Showing posts with label Plato's Nightlight Mining Company. Show all posts
Showing posts with label Plato's Nightlight Mining Company. Show all posts

Friday, May 15, 2020

Artemis Accords


 The creation of the Artemis Accords

The ability to extract and utilize resources on the Moon, Mars, and asteroids will be critical to support safe and sustainable space exploration and development.

The Artemis Accords reinforce that space resource extraction and utilization can and will be conducted under the auspices of the Outer Space Treaty, with specific emphasis on Articles II, VI, and XI.

***

Outer Space Treaty of 1967

  

Article II 

Outer space, including the moon and other celestial bodies, is not subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means.


  
Article VI
States Parties to the Treaty shall bear international responsibility for national activities in outer space, including the moon and other celestial bodies, whether such activities are carried on by governmental agencies or by non-governmental entities, and for assuring that national activities are carried out in conformity with the provisions set forth in the present Treaty. The activities of non-governmental entities in outer space, including the moon and other celestial bodies, shall require authorization and continuing supervision by the appropriate State Party to the Treaty. When activities are carried on in outer space, including the moon and other celestial bodies, by an international organization, responsibility for compliance with this Treaty shall be borne both by the international organization and by the States Parties to the Treaty participating in such organization. 

Article XI

In order to promote international co-operation in the peaceful exploration and use of outer space, States Parties to the Treaty conducting activities in outer space, including the moon and other celestial bodies, agree to inform the Secretary-General of the United Nations as well as the public and the international scientific community, to the greatest extent feasible and practicable, of the nature, conduct, locations and results of such activities. On receiving the said information, the Secretary-General of the United Nations should be prepared to disseminate it immediately and effectively. 

Thursday, April 12, 2018

A Tour of the Moon

Credit: NASA's Goddard Space Flight Center/David Ladd

This video is public domain and along with other supporting visualizations can be downloaded from the Scientific Visualization Studio at: http://svs.gsfc.nasa.gov/4619

Friday, December 30, 2016

A New Home on Mars: NASA Langley’s Icy Concept for Living on the Red Planet


An artist's rendering of the Mars Ice Home concept.
Credits: NASA/Clouds AO/SEArch



A New Home on Mars: NASA Langley’s Icy Concept for Living on the Red Planet: For researchers at NASA’s Langley Research Center, the best building material for a new home on Mars may lie in an unexpected material: Ice.

Tuesday, June 24, 2014

The Naming of Mars Craters: Concerns and Considerations


Recently initiatives that capitalise on the public’s interest in space and astronomy have proliferated, some putting a price tag on naming space objects and their features, such as Mars craters. The International Astronomical Union (IAU) would like to emphasise that such initiatives go against the spirit of free and equal access to space, as well as against internationally recognised standards. Hence no purchased names can ever be used on official maps and globes. The IAU encourages the public to become involved in the naming process of space objects and their features by following the officially recognised (and free) methods. SeeConcerns and Considerations with the Naming of Mars Craters
***
I am re-posting this article for further considerations to possible attempts to change the way we look at property in space.

To advance perceptions outside of the link provided and site that goes beyond the science of, I would ask that you consider the movement in Ladee. My early research on the moon's matters are of importance when colonization of the moon takes place because resources have to be used there to support the community. So the use of measure to ascertain elements is an important function of how we can utilize not only our science in the cosmos but of how we can measure those matters.

See:

***

Bigelow Report to NASA emphasises the importance of property rights:
The idea of creating property rights to encourage the commercialization of space is not the first time that Bigelow has acted or spoken in favour of creating property rights in space.
 Outer Space Treaty-Article IX
 

