Showing posts with label Strange Matter. Show all posts
Showing posts with label Strange Matter. Show all posts

Wednesday, February 14, 2007

Strangelets and Strange Matter

Of course I will point to some of the "inherent nature" that some scientists encounter as they develop the geometrical basis to "all the concepts could ever mean?" But first, "the journey."

If not fundamental, though, quark nuggets zipping around the galaxy would still be an amazing addition. And perhaps even more amazing, in the end, than any technically strange - or just generally bizarre - particles burrowing through the ground would be the fact that the planet is no longer just a block of dumb rock in their path. It is an ever better wired planet, monitored and thought about in ever more ingenious ways; it is a datasphere ever more sensitive to its surroundings and its own processes, from flashes in the upper atmosphere to rumblings in the core. We have made it a planet that notices things. We have made it an observant Earth.


You have to understand that if you are doing the research you want to know what "this avenue/hypothesis is to produce? It's almost as if "you understand" that the geometry exists under the "fundamental explanations of all concepts" as they are being developed. How a "different language" will be "put over top" of what is existing now schematically. We learn "to read" what has transpired from one who has more credentials then I, as I am only a student of the work.

At the same time how did such thought processes develop outward to experimental validation in the real world? So you must understand, that I too understand this process. Not only from a "conceptual understanding" but from it's associative analysis one as well. It allow me to develop intuitively into what work is now transpiring at Cern.

Strangelets are small fragments of strange matter. They only exist if the "strange matter hypothesis" is correct, in which case they are the true ground state of matter, and nuclei are actually metastable states with a very long lifetime.


Odd behavior?



A person most intense and preoccupied with the endeavours they work, will notice that time passes very quickly around them. It's as if the world bypassed them, as the focus had cost them the appearance or the attention needed to take care of themselves. "Should I care" as I think of them, whether their hair long or that their desk is pile high with paper?

Careful least you disrupt the train of thought, that while busy, the underlings stand ready to act according to the plans of the teacher.

I learnt over time to accept that even the academics will make allowances for the "uniqueness of individuals" even if that behaviour seems odd( sure call it detective work :0). To allow these attributes of the mind to go along with, the excellent and Nobel prize work that may be produced. Do you not think that Einstein in his last days was more concerned with the focus of his attentions then how dishevelled his hair was?

Pierre Auger on Cosmic Rays

"For in 1938, I showed the presence in primary cosmic rays of particles of a million Gigavolts -- a million times more energetic than accelerators of that day could produce. Even now, when accelerators have far surpassed the Gigavolt mark, they still have not attained the energy of 1020eV, the highest observed energy for cosmic rays. Thus, cosmic rays have not been dethroned as far as energy goes, and the study of cosmic rays has a bright future, if only to learn where these particles come from and how they are accelerated. You know that Fermi made a very interesting proposal that particles are progressively accelerated by bouncing off moving magnetic fields, gaining a little energy each time. In this way, given a certain number of "kicks," one could perhaps account for particles of 1018 -- 1020 electron volts. As yet, however, we have no good theory to explain the production of the very-high-energy particles that make the air showers that my students and I discovered in 1938 at Jean Perrin's laboratory on a ridge of the Jungfrau."

-- Pierre Auger, Journal de Physique, 43, 12, 1982


With introduction to the "Pierre Auger experiments" one learns to appreciate what the large Microscope can do. It allowed us to change the way in which we see cosmology working to include the "astrophysics approach to the description of the universe."

Do you think cosmology devoid of new theoretical approaches, as we venture into the even more abstract "D Brane" world? That we should exclude, such theoretics as a language over top of the process of physics, to not think it is not delving into the world of the geometries involved as well as that physics?

The microscopic process is much more diverse not only in terms of the language, but of how concepts can "cross over" into what we are doing with other approaches.

