Showing posts with label Lisa Randall. Show all posts
Showing posts with label Lisa Randall. Show all posts

Wednesday, April 25, 2012

Brian Greene: Why is our universe fine-tuned for life?




At the heart of modern cosmology is a mystery: Why does our universe appear so exquisitely tuned to create the conditions necessary for life? In this tour de force tour of some of science's biggest new discoveries, Brian Greene shows how the mind-boggling idea of a multiverse may hold the answer to the riddle.

Brian Greene is perhaps the best-known proponent of superstring theory, the idea that minuscule strands of energy vibrating in a higher dimensional space-time create every particle and force in the universe.



See Also

Sunday, January 15, 2012

WHAT IS YOUR FAVORITE DEEP, ELEGANT, OR BEAUTIFUL EXPLANATION?

Scientists' greatest pleasure comes from theories that derive the solution to some deep puzzle from a small set of simple principles in a surprising way. These explanations are called "beautiful" or "elegant". Historical examples are Kepler's explanation of complex planetary motions as simple ellipses, Bohr's explanation of the periodic table of the elements in terms of electron shells, and Watson and Crick's double helix. Einstein famously said that he did not need experimental confirmation of his general theory of relativity because it "was so beautiful it had to be true." See:2012 : WHAT IS YOUR FAVORITE DEEP, ELEGANT, OR BEAUTIFUL EXPLANATION?
See which comments resonate with you. Some of my picks as I go through was by :

Raphael Bousso
Professor of Theoretical Physics, Berkeley



My Favorite Annoying Elegant Explanation: Quantum Theory .......General Relativity, in turn, is only a classical theory. It rests on a demonstrably false premise: that position and momentum can be known simultaneously. This may a good approximation for apples, planets, and galaxies: large objects, for which gravitational interactions tend to be much more important than for the tiny particles of the quantum world. But as a matter of principle, the theory is wrong. The seed is there. General Relativity cannot be the final word; it can only be an approximation to a more general Quantum Theory of Gravity.

But what about Quantum Mechanics itself? Where is its seed of destruction? Amazingly, it is not obvious that there is one. The very name of the great quest of theoretical physics—"quantizing General Relativity"—betrays an expectation that quantum theory will remain untouched by the unification we seek. String theory—in my view, by far the most successful, if incomplete, result of this quest—is strictly quantum mechanical, with no modifications whatsoever to the framework that was completed by Heisenberg, Schrödinger, and Dirac. In fact, the mathematical rigidity of Quantum Mechanics makes it difficult to conceive of any modifications, whether or not they are called for by observation.

Yet, there are subtle hints that Quantum Mechanics, too, will suffer the fate of its predecessors. The most intriguing, in my mind, is the role of time. In Quantum Mechanics, time is an essential evolution parameter. But in General Relativity, time is just one aspect of spacetime, a concept that we know breaks down at singularities deep inside black holes. Where time no longer makes sense, it is hard to see how Quantum Mechanics could still reign. As Quantum Mechanics surely spells trouble for General Relativity, the existence of singularities suggests that General Relativity may also spell trouble for Quantum Mechanics. It will be fascinating to watch this battle play out.



President, The Royal Society; Professor of Cosmology & Astrophysics; Master, Trinity...

Physical Reality Could Be Hugely More Extensive Than the Patch of Space and Time Traditionally Called 'The Universe' .....As an analogy (which I owe to Paul Davies) consider the form of snowflakes. Their ubiquitous six-fold symmetry is a direct consequence of the properties and shape of water molecules. But snowflakes display an immense variety of patterns because each is molded by its distinctive history and micro-environment: how each flake grows is sensitive to the fortuitous temperature and humidity changes during its growth.

If physicists achieved a fundamental theory, it would tell us which aspects of nature were direct consequences of the bedrock theory (just as the symmetrical template of snowflakes is due to the basic structure of a water molecule) and which cosmic numbers are (like the distinctive pattern of a particular snowflake) the outcome of environmental contingencies. .


Theoretical physicist

An Explanation of Fundamental Particle Physics That Doesn't Exist Yet.....What is tetrahedral symmetry doing in the masses of neutrinos?! Nobody knows. But you can bet there will be a good explanation. It is likely that this explanation will come from mathematicians and physicists working closely with Lie groups. The most important lesson from the great success of Einstein's theory of General Relativity is that our universe is fundamentally geometric, and this idea has extended to the geometric description of known forces and particles using group theory. It seems natural that a complete explanation of the Standard Model, including why there are three generations of fermions and why they have the masses they do, will come from the geometry of group theory. This explanation does not yet exist, but when it does it will be deep, elegant, and beautiful—and it will be my favorite.


Mathematician, Harvard; Co-author, The Shape of Inner Space

A Sphere....Most scientific facts are based on things that we cannot see with the naked eye or hear by our ears or feel by our hands. Many of them are described and guided by mathematical theory. In the end, it becomes difficult to distinguish a mathematical object from objects in nature.

One example is the concept of a sphere. Is the sphere part of nature or it is a mathematical artifact? That is difficult for a mathematician to say. Perhaps the abstract mathematical concept is actually a part of nature. And it is not surprising that this abstract concept actually describes nature quite accurately.



theoretical physicist; Professor, Department of Physics, University of California,...
 Gravity Is Curvature Of Spacetime … Or Is It?......We do not yet know the full shape of the quantum theory providing a complete accounting for gravity. We do have many clues, from studying the early quantum phase of cosmology, and ultrahigh energy collisions that produce black holes and their subsequent disintegrations into more elementary particles. We have hints that the theory draws on powerful principles of quantum information theory. And, we expect that in the end it has a simple beauty, mirroring the explanation of gravity-as-curvature, from an even more profound depth.