In the exploration and use of outer space, including the moon and other celestial bodies, States Parties to the Treaty shall be guided by the principle of co-operation and mutual assistance and shall conduct all their activities in outer space, including the moon and other celestial bodies, with due regard to the corresponding interests of all other States Parties to the Treaty. States Parties to the Treaty shall pursue studies of outer space, including the moon and other celestial bodies, and conduct exploration of them so as to avoid their harmful contamination and also adverse changes in the environment of the Earth resulting from the introduction of extraterrestrial matter and, where necessary, shall adopt appropriate measures for this purpose. If a State Party to the Treaty has reason to believe that an activity or experiment planned by it or its nationals in outer space, including the moon and other celestial bodies, would cause potentially harmful interference with activities of other States Parties in the peaceful exploration and use of outer space, including the moon and other celestial bodies, it shall undertake appropriate international consultations before proceeding with any such activity or experiment. A State Party to the Treaty which has reason to believe that an activity or experiment planned by another State Party in outer space, including the moon and other celestial bodies, would cause potentially harmful interference with activities in the peaceful exploration and use of outer space, including the moon and other celestial bodies, may request consultation concerning the activity or experiment. 

Space entrepreneur Robert Bigelow (left) discusses layout plans of the company's lunar base with Eric Haakonstad, one of the Bigelow Aerospace lead engineers.

One might want to examine Bigelow's self interest in terms of cost of mining in relation too, societal push for colonization of space(is there such a thing......consider the international treaty and what changes he wished to make.) I know I can't own a plot of land on the moon for mining

(It is) nearly impossible at this time to identify exactly what activities will sustain commercial industry on the Moon, mining of resources such as Helium-3, mining rare earth elements, or leveraging fields of solar arrays for power generation are all possibilities.”
Why property rights?

***


Committee on the Peaceful Uses of Outer Space: 2014Fifty-seventh session(11-20 June 2014)

 The fifty-seven session of the Committee on the Peaceful Uses of Outer Space will be held from 11-20 June 2014 at the United Nations Office at Vienna, Vienna International Center, Vienna, Austria.


  • A/RES/68/75: General Assembly resolution on "International cooperation in the peaceful uses of outer space" (available in all official languages of the United Nations)
  • A/68/20: Report of the Committee on the Peaceful Uses of Outer Space, Fifty-sixth session (available in all official languages of the United Nations)
  • A/AC.105/1065: Report of the Scientific and Technical Subcommittee on its fifty-first session, held in Vienna from 10 to 21 February 2014 (available in all official languages of the United Nations)
  • A/AC.105/1067: Report of the Legal Subcommittee on its fifty-third session, held in Vienna from 24 March to 4 April 2014 (available in all official languages of the United Nations)
***
 
See Also:

Saturday, December 08, 2012

GRAIL's Gravity Tour of the Moon


Embedded video from
NASA Jet Propulsion Laboratory California Institute of Technology
This movie shows the variations in the lunar gravity field as measured by NASA's Gravity Recovery and Interior Laboratory (GRAIL) during the primary mapping mission from March to May 2012.

Monday, November 12, 2012

Space policy of the Barack Obama administration


The space policy of the Barack Obama administration was announced by U.S. President Barack Obama on April 15, 2010, at a major space policy speech at Kennedy Space Center.[1] He committed to increasing NASA funding by $6 billion over five years and completing the design of a new heavy-lift launch vehicle by 2015 and to begin construction thereafter. He also predicted a U.S. crewed orbital Mars mission by the mid-2030s, preceded by an asteroid mission by 2025. In response to concerns over job losses, Obama promised a $40 million effort to help Space Coast workers affected by the cancellation of the Space Shuttle program and Constellation program.
Any Problem with this type of video player  player have a look here

Thursday, October 25, 2012

Gravimetry

Gravity map of the Southern Ocean around the Antarctic continent
This gravity field was computed from sea-surface height measurements collected by the US Navy GEOSAT altimeter between March, 1985, and January, 1990. The high density GEOSAT Geodetic Mission data that lie south of 30 deg. S were declassified by the Navy in May of 1992 and contribute most of the fine-scale gravity information.
The Antarctic continent itself is shaded in blue depending on the thickness of the ice sheet (blue shades in steps of 1000 m); light blue is shelf ice; gray lines are the major ice devides; pink spots are parts of the continent which are not covered by ice; gray areas have no data.

