Showing posts with label Vilenkin. Show all posts
Showing posts with label Vilenkin. Show all posts

Friday, February 16, 2007

The Multiverse is like a....Flower?

Alexander Vilenkin
The implications of inflation are particularly important in the context of the landscape of string theory. One of the leading researchers studying how inflationary cosmology evolves through the landscape is Alex Vilenkin, a theoretical physicist at Tufts who has been working in the field of cosmology for 25 years and is a pioneer in introducing the ideas of eternal inflation and quantum creation of the universe from nothing. Here he sets forth his ideas of how the set of theories which began with Guth's inflationary scenario are playing out.


This post on the Multiverse of mine, may be an "psychological interpretation" here that I would like to bring forward. This may be distasteful for people of science. Please bear with me as I try to explain myself, and not sanction me to a site that has issues with "ten dimensions and and quantum tunnelling?":)

The Flower as a Universe in Expression

So I will open the above with an example of one of the flowers done up with regards to Mandalic interpretations. This has been part of my research to understand the "individuality of each persons expression" from the inside out. As if, one understood the "liminocentric structure" develop from the schematic of the "circle with a point" in it, "to a point" with a boundary condition that is contained, as an equation of E=mc2.

AS well the student here is learning to give credence to a "way of enlightenment" that foreshadows what can exist as "this schematic mathematical diagram," could find itself looking quite nicely in such a expression as that of a flower.

"Out of Nothing" Came Art and Science?

But even empty space has faint traces of energy that fluctuate on the subatomic scale. As suggested previously by Jaume Garriga of Universitat Autonoma de Barcelona and Alexander Vilenkin of Tufts University, these fluctuations can generate their own big bangs in tiny areas of the universe, widely separated in time and space. Carroll and Chen extend this idea in dramatic fashion, suggesting that inflation could start “in reverse” in the distant past of our universe, so that time could appear to run backwards (from our perspective) to observers far in our past.


I think one can be detracted by good pictures as to the originality of how we might see the universe in expression. So "without further explanation" we might say yes indeed they are good pictures of flowers without understanding the inheritance of the explanation forth coming.

So the idea here is not to be judgemental of the "book by it's cover" until one has considered the explanation that is forthcoming. As one weights what the expression of any universe can mean, while within it, there are evidences for the possibilities of what exists as our own universe, was granted a design, as one might grant each galaxy in expression?

Take an event within the colliders and tell how each will react according to the energies used?


MARIO MARKUS, Max Planck Inst., Dortmund
This first issue of the journal became a "meeting place" of an international group of authors, representing five continents. Although the papers give reliable information about the authors, we add here some brief "informal" notes on all of them:


I may have been attracted to this one for consideration by implicating the "music of the spheres" in my previous comments so however words are transported back and forth between scientists, or "the insinuation" of JoAnne of Cosmic Variance has for it, I cannot help the way I see.:)

OKay now. On to the explanation, as I have learnt to understand it, and then, what ever fate I have assigned to me and this becomes the way of it for me? Cracked flower pot and all.

Bubble Nucleation

During a first-order phase transition, the matter fields get trapped in a `false vacuum' state from which they can only escape by nucleating bubbles of the new phase, that is, the `true vacuum' state. See here for correlating Post.

Now is it enough that I identify the "source of such expressions" to advance the "geometrical inherent of form" as a universe in expression? So where did this design come from. How could anything issue from such "chaos implied in all the possibilities" that we might have the universe we did in this one?

Physically, the effect can be interpreted as an object moving from the "false vacuum" (where = 0) to the more stable "true vacuum" (where = v). Gravitationally, it is similar to the more familiar case of moving from the hilltop to the valley. In the case of Higgs field, the transformation is accompanied with a "phase change", which endows mass to some of the particles.




So by looking at the picture below you get this sense of why the "sombrero as a hat" serves us well to explain the nature of gravitational considerations while this "collapse of the sphere" can produce all kinds of models of geometrical expressions, as a Calabi Yau?



The "landscape" has been something of a issue, as I have travelled through the last couple of years, watching scientists go back and forth in debate. They have their reasons why of course.

I will not assign "a label" although I use them here in this blog "to categorize the times that I have ventured onto a particular subject." I will not succumb to "any categories" that insinuate that "one group of scientists belong to let's say the "Templeton Foundation" and thusly criticize them, as being insignificant and deluded. "Founding a movement" to change society other then, what society wants itself to become.