Albert Einstein Professor in Science, Departments of Physics and Astrophysical...
Quasi-elegance....As a young student first reading Weyl's book, crystallography seemed like the "ideal" of what one should be aiming for in science: elegant mathematics that provides a complete understanding of all physical possibilities. Ironically, many years later, I played a role in showing that my "ideal" was seriously flawed. In 1984, Dan Shechtman, Ilan Blech, Denis Gratias and John Cahn reported the discovery of a puzzling manmade alloy of aluminumand manganese with icosahedral symmetry. Icosahedral symmetry, with its six five-fold symmetry axes, is the most famous forbidden crystal symmetry. As luck would have it, Dov Levine (Technion) and I had been developing a hypothetical idea of a new form of solid that we dubbed quasicrystals, short for quasiperiodic crystals. (A quasiperiodic atomic arrangement means the atomic positions can be described by a sum of oscillatory functions whose frequencies have an irrational ratio.) We were inspired by a two-dimensional tiling invented by Sir Roger Penrose known as the Penrose tiling, comprised of two tiles arranged in a five-fold symmetric pattern. We showed that quasicrystals could exist in three dimensions and were not subject to the rules of crystallography. In fact, they could have any of the symmetries forbidden to crystals. Furthermore, we showed that the diffraction patterns predicted for icosahedral quasicrystals matched the Shechtman et al. observations. Since 1984, quasicrystals with other forbidden symmetries have been synthesized in the laboratory. The 2011 Nobel Prize in Chemistry was awarded to Dan Shechtman for his experimental breakthrough that changed our thinking about possible forms of matter. More recently, colleagues and I have found evidence that quasicrystals may have been among the first minerals to have formed in the solar system.

The crystallography I first encountered in Weyl's book, thought to be complete and immutable, turned out to be woefully incomplete, missing literally an uncountable number of possible symmetries for matter. Perhaps there is a lesson to be learned: While elegance and simplicity are often useful criteria for judging theories, they can sometimes mislead us into thinking we are right, when we are actually infinitely wrong.




Physicist, Harvard University; Author, Warped Passages; Knocking On Heaven's Door

The Higgs Mechanism......Fortunately that time has now come for the Higgs mechanism, or at least the simplest implementation which involves a particle called the Higgs boson. The Large Hadron Collider at CERN near Geneva should have a definitive result on whether this particle exists within this coming year. The Higgs boson is one possible (and many think the most likely) consequence of the Higgs mechanism. Evidence last December pointed to a possible discovery, though more data is needed to know for sure. If confirmed, it will demonstrate that the Higgs mechanism is correct and furthermore tell us what is the underlying structure responsible for spontaneous symmetry breaking and spreading "charge" throughout the vacuum. The Higgs boson would furthermore be a new type of particle (a fundamental boson for those versed in physics terminology) and would be in some sense a new type of force. Admittedly, this is all pretty subtle and esoteric. Yet I (and much of the theoretical physics community) find it beautiful, deep, and elegant.

Symmetry is great. But so is symmetry breaking. Over the years many aspects of particle physics were first considered ugly and then considered elegant. Subjectivity in science goes beyond communities to individual scientists. And even those scientists change their minds over time. That's why experiments are critical. As difficult as they are, results are much easier to pin down than the nature of beauty. A discovery of the Higgs boson will tell us how that is done when particles acquire their masses.



Professor of Quantum Mechanical Engineering, MIT; Author, Programming the Universe
 The True Rotational Symmetry of Space.....Although this excercise might seem no more than some fancy and painful basketball move, the fact that the true symmetry of space is rotation not once but twice has profound consequences for the nature of the physical world at its most microscopic level. It implies that 'balls' such as electrons, attached to a distant point by a flexible and deformable 'strings,' such as magnetic field lines, must be rotated around twice to return to their original configuration. Digging deeper, the two-fold rotational nature of spherical symmetry implies that two electrons, both spinning in the same direction, cannot be placed in the same place at the same time. This exclusion principle in turn underlies the stability of matter. If the true symmetry of space were rotating around only once, then all the atoms of your body would collapse into nothingness in a tiny fraction of a second. Fortunately, however, the true symmetry of space consists of rotating around twice, and your atoms are stable, a fact that should console you as you ice your shoulder.

Remember even though I pick some of these explanations does not mean I discount all others. It's just that some are picked for what they are saying in highlighted quotations. Lisi's statement on string theory is of course in my opinion far from the truth, yet,  he captures a geometrical truth that I feel exists.:) You sort of get the jest of where I am coming from in the summation of Paul Steinhardt

Friday, January 13, 2012

The Smoking Gun

One string theorist even went so far to conclude that a string theory calculation of Kaluza-Klein modes was the "smoking gun" that proved our theory was the same as the string theory that string theorists had already been studying.Warped Passages: Unraveling The Mysteries of the Universes Hidden Dimensions by Lisa Randall Pg 436, Para 4

Putting this together with what is real in our reality is of importance as well. While I may have my own metaphysical development and model building characteristics it was important that I learn the scientific one so that I could see where I may have been wrong in my own development scenario. Wrong in my own intuitions.

 Meanwhile I’m continuing to develop the Extra Dimensions series of articles, and I’ve now followed up my examples of extra dimensions with a next installment, a first discussion of what scientists would look for in trying to identify that our world actually has one or more extra dimensions .  The new article describes one of the key clues that would indicate their presence.  But this is far from the end of the story: I owe you more articles, explaining why extra dimensions would generate this clue, outlining how we try to search for this clue experimentally, and mentioning other possible clues that might arise.  All in due course…The Smoking Gun for Extra Dimensions by Theoretical Physicist Matt Strassler

Some may of not been forced to question them-self  with what it is that we have to ask of ourselves,  as we delve into the world of the sciences and philosophies. To ask ourselves whether we had always been dealing with the truth of our getting to the heart of things.

A professor may have asked what it is exactly what I wanted out of all of this,  and to him I have to relay a dream that has manifested because of his question.