Gravimetry is the measurement of the strength of a gravitational field. Gravimetry may be used when either the magnitude of gravitational field or the properties of matter responsible for its creation are of interest. The term gravimetry or gravimetric is also used in chemistry to define a class of analytical procedures, called gravimetric analysis relying upon weighing a sample of material.


 See Also:
Atom interferometry: In light-pulse atom interferometers, atomic matter waves are split and recombined using pulses of laser light. The splitting occurs because when an atom interacts with the photons of a laser beam, it exchanges the momentum of a number of photons. The atom may thus continue on either of two spatially separate paths, the interferometer arms. When the paths are recombined, the probability that the atom is found depends upon the phase difference between them, which determines whether the matter waves will add or cancel. This phase is shifted by the atom’s coupling to electromagnetic fields, gravity, inertial forces, and other influences. By selecting the geometry of the interferometer, the atomic species, and its quantum state, one can maximize the wanted influence and minimize others. Advances in the control of the quantum state of atoms and photons have led to an extraordinary sensitivity and accuracy.




See:

Saturday, September 22, 2012

Mining Helium 3 On the Moon

Helium-3 (He-3, sometimes called tralphium[1]) is a light, non-radioactive isotope of helium with two protons and one neutron. It is rare on the Earth, and it is sought for use in nuclear fusion research. The abundance of helium-3 is thought to be greater on the Moon (embedded in the upper layer of regolith by the solar wind over billions of years)[citation needed], though still low in quantity (28 ppm of lunar regolith is helium-4 and from one ppb to 50 ppb is helium-3)[2][3], and the solar system's gas giants (left over from the original solar nebula).

 Materials on the Moon's surface contain helium-3 at concentrations on the order of between 1.4 and 15 ppb in sunlit areas,[41][42] and may contain concentrations as much as 50 ppb in permanently shadowed regions.[3] A number of people, starting with Gerald Kulcinski in 1986,[43] have proposed to explore the moon, mine lunar regolith and use the helium-3 for fusion. Recently, companies as Planetary_Resources have also stated to be interested in mining helium-3 on the moon. Because of the low concentrations of helium-3, any mining equipment would need to process extremely large amounts of regolith (over 150 million tonnes of regolith to obtain one ton of helium 3),[44] and some proposals have suggested that helium-3 extraction be piggybacked onto a larger mining and development operation

As Plato's Nightlight  mining company it is always of interest of what proposals are put forward that such ventures become of interest to providing for life being lived on the moon.  Materials for construction there and delivery to earth.

It is always of interest too, that the long range livability of the conditions for human life would have a longer goal term of mining for Helium 3 through a longer approach for sustenance as a by product of that venture.




Clementine color ratio composite image of Aristarchus Crater on the Moon. This 42 km diameter crater is located on the corner of the Aristarchus plateau, at 24 N, 47 W. Ejecta from the plateau is visible as the blue material at the upper left (northwest), while material excavated from the Oceanus Procellarum area is the reddish color to the lower right (southeast). The colors in this image can be used to ascertain compositional properties of the materials making up the deep strata of these two regions. (Clementine, USGS slide 11)

Precursors to research and development are a historical basis to the point where research development is now and part of that is elemental assessment of what we can gain from the environment of the moon.

 The orbiter, known as LRO, separated from the Atlas V rocket carrying it and a companion mission, the Lunar Crater Observation and Sensing Satellite. The LCROSS handoff is expected to occur in about two hours and 10 minutes.




 The Moon Mineralogy Mapper (M3) is one of two instruments that NASA contributed to India's first mission to the Moon, Chandrayaan-1, launched October 22, 2008. The instrument is led by principal investigator Carle Pieters of Brown University, and managed by NASA's Jet Propulsion Laboratory.

So in any adventure we must be able to build with the materials there to make it feasible for life so there are some things that need to be done in terms of that construction.

Moon is a 2009 British science fiction drama film directed by Duncan Jones.[3] The film is about a man who experiences a personal crisis as he nears the end of a three-year solitary stint mining helium-3 on the far side of the Earth's moon.[4]
 There would need to be significant infrastructure in place before industrial scale production of lunarcrete could be possible.[2]

One of the products of that construction if I may so skip ahead is to see that the fiction productions of movies help us to see what needs to be done in NASA research to make it a viable project in determination for the long run.  A certain prediction and thought process to engage the future possibilities.


