Using a rubber band analogy over top of a ball is a interesting way to approach the circle used, and the energy determinations found of value in calculating 1r radius(KK Tower) of that same circle, as you move to the top. But if you move it along a length and you find that you can calculate the difference in this length by the changes in the energy valuations?

It’s how you look at this space inside the bubble versus outside the bubble. John Baez might look at it on the outside as such above recognizing well the lines connectin flip and change depending on the energy demonstrated in a quantum grvaity model? While the inside of the bubble is dictated by some other means of interpretation? From the inside, a soccer ball universe(poincare structure) would seem so appropriate but here Max Tegmark has answer this view, through Wmap views?

For me, I would look at the surface of the bubble and the rainbows that could shimmer across it’s surface. We would be defining the shape of the bubble in a way we had not considered before? Moving sound in analogy to the world of gravitational considerations how would this view be considered now in context of bubble technologies?

Using circles as energy determination seems viable as they travel the length, but it becomes much more diffiuclt when you are trying to merge these bubbles, it looks discrete, when the lines are joining while curvature defines the connection between the two? You see the bubbles have a outer structure. As these circles merge, it is not past the knowledge to coisder that the path integral approach is being exemplified.

Running contrary to the view of bubble world, the images of a vast systems of cosmic strings that would flash across a universe may seem very interesting as I gaze from artistic perception about the flash of a lightening strike? That ignited new possibilties into expression, new life in the universe?

Quantum gravity, the as yet unconsummated marriage between quantum physics and Einstein's general relativity, is widely (though perhaps not universally) regarded as the single most pressing problem facing theoretical physics at the turn of the millennium. The two main contenders, ``Brane theory/ String theory'' and ``Quantum geometry/ new variables'', have their genesis in different communities. They address different questions, using different strategies, and have different strengths (and weaknesses).

**What is Quantum Gravity?**

Quantum gravity is the field devoted to finding the microstructure of spacetime. Is space continuous? Does spacetime geometry make sense near the initial singularity? Deep inside a black hole? These are the sort of questions a theory of quantum gravity is expected to answer. The root of our search for the theory is a exploration of the quantum foundations of spacetime. At the very least, quantum gravity ought to describe physics on the smallest possible scales - expected to be 10-^{35}meters. (Easy to find with dimensional analysis: Build a quantity with the dimensions of length using the speed of light, Planck's constant, and Newton's constant.) Whether quantum gravity will yield a revolutionary shift in quantum theory, general relativity, or both remains to be seen.

What it could be useful for?

ReplyDeletewell the bubbles as multiverse ideas? maybe?

ReplyDeleteEver see bubbles join? I am not sure at the moment:)