Beam Trajectories



This summer, CERN gave the starting signal for the long-distance neutrino race to Italy. The CNGS facility (CERN Neutrinos to Gran Sasso), embedded in the laboratory's accelerator complex, produced its first neutrino beam. For the first time, billions of neutrinos were sent through the Earth's crust to the Gran Sasso laboratory, 732 kilometres away in Italy, a journey at almost the speed of light which they completed in less than 2.5 milliseconds. The OPERA experiment at the Gran Sasso laboratory was then commissioned, recording the first neutrino tracks.


Now of course I opened the beginning of this blog post with a article that asks you to consider the domain in which they have considered earth and it's value as a experimental process. The "strange hypothesis" to which I am talking about as a "cross over analogies" to the developmental process of Cern.

The Pythagoreans were called mathematikoi, which means "those that study all"


Amazing isn't it? That if one understood that there was a original context for all that we create, then what shall this context be? So science asks, that the universal language display the mathematics as a basis of all "conceptual frameworks spoken" that are developed. This is, "the right way of it" as I have watched the scientists as they have developed their theories.

So we have this "microscopic view of reality" as the "power of ten" along with "this enlightenment" that taken over all our senses. What has happened now, as we venture out into the cosmos? What has happened when we've taken "theoretical positions" and adapted them to the processes of physics?

Thursday, December 28, 2006

First Stars Behind the Scene

There are several recognized processes from the early universe that leave relic effects setting the stage for galaxy formation and evolution. We deal here with the first generarion of stars, primordial nucleosynthesis, the epoch of recombination, and the thermal history of various cosmic backgrounds.


Part of understanding the time line is first knowing where the Pregalactic Universe exists in that time line.

Plato:
So given the standard information one would have to postulate something different then what is currently classified?

A new Type III (what ever one shall attribute this to definition), versus Type I, Type IIa?


The idea is to place the distant measure in relation to what is assumed of TYPE I, TypeIIa. It assumes all these things, but has to been defined further, to be a Type III. That's the point of setting the values of where this measure can be taken from.

I wrote someplace else the thought generated above. It is nice that the world of scientists are not so arrogant in some places, while some have been willing to allow the speculation to continue. Even amidst their understanding, that I was less then the scientist that they are, yet recognizing, I am deeply motivated to understanding this strange world of cosmology and it's physics.

When I wrote this title above I was actually thinking of two scenarios that are challenging the way I am seeing it.


Credit: NASA/WMAP Science Team
WMAP has produced a new, more detailed picture of the infant universe. Colors indicate "warmer" (red) and "cooler" (blue) spots. The white bars show the "polarization" direction of the oldest light. This new information helps to pinpoint when the first stars formed and provides new clues about events that transpired in the first trillionth of a second of the universe.


First of these, was in terms of the time line and what we know of the WMAP demonstration given to us of that early universe. I of course inject some of what I know by past research to help the general public understand what is being demonstrated from another perspective.

This is what happens as you move through different scientists(Wayne Hu) thoughts to see the world in the way they may see it. This concept can be quite revealing sometimes giving a profound effect to moving the mind to consider the universe in new ways.



"Lagrangian views" in relation may have been one result that comes quickly to my mind. Taking that chaldni plate and applying it to the universe today.



Even though in the context of this post, we may see the universe in a "simple experiment" not just demonstrating the "early universe," but the universe in it's "gravitational effect" from that evolution to matter defined now.

The Time Line


Credit: NASA/WMAP Science Team
The expansion of the universe over most of its history has been relatively gradual. The notion that a rapid period "inflation" preceded the Big Bang expansion was first put forth 25 years ago. The new WMAP observations favor specific inflation scenarios over other long held ideas.


Looking to the "far left" of the image we see the place where the cosmic background is being demonstrated, while to the "far right" we see the satellite which has helped measure what we know of the early universe. So this "distant measure" has allowed us to understand what is behind the scene of what we know of cosmology today of events, galaxies and such.

Second, what comes to mind is the Massive Blue Star of 100 Solar masses that would have been further out in terms of the billions of years that we may of sought in terms of our measures. So this would be of value I would assume in relation to model perspective and measures?