Lunarcrete, also known as "Mooncrete", an idea first proposed by Larry A. Beyer of the University of Pittsburgh in 1985, is a hypothetical aggregate building material, similar to concrete, formed from lunar regolith, that would cut the construction costs of building on the Moon.[3]

What we need to take with us to the moon in terms of epoxies that will help shield and seal  the Mooncrete that we will be able to produce to provide for that building construction.


David Bennett, of the British Cement Association, argues that Lunarcrete has the following advantages as a construction material for lunar bases:[8]
  • Lunarcrete production would require less energy than lunar production of steel, aluminium, or brick.[8]
  • It is unaffected by temperature variations of +120°C to −150°C.[8]
  • It will absorb gamma rays.[8]
  • Material integrity is not affected by prolonged exposure to vacuum. Although free water will evaporate from the material, the water that is chemically bound as a result of the curing process will not.[8]
He observes, however, that Lunarcrete is not an airtight material, and to make it airtight would require the application of an epoxy coating to the interior of any Lunarcrete structure.[8]


Liquid scintillation counting is a standard laboratory method in the life-sciences for measuring radiation from beta-emitting nuclides. Scintillating materials are also used in differently constructed "counters" in many other fields.



See Also:

Tuesday, September 04, 2012

Moon Pictures

http://creativecommons.org/licenses/by-nd/3.0/

LPOD Photo Gallery


Motivation

During the late 1800s and well into the 1900s it seemed that every book that described the craters, mountains and other features of Earth's moon was titled The Moon. In my mind this came to stand for an encyclopedia-like series of descriptions of features on the lunar surface. In general, more recent books, especially those by professional scientists, describe the processes that formed and modified the Moon, and the surface features themselves are no longer described systematically. But for many lunar observers and others thinking about the Moon as a place, knowledge of individual features is important. See: The Moon Wiki
Labeled Moon-Click Here for Larger Image

Tuesday, August 28, 2012

Grail At the Moon



 Grail Recovery and Interior Labratory
NASA's Gravity Recovery And Interior Laboratory (GRAIL)-A spacecraft successfully completed its planned main engine burn at 2 p.m. PST (5 p.m. EST) today. As of 3 p.m. PST (6 p.m. EST), GRAIL-A is in a 56-mile (90-kilometer) by 5,197-mile (8,363-kilometer) orbit around the moon that takes approximately 11.5 hours to complete.


Visualisation of the “Geoid” of the Moon

Saturday, October 08, 2011

Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

A map of the Moon combining observations in visible and ultraviolet wavelengths shows a treasure trove of areas rich in Titanium ores. Not only is Titanium a valuable mineral, it is key to helping scientists unravel the mysteries of the Moon’s interior.  Mark Robinson and Brett Denevi will be presenting the results from the Lunar Reconnaissance Orbiter mission today at the joint meeting of the European Planetary Science Congress and the American Astronomical Society’s Division for Planetary Sciences. >EPSC-DPS JOINT MEETING 2011 PRESS NOTICE
ISSUED 13:15 CEST ON FRIDAY 7TH OCTOBER
Ref. PN: EPSC11/14
 

It seems this Europlanet is a little bit behind the times. Check label below on Plato's Nightlight Mining Company. What more can I say?

See Also: LROC “Treasure Map” Reveals Titanium Deposits

Monday, April 25, 2011

LRO's Crater Science Investigations



If you want to learn more about the history of Earth and other rocky planets in the solar system, craters are a great place to look. Now, thanks to LRO's LROC instrument, we can take a much closer look at Linné Crater on the moon--a pristine crater that's great to use to compare with other craters! See: LRO's Crater Science Investigations



The life cycle of a lunar impact and associated time and special scales. The LCROSS measurement methods are “layered” in response to the rapidly evolving impact environment. See: Impact:Lunar CRater Observation Satellite (LCROSS)



Data from the ultraviolet/visible spectrometer taken shortly after impact showing emission lines (indicated by arrows). These emission lines are diagnostic of compounds in the vapor/debris cloud.
Credit: NASA


LCROSS Impact Data Indicates Water on Moon11.13.09






 ***
 

It is important that we establish an outpost on the moon in order to progress further out into the universe. A lot of work has to be done to venture further out, so that we may explore.