In the dream I have been provided a forum for discussing my ideas.....but when it came to the time for speaking,  my preparations,  I felt lost as to where to begin. So it seems I have come to this point in time, as to "shit or get off the pot" as to what it is I wish to share of importance?

Giving these subjects the numbers of years since 2001, one would have thought  had served my own internship, but alas I remain ever the student with no classification. Yet it is the developing of the concepts with what is real in the push to experiment as to find what the real world examples are showing as attributes in the experimental processes as they unfold.

 In this example I’m going to map speed to the pitch of the note, length/postion to the duration of the note and number of turns/legs/puffs to the loudness of the note.See: How to make sound out of anything.


Who of us has the foresight to see where the process of the experiment had been developed to share an idea about what it was that we wanted to discover of nature? To see in the mind of the developers as to why the equipment has been superimposed from the schematics of theories to be tested as to discover what we may found in our model building.

Does all this prepare you to looking at the universe different?

 The Lagrange Points


In the above contour plot we see that L4 and L5 correspond to hilltops and L1, L2 and L3 correspond to saddles (i.e. points where the potential is curving up in one direction and down in the other). This suggests that satellites placed at the Lagrange points will have a tendency to wander off (try sitting a marble on top of a watermelon or on top of a real saddle and you get the idea). A detailed analysis (PDF link) confirms our expectations for L1, L2 and L3, but not for L4 and L5. When a satellite parked at L4 or L5 starts to roll off the hill it picks up speed. At this point the Coriolis force comes into play - the same force that causes hurricanes to spin up on the earth - and sends the satellite into a stable orbit around the Lagrange point. See: Space Travel and Propulsion Methods

I have to say who has not been touched as if we put on a pair of rose colored glasses to see the Lagrangian world as if the gravitons populated  locations of influence. As if they were descriptive as overlapping nodes of sound as to support some acoustical idea about levitation? Satellites that travel through space or held in position as our space station is.

 
Like different musical instruments, different types of stars produce different types of sound waves. Small stars produce a sound with a higher pitch than bigger stars, just like the 'piccolo' produces a higher sound than the cello

Thus it is as ones can see differently that I look upon the world as to discover what things we may not know of our own selves that we had missed in understanding our own physical evolution, that it is more then the matter with which we use and are made up of?


This recording was produced by converting into audible sounds some of the radar echoes received by Huygens during the last few kilometres of its descent onto Titan. As the probe approaches the ground, both the pitch and intensity increase. Scientists will use intensity of the echoes to speculate about the nature of the surface. Radar echos from Titan's surface

Thursday, February 04, 2010

Perspective of the Theoretical Scientist

Most people think of "seeing" and "observing" directly with their senses. But for physicists, these words refer to much more indirect measurements involving a train of theoretical logic by which we can interpret what is "seen."- Lisa Randall

There are certain advantages to the theoretical perspective that can best portray the concepts of the world they live in with what appears, however abstract, with the minds value of image solicitor impressionism which helps the minds state of acceptance. So it had to be explained first.

Cubist art revolted against the restrictions that perspective imposed. Picasso's art shows a clear rejection of the perspective, with women's faces viewed simultaneously from several angles. Picasso's paintings show multiple perspectives, as though they were painted by someone from the 4th dimension, able to see all perspectives simultaneously.


Cubist Art: Picasso's painting 'Portrait of Dora Maar'



P. Picasso Portrait of Ambrose Vollard (1910)


 M. Duchamp Nude Descending a Staircase, No. 2 (1912)


J. Metzinger Le Gouter/Teatime (1911)


The appearance of figures in cubist art --- which are often viewed from several direction simultaneously --- has been linked to ideas concerning extra dimensions:

As if, looking at it from a larger perspective. If you stand outside of the image and see that it is capable of illuminating many angles of perspective. This helped us to see that it is derived from a much larger understanding then what is solidified to the everyday we live in.

For the artist it was a bold move to understanding that perspective could help us see Mona Lisa's smile as moving with us as we move around. So that was the challenge then was to appreciate the value of this artistic push into how we see as to understanding the road non- euclidean took was meet by people as well to culminate in a geometrical transitional form


Hyperspace: A Scientific Odyssey

A look at the higher dimensionsBy Michio Kaku



"Why must art be clinically “realistic?” This Cubist “revolt against perspective” seized the fourth dimension because it touched the third dimension from all possible perspectives. Simply put, Cubist art embraced the fourth dimension. Picasso's paintings are a splendid example, showing a clear rejection of three dimensional perspective, with women's faces viewed simultaneously from several angles. Instead of a single point-of-view, Picasso's paintings show multiple perspectives, as if they were painted by a being from the fourth dimension, able to see all perspectives simultaneously. As art historian Linda Henderson has written, “the fourth dimension and non-Euclidean geometry emerge as among the most important themes unifying much of modern art and theory."







Then, it quickly comes home to mind that maybe what is given,  lets say in context of Lee Smolin's road to Quantum Gravity of the thing will help us quickly see the value of describing "the space of an interior" with what is happening on the screen/label.

Spacetime in String Theory


More then just a Bekenstein imagery to illustrate a conformal approach to describing what are the contends of the tomato soup can from it's label.



Campbell's Soup Can by Andy Warhol Exhibited in New York (USA), Leo Castelli Gallery


It was necessary to see that the geometric used here were helping to shape perspective around not only "time travel" but a means to an end to use mathematical perspective to actually mean something in relation to understanding our world. A way to describe abstract concepts that were correlated with the progression of those mathematics. Klein's ordering of geometries then take on a new meaning as we move deep into the world we all know and love.