So the distance measure has been defined then by understanding the location of the cosmic background and the place where the Blue giants will have unfolded in their demise, to the creation of blackholes.


The processes in the Universe after the Big Bang. The radio waves are much older than the light of galaxies. From the distortion of the images (curved lines) - caused by the gravitation of material between us and the light sources - it is possible to calculate and map the entire foreground mass.Image: Max Planck Institute of Astrophysics
We don't have to wait for the giant telescope to get unparalleled results from this technique, however. One of the most pressing issues in current physics is to gain a better understanding of the mysterious Dark Energy which currently drives the accelerated expansion of the Universe. Metcalf and White show that mass maps of a large fraction of the sky made with an instrument like SKA could measure the properties of Dark Energy more precisely than any previously suggested method, more than 10 times as accurately as mass maps of similar size based on gravitational distortions of the optical images of galaxies.

Tuesday, December 19, 2006

Cosmic ray spallation


As this NASA chart indicates, 70 percent or more of the universe consists of dark energy, about which we know next to nothing
Other explanations of dark energy, called "quintessence," originate from theoretical high-energy physics. In addition to baryons, photons, neutrinos, and cold dark matter, quintessence posits a fifth kind of matter (hence the name), a sort of universe-filling fluid that acts like it has negative gravitational mass. The new constraints on cosmological parameters imposed by the HST supernova data, however, strongly discourage at least the simplest models of quintessence.


Of course my mind is thinking about the cosmic triangle of an event in the cosmos. So I am wondering what is causing the "negative pressure" as "dark energy," and why this has caused the universe to speed up.


SNAP-Supernova / Acceleration Probe-Studying the Dark Energy of the Universe
The discovery by the Supernova Cosmology Project (SCP) and the High-Z Supernova team that the expansion of the universe is accelerating poses an exciting mystery — for if the universe were governed by gravitational attraction, its rate of expansion would be slowing. Acceleration requires a strange “dark energy’ opposing this gravity. Is this Einstein’s cosmological constant, or more exotic new physics? Whatever the explanation, it will lead to new discoveries in astrophysics, particle physics, and gravitation.


By defining the context of particle collisions it was evident that such a place where such a fluid could have dominated by such energy in stars, are always interesting as to what is ejected from those same stars. What do those stars provide for the expression of this universe while we are cognoscente of the "arrow of time" explanation.


This diagram reveals changes in the rate of expansion since the universe's birth 15 billion years ago. The more shallow the curve, the faster the rate of expansion.


So of course these thoughts are shared by the perspective of educators to help us along. But if one did not understand the nature of the physical attributes of superfluids, how would one know to think of the relativistic conditions that high energy provides for us?


NASA/WMAP Scientific Team: Expanding Universe



So recognizing where these conditions are evident would be one way in which we might think about what is causing a negative pressure in the cosmos.

Given the assumption that the matter in the universe is homogeneous and isotropic (The Cosmological Principle) it can be shown that the corresponding distortion of space-time (due to the gravitational effects of this matter) can only have one of three forms, as shown schematically in the picture at left. It can be "positively" curved like the surface of a ball and finite in extent; it can be "negatively" curved like a saddle and infinite in extent; or it can be "flat" and infinite in extent - our "ordinary" conception of space. A key limitation of the picture shown here is that we can only portray the curvature of a 2-dimensional plane of an actual 3-dimensional space! Note that in a closed universe you could start a journey off in one direction and, if allowed enough time, ultimately return to your starting point; in an infinite universe, you would never return.


Of course it is difficult for me to understand this process, but I am certainly trying. If one had found that in the relativistic conditions of high energy scenarios a "similarity to a flattening out" associated with an accelerating universe what would this say about information travelling from the "origins of our universe" quite freely. How would this effect dark energy?

In physics, a perfect fluid is a fluid that can be completely characterized by its rest frame energy density ρ and isotropic pressure p.

Real fluids are "sticky" and contain (and conduct) heat. Perfect fluids are idealized models in which these possibilities are neglected. Specifically, perfect fluids have no shear stresses, viscosity, or heat conduction.