So by characterization I have learnt to not hold any woman or man to the "fate of character alone," or the "choices they make." But to see the basis of science is continually being adhered to on a level of "correlation of cognition." Given, the experiment and facts, what does one conclude to do while they venture forward? What do they pull toward them, as they theorize about the science?

How is their philosophy imbued them to speak, while there is this underlying mathematical basis to the world? Is it all "flowery or drawn to the arts" that it detracts from the science? Are there not ways that art helps science visualize what has come from their thought processes?

So Tegmark saids,"the universe is not a bagel?" And we have all these ideas about the "shape of the universe." Cosmology likes em large, while the Calabi Yau-ist like it small? Okay, not small, but descriptively unique?

Tuesday, December 19, 2006

Cosmic ray spallation


As this NASA chart indicates, 70 percent or more of the universe consists of dark energy, about which we know next to nothing
Other explanations of dark energy, called "quintessence," originate from theoretical high-energy physics. In addition to baryons, photons, neutrinos, and cold dark matter, quintessence posits a fifth kind of matter (hence the name), a sort of universe-filling fluid that acts like it has negative gravitational mass. The new constraints on cosmological parameters imposed by the HST supernova data, however, strongly discourage at least the simplest models of quintessence.


Of course my mind is thinking about the cosmic triangle of an event in the cosmos. So I am wondering what is causing the "negative pressure" as "dark energy," and why this has caused the universe to speed up.


SNAP-Supernova / Acceleration Probe-Studying the Dark Energy of the Universe
The discovery by the Supernova Cosmology Project (SCP) and the High-Z Supernova team that the expansion of the universe is accelerating poses an exciting mystery — for if the universe were governed by gravitational attraction, its rate of expansion would be slowing. Acceleration requires a strange “dark energy’ opposing this gravity. Is this Einstein’s cosmological constant, or more exotic new physics? Whatever the explanation, it will lead to new discoveries in astrophysics, particle physics, and gravitation.


By defining the context of particle collisions it was evident that such a place where such a fluid could have dominated by such energy in stars, are always interesting as to what is ejected from those same stars. What do those stars provide for the expression of this universe while we are cognoscente of the "arrow of time" explanation.


This diagram reveals changes in the rate of expansion since the universe's birth 15 billion years ago. The more shallow the curve, the faster the rate of expansion.


So of course these thoughts are shared by the perspective of educators to help us along. But if one did not understand the nature of the physical attributes of superfluids, how would one know to think of the relativistic conditions that high energy provides for us?


NASA/WMAP Scientific Team: Expanding Universe



So recognizing where these conditions are evident would be one way in which we might think about what is causing a negative pressure in the cosmos.

Given the assumption that the matter in the universe is homogeneous and isotropic (The Cosmological Principle) it can be shown that the corresponding distortion of space-time (due to the gravitational effects of this matter) can only have one of three forms, as shown schematically in the picture at left. It can be "positively" curved like the surface of a ball and finite in extent; it can be "negatively" curved like a saddle and infinite in extent; or it can be "flat" and infinite in extent - our "ordinary" conception of space. A key limitation of the picture shown here is that we can only portray the curvature of a 2-dimensional plane of an actual 3-dimensional space! Note that in a closed universe you could start a journey off in one direction and, if allowed enough time, ultimately return to your starting point; in an infinite universe, you would never return.


Of course it is difficult for me to understand this process, but I am certainly trying. If one had found that in the relativistic conditions of high energy scenarios a "similarity to a flattening out" associated with an accelerating universe what would this say about information travelling from the "origins of our universe" quite freely. How would this effect dark energy?

In physics, a perfect fluid is a fluid that can be completely characterized by its rest frame energy density ρ and isotropic pressure p.

Real fluids are "sticky" and contain (and conduct) heat. Perfect fluids are idealized models in which these possibilities are neglected. Specifically, perfect fluids have no shear stresses, viscosity, or heat conduction.

In tensor notation, the energy-momentum tensor of a perfect fluid can be written in the form

[tex] T^{\mu\nu}=(\rho+p)\, U^\mu U^\nu + P\, \eta^{\mu\nu}\,[/tex]



where U is the velocity vector field of the fluid and where ημν is the metric tensor of Minkowski spacetime.