In 1919, Kaluza sent Albert Einstein a preprint --- later published in 1921 --- that considered the extension of general relativity to five dimensions. He assumed that the 5-dimensional field equations were simply the higher-dimensional version of the vacuum Einstein equation, and that all the metric components were independent of the fifth coordinate. The later assumption came to be known as the cylinder condition. This resulted in something remarkable: the fifteen higher-dimension field equations naturally broke into a set of ten formulae governing a tensor field representing gravity, four describing a vector field representing electromagnetism, and one wave equation for a scalar field. Furthermore, if the scalar field was constant, the vector field equations were just Maxwell's equations in vacuo, and the tensor field equations were the 4-dimensional Einstein field equations sourced by an EM field. In one fell swoop, Kaluza had written down a single covariant field theory in five dimensions that yielded the four dimensional theories of general relativity and electromagnetism. Naturally, Einstein was very interested in this preprint .

I quickly divert the attention to the world of Thomas Banchoff because it is an extraordinary move from all that we know is safe. It is not lost to some computer animator world that one engages loses the self in the process? It is also to show that what Lee Smolin tried to distance himself from, was in fact seeking to find itself understood in this way. Concurrent agreement that theoretics was trying to arrive at a consensus of different approaches saying the same thing?

Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling to compute their results. Monte Carlo methods are often used in simulating physical and mathematical systems. Because of their reliance on repeated computation of random or pseudo-random numbers, these methods are most suited to calculation by a computer and tend to be used when it is unfeasible or impossible to compute an exact result with a deterministic algorithm.[1]

Monte Carlo simulation methods are especially useful in studying systems with a large number of coupled degrees of freedom, such as fluids, disordered materials, strongly coupled solids, and cellular structures (see cellular Potts model). More broadly, Monte Carlo methods are useful for modeling phenomena with significant uncertainty in inputs, such as the calculation of riskdefinite integrals, particularly multidimensional integrals with complicated boundary conditions. It is a widely successful method in risk analysis when compared with alternative methods or human intuition. When Monte Carlo simulations have been applied in space exploration and oil exploration, actual observations of failures, cost overruns and schedule overruns are routinely better predicted by the simulations than by human intuition or alternative "soft" methods.[2]
For me it had to make some sense such transference from that artistic impressionism help to direct the mind to the ways and means of understanding quantum gravity was being inspected in terms of Monte Carlo methods to understanding. These had a surface value in my mind to an accumulate acceptance of the geometry and methods used to model this understanding.




So you understand now how we arrived at an interpretation of the value of lets say Dyson's opinion about how we might view Riemann's Hypothesis?

Dyson, one of the most highly-regarded scientists of his time, poignantly informed the young man that his findings into the distribution of prime numbers corresponded with the spacing and distribution of energy levels of a higher-ordered quantum state. Mathematics Problem That Remains Elusive —And Beautiful By Raymond Petersen



***

DNA Computing

DNA computing is a form of computing which uses DNA, biochemistry and molecular biology, instead of the traditional silicon-based computer technologies. DNA computing, or, more generally, molecular computing, is a fast developing interdisciplinary area. Research and development in this area concerns theory, experiments and applications of DNA computing See:DNA computing




***


Clifford of Asymptotia is hosting a guest post by Len Adleman: Quantum Mechanics and Mathematical Logic.

Today I’m pleased to announce that we have a guest post from a very distinguished colleague of mine, Len Adleman. Len is best known as the “A” in RSA and the inventor of DNA-computing. He is a Turing Award laureate. However, he considers himself “a rank amateur” (his words!) as a physicist.

Len Adleman-For a long time, physicists have struggled with perplexing “meta-questions” (my phrase): Does God play dice with the universe? Does a theory of everything exist? Do parallel universes exist? As the physics community is acutely aware, these are extremely difficult questions and one may despair of ever finding meaningful answers. The mathematical community has had its own meta-questions that are no less daunting: What is “truth”? Do infinitesimals exist? Is there a single set of axioms from which all of mathematics can be derived? In what many consider to be on the short list of great intellectual achievements, Frege, Russell, Tarski, Turing, Godel, and other logicians were able to clear away the fog and sort these questions out. The framework they created, mathematical logic, has put a foundation under mathematics, provided great insights and profound results. After many years of consideration, I have come to believe that mathematical logic, suitably extended and modified (perhaps to include complexity theoretic ideas), has the potential to provide the same benefits to physics. In the following remarks, I will explore this possibility.

Tuesday, April 03, 2007

The Elixir of the Bee Community

You should know that that the names of the Bee people have their names protected, to protect the community at large. Some larger human species, like to use the benefits of this society, without recognizing the constructive efforts that goes into this elixir Production.

Marc D. Hauser:

We know that that kind of information is encoded in the signal because people in Denmark have created a robotic honey bee that you can plop in the middle of a colony, programmed to dance in a certain way, and the hive members will actually follow the information precisely to that location. Researchers have been able to understand the information processing system to this level, and consequently, can actually transmit it through the robot to other members of the hive.


See Bumblebee Wing Rotations and Dancing

Many times people have used Ant world to illustrate their ideas, but the time has come, that the relationship to perspective dynamics at that level should think about the vast literature of Bee people.

The second of five Lagrangian equilbrium points, approximately 1.5 million kilometers beyond Earth, where the gravitational forces of Earth and Sun balance to keep a satellite at a nearly fixed position relative to Earth.

See Second of Five Lagrangian Equilibrium Points

One should not think these people have been disassociated from reality, and that it has only been our ignorance of the economics and flight patterns, that we failed to see the dynamical community that bee propagation goes through, in order to continue it's rich development. The elixir production is coming out of that community.

There are two reasons that having mapped E8 is so important. The practical one is that E8 has major applications: mathematical analysis of the most recent versions of string theory and supergravity theories all keep revealing structure based on E8. E8 seems to be part of the structure of our universe.

The other reason is just that the complete mapping of E8 is the largest mathematical structure ever mapped out in full detail by human beings. It takes 60 gigabytes to store the map of E8. If you were to write it out on paper in 6-point print (that's really small print), you'd need a piece of paper bigger than the island of Manhattan. This thing is huge.