In tensor notation, the energy-momentum tensor of a perfect fluid can be written in the form

[tex] T^{\mu\nu}=(\rho+p)\, U^\mu U^\nu + P\, \eta^{\mu\nu}\,[/tex]



where U is the velocity vector field of the fluid and where ημν is the metric tensor of Minkowski spacetime.

Perfect fluids admit a Lagrangian formulation, which allows the techniques used in field theory to be applied to fluids. In particular, this enables us to quantize perfect fluid models. This Lagrangian formulation can be generalized, but unfortunately, heat conduction and anisotropic stresses cannot be treated in these generalized formulations.

Perfect fluids are often used in general relativity to model idealized distributions of matter, such as in the interior of a star.


So events in the cosmos ejected the particles, what geometrical natures embued such actions, to have these particle out in space interacting with other forms of matter to create conditions that would seem conducive to me, for that negative pressure?

Cosmic ray spallation is a form of naturally occurring nuclear fission and nucleosynthesis. It refers to the formation of elements from the impact of cosmic rays on an object. Cosmic rays are energetic particles outside of Earth ranging from a stray electron to gamma rays. These cause spallation when a fast moving particle, usually a proton, part of a cosmic ray impacts matter, including other cosmic rays. The result of the collision is the expulsion of large members of nucleons (protons and neutrons) from the object hit. This process goes on not only in deep space, but in our upper atmosphere due to the impact of cosmic rays.

Cosmic ray spallation produces some light elements such as lithium and boron. This process was discovered somewhat by accident during the 1970s. Models of big bang nucleosynthesis suggested that the amount of deuterium was too large to be consistent with the expansion rate of the universe and there was therefore great interest in processes that could generate deuterium after the big bang.

Cosmic ray spallation was investigated as a possible process to generate deuterium. As it turned out, spallation could not generate much deuterium, and the excess deuterium in the universe could be explained by assuming the existence of non-baryonic dark matter. However, studies of spallation showed that it could generate lithium and boron. Isotopes of aluminum, beryllium, carbon(carbon-14), chlorine, iodine and neon, are also formed through cosmic ray spallation.



Talk about getting tongue tied, can you imagine, "these fluctuations can generate their own big bangs in tiny areas of the universe." Read on.


Photo credit: Lloyd DeGrane/University of Chicago News Office
Carroll and Chen’s scenario of infinite entropy is inspired by the finding in 1998 that the universe will expand forever because of a mysterious force called “dark energy.” Under these conditions, the natural configuration of the universe is one that is almost empty. “In our current universe, the entropy is growing and the universe is expanding and becoming emptier,” Carroll said.

But even empty space has faint traces of energy that fluctuate on the subatomic scale. As suggested previously by Jaume Garriga of Universitat Autonoma de Barcelona and Alexander Vilenkin of Tufts University, these fluctuations can generate their own big bangs in tiny areas of the universe, widely separated in time and space. Carroll and Chen extend this idea in dramatic fashion, suggesting that inflation could start “in reverse” in the distant past of our universe, so that time could appear to run backwards (from our perspective) to observers far in our past.

Thursday, December 14, 2006

Against Symmetry

The term “symmetry” derives from the Greek words sun (meaning ‘with’ or ‘together’) and metron (‘measure’), yielding summetria, and originally indicated a relation of commensurability (such is the meaning codified in Euclid's Elements for example). It quickly acquired a further, more general, meaning: that of a proportion relation, grounded on (integer) numbers, and with the function of harmonizing the different elements into a unitary whole. From the outset, then, symmetry was closely related to harmony, beauty, and unity, and this was to prove decisive for its role in theories of nature. In Plato's Timaeus, for example, the regular polyhedra are afforded a central place in the doctrine of natural elements for the proportions they contain and the beauty of their forms: fire has the form of the regular tetrahedron, earth the form of the cube, air the form of the regular octahedron, water the form of the regular icosahedron, while the regular dodecahedron is used for the form of the entire universe. The history of science provides another paradigmatic example of the use of these figures as basic ingredients in physical description: Kepler's 1596 Mysterium Cosmographicum presents a planetary architecture grounded on the five regular solids.





