***
See Also:
Published on Oct 19, 2012 The Kitchener-Waterloo Symphony and the Institute for Quantum Computing teamed up on Sept. 29, 2012, to present an innovative musical experiment called "Quantum: Music at the Frontier of Science." The concert served as the the grand finale of the grand opening celebrations of the Mike & Ophelia Lazaridis Quantum-Nano Centre at the University of Waterloo. Through narration, an eclectic musical programme, live narration and "sound experiments," the concert explored the surprisingly parallel paths followed by quantum science and orchestral music over the past century. The concert was created over the period of a year through meetings and brainstorming sessions between KW Symphony Music Director Edwin Outwater and researchers from the Institute for Quantum Computing.
Nanotechnology (sometimes shortened to "nanotech") is the manipulation of matter on an atomic and molecular scale. Generally, nanotechnology works with materials, devices, and other structures with at least one dimension sized from 1 to 100 nanometres. Quantum mechanical effects are important at this quantum-realm scale. With a variety of potential applications, nanotechnology is a key technology for the future and governments have invested billions of dollars in its research. Through its National Nanotechnology Initiative, the USA has invested 3.7 billion dollars. The European Union has invested 1.2 billion and Japan 750 million dollars.[1]
Nanotechnology is very diverse, ranging from extensions of conventional device physics to completely new approaches based upon molecular self-assembly, from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale. Nanotechnology entails the application of fields of science as diverse as surface science, organic chemistry, molecular biology, semiconductor physics, microfabrication, etc.
Scientists debate the future implications of nanotechnology. Nanotechnology may be able to create many new materials and devices with a vast range of applications, such as in medicine, electronics, biomaterials and energy production. On the other hand, nanotechnology raises many of the same issues as any new technology, including concerns about the toxicity and environmental impact of nanomaterials,[2] and their potential effects on global economics, as well as speculation about various doomsday scenarios. These concerns have led to a debate among advocacy groups and governments on whether special regulation of nanotechnology is warranted.
The most scientifically sophisticated building ever constructed at the University of Waterloo, this one-of-a-kind centre will facilitate transformational research with applications spanning computing, communications, medicine and beyond. Shared by the Institute for Quantum Computing (IQC) and the Waterloo Institute for Nanotechnology (WIN), this building provides our researchers with the tools and opportunities to unlock the amazing power of quantum information science and the boundless potential of nanotechnology. The groundbreaking discoveries that happen here will continue Waterloo’s long tradition of research excellence and innovation through the 21st century.
PictureThis |
Thin-Film Solar with High Efficiency
Solexant is printing inorganic solar cells with nanomaterials.Solar cells made from cheap nanocrystal-based inks have the potential to be as efficient as the conventional inorganic cells currently used in solar panels, but can be printed less expensively. Solexant, a company in San Jose, CA, is currently manufacturing solar cells to test the technology. In order to compete with other thin-film solar companies, Solexant is banking on simpler, cheaper printing processes and materials, as well as lower initial capital costs to build its plants. The company expects to sell modules for $1 per watt, with efficiencies above 10 percent.
Nanocrystal solar: The solar cells at top were made on a roll-to-roll printer from an ink consisting of the rod-shaped inorganic semiconducting nanocrystals shown below. The cells were printed on a flexible metal foil and will be topped with a glass plate.
Credit: Solexant
The company has licensed methods for growing nanocrystals and making them into inks from Paul Alivisatos, professor of nanotechnology at the University of California, Berkeley and interim director of the Lawrence Berkeley National Laboratory. (Alivisatos is on Solexant's board of directors.) Alivisatos says the advantage of these materials is their potential to combine low cost with high performance. Solar cells made from crystalline silicon are efficient at converting sunlight into electricity, but they're expensive to manufacture. To bring down the cost, companies have been developing thin-film solar cells from semiconductors that don't match crystalline silicon's performance but are much less expensive to make.
Solexant's goal is to make cheap thin-film solar cells with relatively high efficiencies. It would not disclose what the nanoparticle inks are made of, but the company says they are suspensions of rod-shaped, semiconducting nanocrystals that are four nanometers in diameter and 20 to 30 nanometers long. The Solexant cells are printed on a metal foil as the substrate. Nanocrystal films are simple to print but have poor electrical properties. Electrons tend to get trapped between the small particles. "The trick with these cells is how to deposit the materials on the fly in a way that makes a very conductive surface," which in turn ensures decent light-to-electricity conversion, says Alivisatos. Solexant begins with nanocrystals because they're easier to print, and heats them as they're printed, causing them to fuse together into larger, high-quality microcrystals that don't have as many places for electrons to lose their way.
The remaining parts of the solar cell, including the electrical contacts and a light-absorbing layer, are also printed on the flexible metal films. This process allows Solexant to print very large areas. When complete, the cells are cut and then topped with a rigid piece of glass.
Fundamentally the properties of materials can be changed by nanotechnology. We can arrange molecules in a way that they do not normally occur in nature. The material strength, electronic and optical properties of materials can all be altered using nanotechnology.
Allotropy (Gr. allos, other, and tropos, manner) is a behaviour exhibited by certain chemical elements: these elements can exist in two or more different forms, known as allotropes of that element. In each different allotrope, the element's atoms are bonded together in a different manner.
For example, the element carbon has two common allotropes: diamond, where the carbon atoms are bonded together in a tetrahedral lattice arrangement, and graphite, where the carbon atoms are bonded together in sheets of a hexagonal lattice.
Note that allotropy refers only to different forms of an element within the same phase or state of matter (i.e. different solid, liquid or gas forms) - the changes of state between solid, liquid and gas in themselves are not considered allotropy. For some elements, allotropes can persist in different phases - for example, the two allotropes of oxygen (dioxygen and ozone), can both exist in the solid, liquid and gaseous states. Conversely, some elements do not maintain distinct allotropes in different phases: for example phosphorus has numerous solid allotropes, which all revert to the same P4 form when melted to the liquid state.
The term "allotrope" was coined by the famous chemist Jöns Jakob Berzelius.
Visitors' shadows manipulate and reshape projected images of "Buckyballs." "Buckyball," or a buckminsterfullerene molecule, is a closed cage-structure molecule with a carbon network. "Buckyball" was named for R. Buckminster "Bucky" Fuller (1895-1983), a scientist, philosopher and inventor, best known for creating the geodesic dome.
HOUSTON, Texas, Oct. 31 -- Nobel laureate Richard Smalley, co-discoverer of the buckyball and widely considered to be one of the fathers of nanotechnology, died Friday at the age of 62 after a long battle with cancer.
Rice University professor Smalley shared the 1996 Nobel Prize in chemistry with fellow Rice chemist Robert Curl and British chemist Sir Harold Kroto for the 1985 discovery of a new form of carbon nicknamed buckyballs. Shaped like soccerballs and no wider than a strand of DNA, buckyballs each contain 60 carbon atoms arranged in a hollow sphere resembling two conjoined geodesic domes. Smalley coined the name "buckminsterfullerene" for the discovery in honor of architect and geodesic dome inventor Buckminster Fuller.
Fullerenes -- the family of compounds that includes buckyballs and carbon nanotubes -- remained the central focus of Smalley's research until his death. According to colleagues, Smalley's belief that nanotubes were a wonder material that could solve some of humanity's problems -- such as clean energy, clean water and economical space travel -- led him to crusade for more public support for science and to help found a business, Carbon Nanotechnologies Inc., in 2000 to make sure his discoveries made it to the marketplace where they could benefit society. Smalley was convinced that nanotubes could only be used to solve society's problems if they were manufactured in bulk and processed economically.