See Solidification of Geometrical Presence

Flower pollination is a interesting thing having considered the world that the Bee people live in. After all, the dynamics and travel used, one could not help being enamoured with the naturalness with which one may try to reproduce in human mechanistic movement, that the Bee people live and breathe.

Humanistic intelligences is a larger format, to what they do in that Bee community?

Cell construction provides for the further propagation of the community, but no where do the Bee people give the particulates of the cell construction? Humanistic intelligences only see the community with regards to the Bee movements :)The Bee people have a greater depth to what is seen.

Observing the community at large, the Bee people have much more to present then thinking just in the way they work. Who is Navier Stokes of the humanistic intelligences to think only he could reveal anomalistic perception in the nature of viscosity, not to think there is relativistic conditions that the Bee people bring to reductionism views in physics?

Worker bees perform a host of tasks from cleaning the hive cells to looking after the larvae
The workers have a variety of tasks to perform – some collect nectar from flowers, others pollen, some are engaged in constructing new combs, or looking after the developing larvae, some perform the duty of cleaning the cells or feeding the larvae on special secretion that they regurgitate from their mouth parts. In these insects the exact task of any individual depends largely on its age, although there is a certain flexibility, depending on the requirements of the hive.


So I've taken a different tack here. If it is so hard for the community at large to comprehend that extra dimensional thinking then there has to be some way in which we as lay people can envision the acrobatics of a busy bee and their flight plans? What the community is all about. Who is doing what?

How many dimensions are there?

Consider ants crawling on a tabletop. In their daily experience, they can explore only 2 dimensions, those of the table surface. They may see a bee up flying, or occasionally landing on the table top, but that 3rd dimension is something they can only see or imagine, not experience. Perhaps we are in an analogous situation. Instead of a tabletop, we live in a 3-dimensional space called 3-brane (a name generalizing 2-brane, i.e., membrane). For some reason, we (i.e., atoms, molecules, photons etc.) are stuck in this 3-brane, even though there are 6 additional dimensions out there. Gravity, like the bee, can go everywhere. We call this the brane world, a rather natural phenomenon in superstring theory. At the moment, physicists are working hard to understand this scenario better and to find ways to experimentally test this idea.


The Bee people had graduated from the world of the ant people, jsut by their evolutionary timeline. They were "much more visionary" then the ant people. Because they could leave their three dimensional world of the table top, and pop into ant world's frame of reference. Ant people were never the wiser. Just that, Bee people existed.

Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for graduate students and researchers in the disciplines concerned as well as practitioners in fields such as aerospace engineering.

See Wolf-Rayet star

Brane theory development needed a boost from the Bee people. Not only now do we understand the "dynamical thinking that goes with the Bee's flight patterns," we are now thinking, hey, "can these things apply" to the current solutions the humanistic intelligences persevere to unfold in their space travels?

Not just "our waist lines" as some might think in regards to "lensing" and the circles we apply in "computerize efforts." The range of territory of the Bee's community is well considered?

Sunday, March 25, 2007

Heralded from the 21st Century: String Theory

I know not how, may find their way to the minds of humanity in Some Dimensionality, and may stir up a race of rebels who shall refuse to be confined to limited Dimensionality." from Flatland, by E. A. Abbott


It is sometimes important to know what race of rebels had been raised to realize that such a revolution in the making had started from a place of thinking that many others
began to think about as well?

Cycle of Birth, Life, and Death-Origin, Indentity, and Destiny by Gabriele Veneziano

In one form or another, the issue of the ultimate beginning has engaged philosophers and theologians in nearly every culture. It is entwined with a grand set of concerns, one famously encapsulated in an 1897 painting by Paul Gauguin: D'ou venons-nous? Que sommes-nous? Ou allons-nous? "Where do we come from? What are we? Where are we going?"
See here for more information.

It is important to know where such models began to influence the idea to generate theoretical model for an apprehension of how we view this universe? Given the study at hand here are the following people for consideration.

Whence began this journey and revolution?

LEONARD SUSSKIND:

And I fiddled with it, I monkeyed with it. I sat in my attic, I think for two months on and off. But the first thing I could see in it, it was describing some kind of particles which had internal structure which could vibrate, which could do things, which wasn't just a point particle. And I began to realize that what was being described here was a string, an elastic string, like a rubber band, or like a rubber band cut in half. And this rubber band could not only stretch and contract, but wiggle. And marvel of marvels, it exactly agreed with this formula.
I was pretty sure at that time that I was the only one in the world who knew this.


So we have to take stock of the movements that change democratic societies. To have found such governments will change and fall according to the plight of it's citizens in science. As it goes with "theoretical positions?"

Working to understand the development of the model in consideration was needed in order for one to understand why Lee Smolin methodology to work science from a historical perspective is one I favour as well. It is sometimes necessary to list these developmental phases in order to get to a position to speak with authority. Find that "with certainty" we can make certain comments? Find, we must be confronted again, to say, any progress will go from There.

The Revolution that Didn't Happen by Steven Weinberg

I first read Thomas Kuhn's famous book The Structure of Scientific Revolutions a quarter-century ago, soon after the publication of the second edition. I had known Kuhn only slightly when we had been together on the faculty at Berkeley in the early 1960s, but I came to like and admire him later, when he came to MIT. His book I found exciting.

Evidently others felt the same. Structure has had a wider influence than any other book on the history of science. Soon after Kuhn's death in 1996, the sociologist Clifford Geertz remarked that Kuhn's book had "opened the door to the eruption of the sociology of knowledge" into the study of the sciences. Kuhn's ideas have been invoked again and again in the recent conflict over the relation of science and culture known as the science wars.


So we know where the idea of science wars began do we not? What instigates conflict as a healthy perspective to progress of the sciences. We will see the story unfold within this blog.

For some reason people might of thought my views were just held to Lee Smolin and the work that I had been accumulating with regards to his views of the Universe. While I had shown the cover of his book countless times, I would like to say that I have accumulated "other books," like those of Brian Greene as well.