The basic difference that I see is the way in which Lee Smolin adopts his views of what science is in relation too, "Two traditions in the search for fundamental Physics."

It is strange indeed to see perfection of Lee Smolin's comparison and having a look further down we understand the opening basis of his philosophical thoughts in regards to the title "against symmetry?"

Some reviews on the "Trouble With Physics," by Lee Smolin

  • Seed Magazine, August 2006
  • Time magazine August 21, 2006
  • Discover Magazine, September 2006 &
  • Scientific American, September 2006
  • Wired September 2006:15 :
  • The Economist, Sept 14, 2006
  • The New York Times Book review, Sep 17, 2006 by Tom Siegfried
  • The Boston Globe, Sept 17, 2006
  • USA Today, Sept 19, 2006
  • The New York Sun, by Michael Shermer, Sept 27, 2006
  • The New Yorker,  by Jim Holt Sept 25,2006
  • The LA Times, by K C Cole, Oct 8, 2006
  • Nature,
  • by George Ellis (Nature 44, 482, 5 Oct. 2006)
  • San Fransisco Chronicle , by Keay Davidson, Oct 13, 2006
  • Dallas Morning News, by FRED BORTZ, Oct 15, 2006
  • Toronto Star, by PETER CALAMAI, Oct 15, 2006


  • But before I begin in that direction I wanted people to understand something that is held in the mind of the "condense matter theorist." In terms of the building blocks of nature. This is important basis of understanding, that any building block could emergent from anything, we had to identify where this symmetry existed, before it manifested in the "matter states of reality."

    Everyone knows that human societies organize themselves. But it is also true that nature organizes itself, and that the principles by which it does this is what modern science, and especially modern physics, is all about. The purpose of my talk today is to explain this idea.


    So it is important to understand what is emergent and what exists in the "theory of everything" if it did not consider the context of symmetry? AS a layman trying to get underneath the thinking process of any book development, it is important to me.

    Symmetry considerations dominate modern fundamental physics, both in quantum theory and in relativity. Philosophers are now beginning to devote increasing attention to such issues as the significance of gauge symmetry, quantum particle identity in the light of permutation symmetry, how to make sense of parity violation, the role of symmetry breaking, the empirical status of symmetry principles, and so forth. These issues relate directly to traditional problems in the philosophy of science, including the status of the laws of nature, the relationships between mathematics, physical theory, and the world, and the extent to which mathematics dictates physics.


    The idea here then is to find super strings place within context of the evolving universe, in terms of, "the microseconds" and not the "first three minutes" of Steven Weinberg.

    So it is important to see the context with which this discussion is taking place, in terms of the high energy and from that state of existence to what entropically manifests into the universe now.

    Confronting A Position Adopted By Lee Smolin


    A sphere with three handles (and three holes), i.e., a genus-3 torus.

    This is only "one point of contention" that was being addressed at Clifford Johnson's Asymptotia.

    Jacques Distler :

    This is false. The proof of finiteness, to all orders, is in quite solid shape. Explicit formulæ are currently known only up to 3-loop order, and the methods used to write down those formulæ clearly don’t generalize beyond 3 loops.

    What’s certainly not clear (since you asked a very technical question, you will forgive me if my response is rather technical) is that, beyond 3 loops, the superstring measure over supermoduli space can be “pushed forward” to a measure over the moduli space of ordinary Riemann surfaces. It was a nontrivial (and, to many of us, somewhat surprising) result of d’Hoker and Phong that this does hold true at genus-2 and -3.


    There is no doubt that the "timeliness of statements" can further define, support or not, problems that are being discussed. I don't mind being deleted on the point of the post above, because our good scientist's are getting into the heat of things. I am glad Arun stepped up to the plate.