Click on Image


See Also: Plato's Nightlight Mining Company

Wednesday, February 10, 2010

GOCE delivering data for best gravity map ever



30 September 2009
Following the launch and in-orbit testing of the most sophisticated gravity mission ever built, ESA’s GOCE satellite is now in ‘measurement mode’, mapping tiny variations in Earth’s gravity in unprecedented detail.
 



The ‘Gravity field and steady-state Ocean Circulation Explorer’ (GOCE) satellite was launched on 17 March from northern Russia. The data now being received will lead to a better understanding of Earth’s gravity, which is important for understanding how our planet works.



It is often assumed that gravity exerts an equal force everywhere on Earth. However, owing to factors such as the rotation of the planet, the effects of mountains and ocean trenches, and density variations in Earth’s interior, this fundamental force is not quite the same all over.

Credit:ESA


Over two six-month uninterrupted periods, GOCE will map these subtle variations with extreme detail and accuracy. This will result in a unique model of the ‘geoid’ – the surface of an ideal global ocean at rest.


A precise knowledge of the geoid is crucial for accurate measurement of ocean circulation and sea-level change, both of which are influenced by climate. The data from GOCE are also much-needed to understand the processes occurring inside Earth. In addition, by providing a global reference to compare heights anywhere in the world, the GOCE-derived geoid will be used for practical applications in areas such as surveying and levelling.See More here and here

See:Plato's Nightlight Mining Company is claiming Aristarchus Crater and Surrounding Region and the rest is history:)

Friday, October 09, 2009

Plato's Nightlight Mining Company is claiming Aristarchus Crater and Surrounding Region

So what is the legality of claiming land on the moon?


What regions would you like to claim if you had the opportunity to make such a claim? Imagine  Covered Wagons racing now as spaceships. Racing, to plant their posts too include, so many acres of land.

Stampede for Oklahoma's Unassigned Lands

***

Hubble Reveals Potential Titanium Oxide Deposits at Aristarchus and Schroter's Valley Rille


As a photocatalyst

Titanium dioxide, particularly in the anatase form, is a photocatalyst under ultraviolet light. Recently it has been found that titanium dioxide, when spiked with nitrogen ions, or doped with metal oxide like tungsten trioxide, is also a photocatalyst under visible and UV light. The strong oxidative potential of the positive holes oxidizes water to create hydroxyl radicals. It can also oxidize oxygen or organic materials directly. Titanium dioxide is thus added to paints, cements, windows, tiles, or other products for sterilizing, deodorizing and anti-fouling properties and is also used as a hydrolysis catalyst. It is also used in the Graetzel cell, a type of chemical solar cell.
The photocatalytic properties of titanium dioxide were discovered by Akira Fujishima in 1967[15] and published in 1972.[16] The process on the surface of the titanium dioxide was called the Honda-Fujishima effect.[15] Titanium dioxide has potential for use in energy production: as a photocatalyst, it can
  • carry out hydrolysis; i.e., break water into hydrogen and oxygen. Were the hydrogen collected, it could be used as a fuel. The efficiency of this process can be greatly improved by doping the oxide with carbon.[17].
  • Titanium dioxide can also produce electricity when in nanoparticle form. Research suggests that by using these nanoparticles to form the pixels of a screen, they generate electricity when transparent and under the influence of light. If subjected to electricity on the other hand, the nanoparticles blacken, forming the basic characteristics of a LCD screen. According to creator Zoran Radivojevic, Nokia has already built a functional 200-by-200-pixel monochromatic screen which is energetically self-sufficient.
In 1995 Fujishima and his group discovered the superhydrophilicity phenomenon for titanium dioxide coated glass exposed to sun light.[15] This resulted in the development of self-cleaning glass and anti-fogging coatings.
TiO2 incorporated into outdoor building materials, such as paving stones in noxer blocks or paints, can substantially reduce concentrations of airborne pollutants such as volatile organic compounds and nitrogen oxides.[18]
A photocatalytic cement that uses titanium dioxide as a primary component, produced by Italcementi Group, was included in Time's Top 50 Inventions of 2008.[19]

[edit] For wastewater remediation

TiO2 offers great potential as an industrial technology for detoxification or remediation of wastewater due to several factors.