Does this make me an expert on the subject in question or what ever Lee Smolin has written? Of course not.

But the work I have been doing, has not been limited to what the authors themself have given to the public in their outreach writing books. I have been at this a few years now, so I would like people to think this is not just a jaunt of journalism, that has been given to the public in it's books but has been a labour of love to understand my place in the universe.

The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory
The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory (ISBN 0-375-70811-1) is a book by Brian Greene published in 2000 which introduces string theory and provides a comprehensive though non-technical assessment of the theory and some of its shortcomings.

Beginning with a brief consideration of classical physics, which concentrates on the major conflicts in physics, Greene establishes an historical context for string theory as a necessary means of integrating the probabilistic world of the standard model of particle physics and the deterministic Newtonian physics of the macroscopic world. Greene discusses the essential problem facing modern physics: unification of Einstein's theory of General Relativity and Quantum Mechanics. Greene suggests that string theory is the solution to these two conflicting approaches. Greene uses frequent analogies and mental experiments to provide a means for the layman to come to terms with the theory which has the potential to create a unified theory of physics.

The Elegant Universe was adapted for a three hour program in two parts for television broadcast in late 2003 on the PBS series NOVA.


Thanks Q9 for the link to "Elegant physicist makes string theory sexy." I was going to posted it the day when you gave it to me, but instead seeing that Clifford of Asymptotia had it (same day), I thought I wouldn't. But as fate has it I must.

The Fabric of the Cosmos: Space, Time, and the Texture of Reality (2004) is the second book on theoretical physics, cosmology and string theory written by Brian Greene, professor and co-director of Columbia's Institute for Strings, Cosmology, and Astroparticle Physics (ISCAP).[1]
Greene begins with the key question: What is reality? Or more specifically: What is spacetime? He sets out to describe the features he finds both exciting and essential to forming a full picture of the reality painted by modern science. In almost every chapter, Greene introduces its basic concepts and then slowly builds to a climax, which is usually a scientific breakthrough. Greene then attempts to connect with his reader by posing simple analogies to help explain the meaning of a scientific concept without oversimplifying the theory behind it.

In the preface, Greene acknowledges that some parts of the book are controversial among scientists. Greene discusses the leading viewpoints in the main text, and points of contention in the end notes. Greene has striven for balanced treatment of the controversial topics. In the end notes, the diligent reader will find more complete explanations relevant to points he has simplified in the main text.


Once you get this view of the gravitational connection between everything, the form of graviton, you get this preview of the bulk and what lensing may mean. It is hard not to think of "dimensional perspectives in relation to the energy" describing the particles of science in some way. Witten below in his "Strings Unravel" lets you know what string theory has accomplished.

Warped Passages is a book by Lisa Randall, published in 2005, about particle physics in general and additional dimensions of space (cf. Kaluza-Klein theory) in particular. The book has made it to top 50 at amazon.com, making it the world's first successful book on theoretical physics by a female author. See Where are my keys?

It's alway nice having one's own blog and nice that I can retained my dignity under the name of Plato. It keeps my personal life from being treated with disrespect at the whim of the stroke of a delete key. Of course I am willing to take my lumps understanding such a role as "older student." After being expose to the exchange between people in the tribe, it's thinking can do all kinds of damage to each other? But I would like to think that all sides remain cool to positions they hold in society

A Different Universe: Reinventing Physics from the Bottom Down by Robert B. LaughlinFrom the Publisher:
Why everything we think about fundamental physical laws needs to change, and why the greatest mysteries of physics are not at the ends of the universe but as close as the nearest ice cube or grain of salt.

Not since Richard Feynman has a Nobel Prize-winning physicist written with as much panache as Robert Laughlin does in this revelatory and essential book. Laughlin proposes nothing less than a new way of understanding fundamental laws of science. In this age of superstring theories and Big-Bang cosmology, we're used to thinking of the unknown as being impossibly distant from our everyday lives. The edges of science, we're told, lie in the first nanofraction of a second of the Universe's existence, or else in realms so small that they can't be glimpsed even by the most sophisticated experimental techniques. But we haven't reached the end of science, Laughlin argues-only the end of reductionist thinking. If we consider the world of emergent properties instead, suddenly the deepest mysteries are as close as the nearest ice cube or grain of salt. And he goes farther: the most fundamental laws of physics-such as Newton's laws of motion and quantum mechanics -are in fact emergent. They are properties of large assemblages of matter, and when their exactness is examined too closely, it vanishes into nothing.
See Laughlin, Reductionism, Emergence

Out of all this uncertainty that exists at the level with which we think about in "those dimensions" what value any constructive diagram if it did not lead you to the understanding of the building blocks that a condense matter theorist may describe as manifesting in our reality?

The Year is 2020 and that's our Eyesight

Columbia physicist Brian Greene inhabits a multiple-perspective landscape modeled after M.C. Escher's artwork in a scene from "The Elegant Universe," a public-TV documentary based on Greene's book.
Q: Hawking has said that there could be a “theory of everything” produced in the next 20 years, or by 2020. Do you get that same sense? Or will there ever be a theory of everything?

A: Well, I always find it difficult to make predictions that are tied to a specific time frame, because as we all know, one of the exciting things about science is that you don’t know when the big break is going to happen. It could happen tomorrow, it could happen 10 years from now, it could happen a century from now. So you just keep pressing on, making progress, and hope that you reach these major milestones — ideally in your own lifetime, but who knows? So I don’t know if 2020 is the right number to say. But I would say that string theory has a chance of being that unified theory, and we are learning more and more about it. Every day, every week, every month there are fantastically interesting developments.

Will it all come together by 2020, where we can actually have experimental proof and the theory develops to the point that it really makes definitive statements that can be tested? I don’t know. I hope so. But hope is not the thing that determines what will actually happen. It’s the hard work of scientists around the world.