Perfect fluids admit a Lagrangian formulation, which allows the techniques used in field theory to be applied to fluids. In particular, this enables us to quantize perfect fluid models. This Lagrangian formulation can be generalized, but unfortunately, heat conduction and anisotropic stresses cannot be treated in these generalized formulations.

Perfect fluids are often used in general relativity to model idealized distributions of matter, such as in the interior of a star.


So events in the cosmos ejected the particles, what geometrical natures embued such actions, to have these particle out in space interacting with other forms of matter to create conditions that would seem conducive to me, for that negative pressure?

Cosmic ray spallation is a form of naturally occurring nuclear fission and nucleosynthesis. It refers to the formation of elements from the impact of cosmic rays on an object. Cosmic rays are energetic particles outside of Earth ranging from a stray electron to gamma rays. These cause spallation when a fast moving particle, usually a proton, part of a cosmic ray impacts matter, including other cosmic rays. The result of the collision is the expulsion of large members of nucleons (protons and neutrons) from the object hit. This process goes on not only in deep space, but in our upper atmosphere due to the impact of cosmic rays.

Cosmic ray spallation produces some light elements such as lithium and boron. This process was discovered somewhat by accident during the 1970s. Models of big bang nucleosynthesis suggested that the amount of deuterium was too large to be consistent with the expansion rate of the universe and there was therefore great interest in processes that could generate deuterium after the big bang.

Cosmic ray spallation was investigated as a possible process to generate deuterium. As it turned out, spallation could not generate much deuterium, and the excess deuterium in the universe could be explained by assuming the existence of non-baryonic dark matter. However, studies of spallation showed that it could generate lithium and boron. Isotopes of aluminum, beryllium, carbon(carbon-14), chlorine, iodine and neon, are also formed through cosmic ray spallation.



Talk about getting tongue tied, can you imagine, "these fluctuations can generate their own big bangs in tiny areas of the universe." Read on.


Photo credit: Lloyd DeGrane/University of Chicago News Office
Carroll and Chen’s scenario of infinite entropy is inspired by the finding in 1998 that the universe will expand forever because of a mysterious force called “dark energy.” Under these conditions, the natural configuration of the universe is one that is almost empty. “In our current universe, the entropy is growing and the universe is expanding and becoming emptier,” Carroll said.

But even empty space has faint traces of energy that fluctuate on the subatomic scale. As suggested previously by Jaume Garriga of Universitat Autonoma de Barcelona and Alexander Vilenkin of Tufts University, these fluctuations can generate their own big bangs in tiny areas of the universe, widely separated in time and space. Carroll and Chen extend this idea in dramatic fashion, suggesting that inflation could start “in reverse” in the distant past of our universe, so that time could appear to run backwards (from our perspective) to observers far in our past.

Saturday, September 30, 2006

Are Strangelets Natural?

Thus RHIC is in a certain sense a string theory testing machine, analyzing the formation and decay of dual black holes, and giving information about the black hole interior.



It is important that you look at the date of this article following, and what has subsequently arisen from "then to now." The title of this post asked a legitimate question and it was answered in response to the disaster scenario's presented to the LHC "recenty?" Check the date on it? Not so recent?

Discovering this raised the conclusiveness about what was comparative to the cosmic ray collisions. This lead us to believe, the microscopic blackhole creation was safe. Becuase it happened all the time in the space above us. Just as we may see the aurora borealis in our observation in the interaction with the sun, so too, in cosmic particle collisions in ways beyond the standard model.

So looking back?


SCIENTISTS ARE OFTEN ACCUSED of trying to play God. But obviously they can't really mimic the feats of the putative Creator of the Universe, and make a universe in the laboratory. Or can they? Before you snort in disbelief, you should know that some serious cosmologists have considered the idea. Indeed, one of them has already had a shot at creating a universe--albeit inside a computer. The idea dates back to the late 1970s, when Andrei Linde, now at Stanford University, and Alan Guth of the Massachusetts Institute of Technology separately came up with the concept of "inflation". According to this idea, an incredibly short, violent burst of expansion occurred around 10-32 seconds after the birth of the Universe. Propelled by concentrated vacuum energy, inflation boosted the size of the Universe from one billionth the width of a proton to the size of a grapefruit. That's what the theorists claim, but showing that inflation really did take place like this is hard... unless, of course, someone can recreate the right conditions in the lab and watch what happens. Linde and his colleagues have already done a dry run on a computer. "Setting up the simulations was hard work, and only on the seventh day did we finish the first series," he reported in Scientific American in 1994, adding in Strangelovian terms: "We looked at the shining screen, and we were happy--we saw that the universe was good!" This isn't enough for Linde: he wants to do it for real. But theory suggests that matter has to be squeezed to densities similar to those in the primordial Universe before such fields appear. No-one has the faintest clue how to create such densities, yet. Linde is sanguine about the dangers involved, if it ever becomes possible. "You can think of our Universe as being like a smooth surface, with one part of it inflating like a balloon. The new universe will be connected to ours by just a tiny passage--what we call a wormhole--the size of a subatomic particle." Quite how we'd know we'd succeeded isn't obvious, but at least there seems little danger of someone tumbling into the new universe by mistake, or anything nasty getting out.