  1. The process occurs under ambient conditions very slowly, direct UV light exposure increases the rate of reaction.






  2. The formation of photocyclized intermediate products, unlike direct photolysis
    techniques, is avoided.





  3. Oxidation of the substrates to CO2 is complete.






  4. The photocatalyst is inexpensive and has a high turnover.






  5. TiO2 can be supported on suitable reactor substrates.


***



The lunar south pole as it will appear on the night of impact. Photo Credit - NMSU / MSFC Tortugas Observatory

The impact site is crater Cabeus near the Moon's south pole. NASA is guiding the Lunar Crater Observation and Sensing Satellite ("LCROSS" for short) and its Centaur booster rocket into the crater's floor for a spectacular double-impact designed to "unearth" signs of lunar water. See:LCROSS Viewer's Guide


Image Above: The dark blue and purple areas at the moons poles indicate neutron emissions that are consistent with hydrogen-rich deposits covered by desiccated regolith. These hydrogen signatures are possible indications of water in the form of ice or hydrated minerals. Feldman et al., Science, 281, 1496, 1998. Click image to enlarge Credit: NASA

Just like on Earth, water will be a crucial resource on the moon. Transporting water and other goods from Earth to the moon’s surface is expensive. Finding natural resources, such as water ice, on the moon could help expedite lunar exploration. The LCROSS mission will search for water, using information learned from the Clementine and Lunar Prospector missions.

By going to the moon for extended periods of time, a new generation of explorers will learn how to work safely in a harsh environment. A lunar outpost is a stepping stone to future exploration of other bodies in our solar system. The moon also offers many clues about when the planets were formed.

See:Backreaction: Free Falling

See Also:
Jun 06, 2009
 
Oct 12, 2009
 
Jan 18, 2008

 
Mar 12, 2007



 

Saturday, June 06, 2009

Hubble Reveals Potential Titanium Oxide Deposits at Aristarchus and Schroter's Valley Rille

Credit: NASA, ESA, and J. Garvin (NASA/GSFC)Aristarchus Crater in False Color

This color composite focuses on the 26-mile-diameter (42-kilometer-diameter) Aristarchus impact crater, and employs ultraviolet- to visible-color-ratio information to accentuate differences that are potentially diagnostic of ilmenite- (i.e, titanium oxide) bearing materials as well as pyroclastic glasses. The symphony of color within the Aristarchus crater clearly shows a diversity of materials — anorthosite, basalt, and olivine. The images were acquired Aug. 21, 2005. The processing was accomplished by the Hubble Space Telescope Lunar Exploration Team at NASA's Goddard Space Flight Center, Northwestern University, and the Space Telescope Science Institute. False-color images were constructed using the red channel as 502/250 nanometers; the green as 502 nanometers; and the blue as 250/658 nanometers. North is at the top in the image.




Credit: NASA, ESA and J. Garvin (NASA/GSFC)
This view of the lunar impact crater Aristarchus and adjacent features (Herodotus crater, Schroter's Valley rille) illustrates the ultraviolet and visible wavelength characteristics of this geologically diverse region of the Moon. The two inset images illustrate one preliminary approach for isolating differences due to such effects as composition, soil maturity, mixing, and impact ejecta emplacement. The color composite in the lower right focuses on the 26-mile-diameter (42-kilometer-diameter) Aristarchus impact crater, and employs ultraviolet- to visible-color-ratio information to accentuate differences that are potentially diagnostic of ilmenite- (i.e, titanium oxide) bearing materials as well as pyroclastic glasses.