But anyway onto what I wanted to say and "being censored" I couldn't.

Clifford is defending his position on how Lee Smolin and Peter Woit have assigned a "perspective view" to string theory as a modelled approach. As a theoretical discovery of science, Clifford from my view, had to show that this process is still unfolding and that any quick decision as to giving String theory such a final vote of opinion from Lee Smolin was premature. I have supported Clifford in this view because of where we had been historically in the past years that the formulation of string theory has been given.

D-Branes by Clifford V. Johnson
D-branes represent a key theoretical tool in the understanding of strongly coupled superstring theory and M-theory. They have led to many striking discoveries, including the precise microphysics underlying the thermodynamic behaviour of certain black holes, and remarkable holographic dualities between large-N gauge theories and gravity. This book provides a self-contained introduction to the technology of D-branes, presenting the recent developments and ideas in a pedagogical manner. It is suitable for use as a textbook in graduate courses on modern string theory and theoretical particle physics, and will also be an indispensable reference for seasoned practitioners. The introductory material is developed by first starting with the main features of string theory needed to get rapidly to grips with D-branes, uncovering further aspects while actually working with D-branes. Many advanced applications are covered, with discussions of open problems which could form the basis for new avenues of research.


While Clifford's book I do not have, I understand that the "second revolution" was necessary to help us move to consider where string theory was to take us. It was progressing in the theoretics as a model to help us see science assuming the ways in which such models adjust us to possible new views in science. Clifford may not of liked the implication of a Grokking of a kind that would refer to consuming model approaches and then becoming what you eat?

Clifford:
I’ve found that different people have different takes on what it means to have a “theory of everything”. There is a popular idea (perhaps the most common) that this somehow means that this theory will describe (at least in principle) all known basic physical phenomena (constituents and their interactions, if you like) once and for all. Others mean something less ambitious, a theory that consistently describes the four fundamental forces and the things that interact with them, achieving a unification of all the forces and phenomena that we currently understand. I personally think that the first idea of a theory of everything is rather naive, and my personal hunch (and bias from what I’ve learned about the history of science) is that there is simply no such thing.


So of course entertaining the idea of a "theory of everything" leaves a bad taste in some peoples mouth, and having them to reason that it is the naivity of such a thought, that I immediately felt insulted. Clifford saids,"this theory will describe (at least in principle) all known basic physical phenomena (constituents and their interactions, if you like) once and for all" and may have been the case for those less then spending the time and effort, would have probably been insulted as I was. I of course came to recognize the positive aspect of the second position Clifford assumes.

Bench Marks of theoretical Progress

Anyway there are positions that we can take when we look back and reassess everything that we have been doing in reading the public outreach, like so called "bench marks" to see if such progressions still have have a evolutionary way to go.

Edward Witten-Reflections on the Fate of Spacetime

Unravelling String Theory

But what is string theory? It may well be the only way to reconcile gravity and quantum mechanics, but what is the core idea behind it? Einstein understood the central concepts of general relativity years before he developed the detailed equations. By contrast, string theory has been discovered in bits and pieces — over a period that has stretched for nearly four decades — without anyone really understanding what is behind it. As a result, every bit that is unearthed comes as a surprise. We still don’t know where all these ideas are coming from — or heading to



See more here



So what shall we use to measure what had first seem so abstract in Susskind's mind as a "rubber band," or the start of Veneziano views on such strings at inception? We've come a long way.

Something that I perceived back in 2004 help to "shape my views on the way I speak" "today" allows for us to consider that strings take it's rightful place within the building blocks of matter, that following Robert Laughlins lead, it was that we shifted our times from the first three seconds of Steven Weinberg, to the "First three Microseconds" of strings within the process of the unfolding universe.

The resulting collisions between pairs of these atomic nuclei generate exceedingly hot, dense bursts of matter and energy to simulate what happened during the first few microseconds of the big bang. These brief "mini bangs" give physicists a ringside seat on some of the earliest moments of creation.
See How Particles Came to be?

While Laughlin may have not seen the continued relevance of particle reductionism it was leading to some amazing insights. I now wonder now, if held to the comparisons of this superfluid, how it would have appealed to him? I think Witten in last plate above recognized what had to be done.

Friday, February 23, 2007

Where are my keys?

"Yet I exist in the hope that these memoirs, in some manner, I know not how, may find their way to the minds of humanity in Some Dimensionality, and may stir up a race of rebels who shall refuse to be confined to limited Dimensionality." from Flatland, by E. A. Abbott




The Extra-Dimensions?


So you intuitively believe higher dimensions really exist?

Lisa Randall:I don't see why they shouldn't. In the history of physics, every time we've looked beyond the scales and energies we were familiar with, we've found things that we wouldn't have thought were there. You look inside the atom and eventually you discover quarks. Who would have thought that? It's hubris to think that the way we see things is everything there is.


And what is it that we don't see? I thought of a comment somewhere that spoke about what first started to make it's appearance in how we communicate?

Time is the Unseen fourth Dimension

They were able to create what we recognize today as the "elliptical" and "hyperbolic" non-Euclidean geometries. Most of Saccheri's first 32 theorems can be found in today's non-Euclidean textbooks. Saccheri's theorems are prefaced by "Sac."

One of my greatest "aha moments" came when I realized Non-euclidean geometries. I had to travel the history first with Giovanni Girolamo Saccheri, Bolya and Lobachevsky, for this to make an impression, and I can safely say, that learning of Gauss and Riemann, I was truly impressed.

Einstein had to include that "extra dimension of time." Greater then, or less then, 180 degrees and we know "this triangle" can take on some funny shapes when you apply them "to surfaces" that are doing funny things.?:)



Second, we must be wary of the "God of the Gaps" phenomena, where miracles are attributed to whatever we don't understand. Contrary to the famous drunk looking for his keys under the lamppost, here we are tempted to conclude that the keys must lie in whatever dark corners we have not searched, rather than face the unpleasant conclusion that the keys may be forever lost.