THis one post includes "lots of link"s from the accumulation of my thinkng as a layman. I had gathered these as they unfolded, to help me understand what was introduced to me some time ago by Paul on the question in regards to the "Disaster Scenario at LHC."

Now in regards to "new physics" one needed to see what would come out of such collisions that would be produced, so one had to indeed follow that thinking which I did. How far from the truth of it was what was generated in the public eye distant from what was published by the reputable scientists?

Well you would have to judge for yourself, and "my excuse," well it has been provided for me, so one can say as a layman I am really distant from the current thinking.

So yes before Cosmic Variance and the disaster scenario, it was in our conversations that "Mooreglade of Superstrintheory.com forum" introduced the article of "A Blackhole Ate My Planet" which lead too "Fate of our Planet"

So you see, between then and now, I was able to construct accordingly as I was exposed to the information in regards to "both ways" to which Lubos implies in that statement in comment link?

Okay. Now the stage has been set.

What has been Lubos been saying?

That the connection in "B's question" again sets the stage for further thoughts?

That's just the way of it and who better then student who will make way for further insights, whether it be "Lubos or B?"

In the past my mistake was made to "mirror" Lubos with Peter Woit, because I needed to see what the others may offer in regards to the positions they adopted. Or, another example would have been Smolin and Susskind, who bounced off each other. Or, Gell-mann or Feynman. Or maybe even Plato and Aristotle shhown in the picturte at the top of this Blog?

IN the above case with Peter Woit, I did not learn much? The counter arguments as to why strings were failing in the road to experimental validation(sure we were preoccupied with it's validity then), and how this message was being put out there.

Be sure that more senior people agree with me that it is trivial to falsify that conjecture, including Susskind, Vilenkin, Banks, and others who have looked into it.


So where are we today in regard to strings? Lubo's reference to Banks, Vilenkin, and Susskind already asking these questions is a significant pointer to what has already transpired, and what days, weeks, years, have passed before we see this statement today?

You see how this is done?

Saturday, September 23, 2006

Hydrogen, and the Law of Octaves



Alex Vilenkin - Many Worlds in One article by Mark of Cosmic Variance drew my interest again after reading with a new perspective gained from understandng some implications about the "anthropic principle."

Sometimes I even still hold to the idea it is better not to touch this topic because of the greeness with which insight has now taken over. This greeness resides against the reason with which such logic is necessary in regards ot the debate between Susskind and Smolin.

I do not want to be blinded by the razzle dazzle either of men leading this debate, so as to the layman's pursuite of understanding, I hope to show what I am seeing?

While I have not read the book either I am still "drawn to the debate" about what the "anthropic reasoning" is talking about at a fundamental level? Scared yes, and on wobbly legs so I continue.

So as a layman I am curious too ,about views here and what the basis could lead too, in terms of what our universe had become?

If "carbon" wasn't present at the beginning, then how would you explain our universe?

Because the triple-alpha process is unlikely, it requires a long period of time to produce carbon. One consequence of this is that no carbon was produced in the Big Bang because within minutes after the Big Bang, the temperature fell below that necessary for nuclear fusion.

Ordinarily, the probability of the triple alpha process would be extremely small. However, the beryllium-8 ground state has almost exactly the energy of two alpha particles. In the second step, 8Be + 4He has almost exactly the energy of an excited state of 12C. These resonances greatly increase the probability that an incoming alpha particle will combine with beryllium-8 to form carbon. The existence of this resonance was predicted by Fred Hoyle before its actual observation based on its necessity for carbon to be formed.


