be certain that such information emitted from events, which shake the space time fabric would not have sounded for us a response distinctive about it's particle identification. Was there some layering aspect designed within gravitational consideration that would have said the density of the material would have been found, a center first must be of iron?

    As one of the fields which obey the general inverse square law, the gravity field can be put in the form shown above, showing that the acceleration of gravity, g, is an expression of the intensity of the gravity field.

    So in the ideal centricity of elements such gravitational consideration would have aligned the material in a appropriate expression from the densest of matter distinctions to the very light, would have made it seem, that such resonances based in sound would say, that because it is dense here at the iron core, the sound value would be very distinctive from the vibrational freedom at the surface?

    Density measure(comparative to other things) of sound, would be nice. Which leads me to the ideals of Webber and his aluminum bars.

    Radar echos from Titan's surface



    This recording was produced by converting into audible sounds some of the radar echoes received by Huygens during the last few kilometres of its descent onto Titan. As the probe approaches the ground, both the pitch and intensity increase. Scientists will use intensity of the echoes to speculate about the nature of the surface.