Let me just say that "it is not the fact that any drinking could have held the mind" of the person, but when they absentmindedly threw their car keys. The "point is" that if the light shines only so far, what conclusion should we live with?

Moving to the Fifth

So of course whatever real estate you are buying, make sure the light is shining on what your willing to purchase? Is this not a good lesson to learn?

Moving any idea to a fifth dimension I thought was important in relation to seeing what Einstein had done. See further: Concepts of the Fifth Dimension. I illustrate more ways in which we may see that has not been seen for most could have helped the mind see how this is accomplished in current day geometric methods.

Why was this thought "wrong" when one may of thought to include "gravity and light" together, after the conclusion of spacetime's 3+1? Gravity. What Had Maxwell done? What Had Riemann done?

You knew "the perfect symmetry" had to be reduced to General Relativity?

Greg Landsberg:
Two types of the extra-dimensional effects observable at collides.



A graviton leaves our world for a short moment of time, just to come back and decay into a pair of photons (the DØ physicists looked for that particular effect).

A graviton escapes from our 3-dimensional world in extra dimensions (Megaverse), resulting in an apparent energy non-conservation in our three-dimensional world.
So why would it matter to us if the universe has more than 3 spatial dimensions, if we can not feel them? Well, in fact we could “feel” these extra dimensions through their effect on gravity. While the forces that hold our world together (electromagnetic, weak, and strong interactions) are constrained to the 3+1-“flat” dimensions, the gravitational interaction always occupies the entire universe, thus allowing it to feel the effects of extra dimensions. Unfortunately, since gravity is a very weak force and since the radius of extra dimensions is tiny, it could be very hard to see any effects, unless there is some kind of mechanism that amplifies the gravitational interaction. Such a mechanism was recently proposed by Arkani-Hamed, Dimopoulos, and Dvali, who realized that the extra dimensions can be as large as one millimeter, and still we could have missed them in our quest for the understanding of how the universe works!


Of course these ideas are experimentally being challenged, like any good scientist would want of his theory. See EOT-WASH GROUP(4)

Saturday, November 11, 2006

Gravity and Electromagnetism?

"Yet I exist in the hope that these memoirs, in some manner, I know not how, may find their way to the minds of humanity in Some Dimensionality, and may stir up a race of rebels who shall refuse to be confined to limited Dimensionality." from Flatland, by E. A. Abbott




Oskar Klein and Theodor Franz Eduard Kaluza

What a novel idea to have the methods used by the predecessors like Maxwell, to have been united from Faraday's principals? To have Maxwell's equation Gaussian in interpretation of Riemann geometry, somehow, united by the geometries of Einstein and defined as gravity?

Then, to have Gravity and Light United?

A black hole is an object so massive that even light cannot escape from it. This requires the idea of a gravitational mass for a photon, which then allows the calculation of an escape energy for an object of that mass. When the escape energy is equal to the photon energy, the implication is that the object is a "black hole."


It seems then that the very statement of "Unification," the "Theory of everything," does not seem so far fetched as we look at the implications of what comes after. What comes from the knowledge, extended.



I was starting to loose hope here in the efforts of blogging as well, and was thinking that the time had come to a end. But "these questions" help to fuel the understanding that I had gained by giving time to "what work" has been put out there by scientists?



To think scientists would close up shop to their elite view, would seem disastrous to me, because of the leading perspective of what the physics means along side of that math.

We need to know what is "experimentally going" on so that we can also judge what theoretical models are doing for us as we extend this knowledge gained.

I gave a few views in environmental sciences in terms of the cosmic relation as well as what Gr was being introduced using time clocks and such, for views of the topographical understanding of earth from a fluidness point of view.

Now join the "cloud cover" along side of particle collisions sources, and have we learn anything that we didn't know before, or has this push new light onto what we now see of earth, as it's placed in the cosmological frontier?

Friday, November 10, 2006

Lisa Randall on Xtra Dimensions

In physics, Randall-Sundrum models imagine that the real world is a higher-dimensional Universe described by warped geometry. More concretely, our Universe is a five-dimensional anti de Sitter space and the elementary particles except for the graviton are localized on a (3 + 1)-dimensional brane or branes.

The models were proposed in 1999 by Lisa Randall and Raman Sundrum while studying technicolor models.



With the online chat yesterday I'll have to look in on Sabine Hossenfelder and Stefan's of Backreaction blog entry in this regard to look at it more in depth.


Photograph by Phil Knott
Click to view for a larger version.
So you intuitively believe higher dimensions really exist?

I don't see why they shouldn't. In the history of physics, every time we've looked beyond the scales and energies we were familiar with, we've found things that we wouldn't have thought were there. You look inside the atom and eventually you discover quarks. Who would have thought that? It's hubris to think that the way we see things is everything there is.

If there are more than three dimensions out there, how does that change our picture of the universe?


The very ideas are of extra dimensions are very progressive, and are not without some history. Some people will label anything as crackpot, without understanding the history of these discussions."




Physics strings us along by Margaret Wertheim of LAtimes.com

In the latest, hottest Big Science tome — the delightfully titled "Warped Passages" — Harvard physicist Lisa Randall describes the idea that the universe we see around us is but one tiny part of a vast reality that may include an infinite number of other universes. Randall is an expert on both cosmology and that arcane branch of particle physics known as string theory. By marrying the two fields, she and her colleagues have formulated a picture in which our universe may be seen as a soap-film-like membrane (a "braneworld") sitting inside a much larger space: the bulk. According to general relativity, the universe we live in has four dimensions: three of space and one of time. Randall's work extends this framework and posits the existence of a fifth dimension. The fifth dimension is the bulk, and within its immeasurably expanded space, there is no reason to assume that ours is the only cosmos.