I too hate the idea of the "law of crackpostism," yet research back to mendeleev table in regards to Newland, raised interesting ideas about the future of testbility?

A "harmonical disseration" about the ways we will in the fuure be able to map the elements in "photonic imagery" devised to work within carbon processes?

What were the ground rules for this universe?

He is best known for discovering the element plutonium, with Edwin McMillan. He led the team that devised the chemical process for extraction of plutonium.

Seaborg served as chairman of the Atomic Energy Commission from 1961 until 1971.

He and McMillan shared the 1951 Nobel Prize in Chemistry for research into transuranic elements.


Having a framework here in which to establish the elemental nature of our universe, how is it that such principals inherent in "string theory" should not direct our attention to what is a viable indicator of what will fill the spaces between, as Mendeleev was able to do in prediction?

While one has been introduce to the "allotopes of Coxeter," it is not without some thought that "planck length," along with the understanding of what "geometrical inhernetness?" qunatum geometry, would also spew forth from the very basis of the beginning of that big bang?

So while I have shown the allotrope here, and dimensional perspective developed, what degrees of freedom say that the space would allow all constants of nature to be described here, and allowed such geometrical principals to form in the bucky ball of carbon, carbon nanotubes?

It was not wihtout directing our attention to the immediacy of that big bang in the microsecond of "planck time" that we are at a loss then?


The last major changes to the periodic table was done in the middle of the 20th Century. Glenn Seaborg is given the credit for it. Starting with his discovery of plutonium in 1940, he discovered all the transuranic elements from 94 to 102. He reconfigured the periodic table by placing the actinide series below the lanthanide series. In 1951, Seaborg was awarded the Noble prize in chemistry for his work. Element 106 has been named seaborgium (Sg) in his honor.


See:

  • CNO and the Law of Octaves

  • Allotropes and the Ray of Creation
  • Friday, May 19, 2006

    Writing Your Story of Creation?

    "No container is available, and the vaporization must occur in vacuum." Wozniak


    With all that energy concentrated in a space about the size of an atomic nucleus, the colliding ions, for a tiny fraction of a second, will reach a temperature one hundred thousand times hotter than the core of the sun - hot enough to "melt" the ions into their component quarks and gluons. By studying the data from millions of these high-energy collisions, RHIC scientists will be able to gather definitive evidence that quark-gluon plasma was formed, and begin to understand its properties.

    Thousands of particles are emitted following each head-on collision. Sophisticated detectors have been constructed at four of six collision points around the ring to gather and decipher the enormous volumes of data that are recorded regarding the properties of these emitted particles. Two large detectors, PHENIX and STAR, are several stories tall. The other detectors, BRAHMS and PHOBOS, are smaller and more specialized. Scientists will be analyzing data collected by these detectors during continuous runs in the collider throughout the summer. The scientists anticipate releasing the first results from those analyses sometime at the beginning of next year.


    Immediately what came to mind is the reductionist views we have about the beginnings of the universe. The picture above, came to mind. And from it, all the ideas that I had been reading about when I had engaged the topic of the universe in question.

    THis is a interesting question and if you read what anyone might of surmized, how different would this simplification of the question be, if it is holding all the answers to what really happened at the start of that universe?

    Lubos Motl:
    The first one measures the total fraction of the multiverse volume occupied by pocket universes or vacua with the desired value of the quantities. The second one measures the expected density of intelligent life in the given type of vacuum. If defined properly, it is the product of the density of stars,


    Keeping sharp on the nature of speculations.:)Well of course "timing is everything" and if one ask a question in one part of the uiverse how could it ever been related to what Lubos writes in his? Well I have to speak to that:)

    So right away seeing this is a good question to ask, and based on what one had been learning as they engaged science, how consistant would this story be with what is actually been taking place in science? One guess is as good as another? Or are there simplified versions that we could pass onto our children so that they understood the fullscope of this story of creation.

    Now you must remember, as a student and a older one at that, there will always be mistakes. Being granted this reprieve for a time(writing our fiction?), while we look at the question asked, what do I think? Hmmmm.... interesting question.

    Schematic diagram of the collision stages in reactions between a 5 GeV hydrogen ion and a gold nucleus: in the initial stage, heat is deposited in the nucleus, accompanied by the knockout of several fast particles. The hot nucleus then thermalizes and expands, eventually undergoing a "soft explosion," or multifragmentation. During this process, the nucleus acts like a molecule that is going from the liquid to the vapor state. (Image courtsey of Vic Viola, University of Indiana.