The same is the case for the image of a section of Schroter's Valley (rille) in the upper right. Bluer units in these spectral-ratio images suggest enrichment in opaque phases in a relative sense. The magenta color indicates dark mantle material which scientists believe contains titanium-bearing pyroclastic material.

The symphony of color within the Aristarchus crater clearly shows a diversity of materials — anorthosite, basalt, and olivine. The impact crater actually cut through a mare highlands boundary with superposed pyroclastics - a unique geologic setting on the Moon! The distinctive tongue of material extending out of the crater's southeastern rim is thought to be very olivine-rich material, based on Earth-based spectra and Clementine visible and infrared imaging data.

North is at the top in these images.

These images were acquired Aug. 21, 2005. The processing was accomplished by the Hubble Space Telescope Lunar Exploration Team at NASA's Goddard Space Flight Center, Northwestern University, and the Space Telescope Science Institute. False-color images were constructed using the red channel as 502/250 nanometers; the green as 502 nanometers; and the blue as 250/658 nanometers.



(Clementine, USGS slide 11)
Clementine color ratio composite image of Aristarchus Crater on the Moon. This 42 km diameter crater is located on the corner of the Aristarchus plateau, at 24 N, 47 W. Ejecta from the plateau is visible as the blue material at the upper left (northwest), while material excavated from the Oceanus Procellarum area is the reddish color to the lower right (southeast). The colors in this image can be used to ascertain compositional properties of the materials making up the deep strata of these two regions.


***


APOLLO

The points of reference for the earth-moon measurement are the earth-based telescope—in this case, the 3.5 meter telescope at Apache Point, and in particular, the intersection of the telescope mount axes—and the small, suitcase-sized retroreflector array placed on the lunar surface by Apollo astronauts (pictured is the Apollo 11 reflector at Tranquility Base). A total of four lunar retroreflectors are functional: three Apollo reflectors from Apollo 11, 14, and 15 (three times bigger than 11 & 14), and one French-built, Soviet landed (unmanned) unit from the Luna 21 mission. A significant part of the challenge of lunar range modeling is converting this point-to-point measurement into a distance between the center-of-mass of the earth and the center-of-mass of the moon. It is only after this reduction that one can consider the interesting part of the problem: the dynamics of the earth-moon-sun system. For more general information on the technique, see this description of how the technique works and why we're performing this experiment.


Location of the reflector landing sites

APOLLO Laser First Light

Another picture from July 24, 2005. Larry Carey is seen standing on the catwalk performing aircraft spotting duties. Bruce Gillespie is the other spotter, hidden by the pine tree. On some viewing screens, the green beam may be barely visible leaving the dome. The beam is about as visible as the Milky Way. Part of Ursa Minor is at right, and Draco at upper left. Photo by Gretchen van Doren.


A picture from the August 2005 run by Gretchen van Doren, showing the laser beam making its way to the (over-exposed) moon. No, the moon is not exploding under the influence of our 2.3 Watt laser! The edge-brightening of the beam can be seen, as the telescope secondary mirror robs the beam of light in its center. Orion is seen at right.


A picture from the June 2006 run showing the back of the telescope, the APOLLO laser enclosure (left), the beam heading moon-ward, and the moon intself. The moon is actually a crescent, but so terrifically overexposed (16 seconds) that it looks rather round.


***


Question 4 : What is the structure of Mercury's core?


Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

More recently, Earth-based radar observations of Mercury have also determined that at least a portion of the large metal core is still liquid to this day! Having at least a partially molten core means that a very small but detectable variation in the spin-rate of Mercury has a larger amplitude because of decoupling between the solid mantle and liquid core. Knowing that the core has not completely solidified, even as Mercury has cooled over billions of years since its formation, places important constraints on the thermal history, evolution, and core composition of the planet.




Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

This MESSENGER image was taken from a distance of about 18,000 kilometers (11,000 miles) from the surface of Mercury, at 20:03 UTC, about 58 minutes after the closest approach point of the flyby. The region shown is about 500 kilometers (300 miles) across, and craters as small as 1 kilometer (0.6 mile) can be seen in this image.


The Gravity Field