    So at the very top of this page there was a problem right away about such containment, and if I was to ask where and how would such conditions emerge for such a thing as the beginning of the universe to be known, why could I not explain it in my immediate environ, where cosmic particle collsions mimic what we are doing in our colliders?

    Is this not simple enough to ask, that such a question could bring perspective not ony from the very beginning of our universe, but to have corralled it to what is happening now. These two things are very important to bring together so that we understand that creation exists in our terminologies, as if every moment has the potential to be created as it was in the very beginning of that universe.

    Isn't this stance important to comprehend as I begin my story?

    As I have been talking about, for so long, I wonder where it would end, that I soon learnt in mind that such a processes had to be cyclical in nature, yet, how could energy start off in place and go through all the phases to have become contained in the "possibility again" to continue this process.

    So here this is another insight into the nature of my story.

    One would have to have surmized the very beginning, and some might called is the sea from which all things arise and it is mythical in nature, that all life arose from this sea of possibilty?

    While some will take their time to descipher the good book some wil try their hand at the "bibble interpetation Sean gives to the public for consideration." Well my story of fiction still begins with "adam and eve." I have a new version though.:)

    To e- or not to e+ :)

    Of course in my own artistic rendition, the shakespearean heart arose from my lips touched to ask. "To be or not to be," is not the question.



    Of course I would have to give credit to Paul(not in the bible) for his early interpretation of the design shown above so as to wonder about such a procreative design to have said, "this is indeed the measure of our reality while we look back to it's beginning?"

    So you needed this measure of "certainty" to ask how is it that such a beginning could have ever emerge from the "values of light" that it could contain information about our beginnings? I know it seems I may be getting too technical for the average Joe?

    Based on the no boundary proposal, I picture the origin of the universe, as like the formation of bubbles of steam in boiling water. Quantum fluctuations lead to the spontaneous creation of tiny universes, out of nothing. Most of the universes collapse to nothing, but a few that reach a critical size, will expand in an inflationary manner, and will form galaxies and stars, and maybe beings like us.


    So it indeed becomes really difficult to contain the very expansive nature of the universe in such a boundary condition, does it not? So you look for the basis of reality in a way that allows such travel or "tunnelling" to help push the idea I have about my story of creation. It is parts and pieces of the that exemplify our ideas about the origins of nature, to wonder, if that energy began? Where did it?


    Physically, the effect can be interpreted as an object moving from the "false vacuum" (where = 0) to the more stable "true vacuum" (where = v). Gravitationally, it is similar to the more familiar case of moving from the hilltop to the valley. In the case of Higgs field, the transformation is accompanied with a "phase change", which endows mass to some of the particles.


    It is very impotrant to set up the "nature of reality" as it began, yet, it is not so simple then to ask that if zeropoint had this basis of reality as well, what existed in this false vacuum, to have it exemplified the resulting information which travelled "through to the universe" as we now know it?

    You had to wonder, and know that such phase changes began in the very beginning,and as the universe unfolded, to have given "all that is" a place in this timeline of expression, to have made it, to what is in the nature of the cosmo?

    It did not mean that we could not find our moments and secondary showers from such a beginning, not to have traced it back and know, that this beginning point was really never so far away? They do it in the colliders. They have t account for this energy, and some of it is missing.

    So containement was a problem, and with it we began to use these analogies for describing "backreaction." Oh, we have some mode of time travel here? Or, that we may have some idea about what is geometriclaly enhanced in our talks, to have actually followed the physics process?

    Yes, I did that too.

    I referenced tunnelling for very specific reasons, but alas, I too have to ask then that if such dissipated forces are the continued unravelling of that fluid state, then how would such information be released in the secondary shower effect?

    The nature of our universe in continued expression?

    That means that it left something somewhere for the false vacuum to have initiated the transferance of the original information, back, into the design of the cosmos?

    I like analogies for that reason, and if some want to write fiction, while they hold other minds to the constraints applied in our reasoning of that science, then you should be prepared to suffer the consequence of what any mind like that of a Kaku, or Greene, in those extra story telling versions?

    You will be targetted for all the insane things you might hence forward say. It's just somethng I noticed when I tried to go deeper into the world that science brings us.:)Scientists can indeed be unkind to each other?

    See:

  • Sonofusion - star in a jar