    Part of finally coming to some head on debate, was seeing how Peter Woit along with Lee Smolin were being challlenged for their views, while there had been this ground swell created against a model that was developed, like Loop quantum gravity was developed. One of the two traditions in search for the fundamental physics. Loop qunatum Gravity and String theory(must make sure there is the modification to M theory?) Shall this be included?


    Click on link Against symmetry (Paris, June 06)

    But as they are having this conversation, it is this openness that they have given of themselves that we learn of the intricacies of the basis of arguments, so the public is better informed as to what follows and what has to take place.


    Against symmetry (Paris, June 06)

    So while this issue is much more complex then just the exchange there, I have not forgotten what it is all about. Or why one may move from a certain position after they have summarize the views they had accumulated with regards to the subject of String/M theory as a model that has out lived it's usefulness, in terms of not providing a experimental frame work around it.

    Wednesday, November 22, 2006

    Tunnelling in Faster then Light

    Underneath this speculation of mine is the geometrical inclination of the universe in expression. If it's "dynamical nature is revealed" what allows us to think of why this universe at this time and junction, should be flat(?) according to the time of this universe in expression?

    Omega=the actual density to the critical density

    If we triangulate Omega, the universe in which we are in, Omegam(mass)+ Omega(a vacuum), what position geometrically, would our universe hold from the coordinates given?


    Positive energy density gives spacetime of the universe a positive curvature. A sphere? Negative curvature a region of spacetime that is negative and curved like a saddle? For time travel, and travel into the past, you need a universe that has a negative energy density.

    Thus the initial idea here to follow is that the process had to have a physics relation. This is based on the understanding of anti-particle/particle, and what becomes evident in the cosmos as a closed loop process. Any variation within this context, is the idea of "blackhole anti-particle expression" based on what can be seen at the horizon?



    A anti-particle can be considered as a particle moving back in time? Only massless particle can travel faster then light. Only faster then light massless particles can travel back in time? So of course, I am again thinking of the elephant process of Susskind and the closed loop process of the virtual particle/anti-particle. What comes out of it?

    That's not all. The fact that space-time itself is accelerating - that is, the expansion of the universe is speeding up - also creates a horizon. Just as we could learn that an elephant lurked inside a black hole by decoding the Hawking radiation, perhaps we might learn what's beyond our cosmic horizon by decoding its emissions. How? According to Susskind, the cosmic microwave background that surrounds us might be even more important than we think. Cosmologists study this radiation because its variations tell us about the infant moments of time, but Susskind speculates that it could be a kind of Hawking radiation coming from our universe's edge. If that's the case, it might tell us something about the elephants on the other side of the universe.


    So the anti-particle falls into the blackhole? How is it that I resolve this?? You can consider the anti-particle as traveling back in time. The micro perspective of the blackhole allows time travel backwards.


    Getty Images
    Although a 1916 paper by Ludwig Flamm from the University of Vienna [4] is sometimes cited as giving the first hint of a wormhole, "you definitely need hindsight to detect it," says Matt Visser of Victoria University in Wellington, New Zealand. Einstein and Rosen were the first to take the idea seriously and to try to accomplish some physics with it, he adds. The original goal may have faded, but the Einstein-Rosen bridge still pops up occasionally as a handy solution to the pesky problem of intergalactic travel.


    There are two cases in which the thoughts about faster then light particles are created and this is the part where one tries to get it right so as not to confuse themselves and others.

    Wormholes?

    Plato:
    So "open doorways" and ideas of "tunneling" are always interesting in terms of how we might look at an area like GR in cosmology? Look for way in which such instances make them self known.

    Are they applicable to the very nature of quantum perceptions that such probabilities could have emerged through them? Held to "time travel scenarios" and grabbed the history of what had already preceded us in past tense, could have been brought again forward for inspection?


    Sure I am quoting myself here, just to show one of the options I am showing by example. The second of course is where I was leading too in previous posts.

    So I was thinking here in context of one example in terms of the containment of the "graviton in a can" is really letting loose of the information in the collision process, as much as we like this "boundary condition" it really is not so.

    Another deep quantum mystery for which physicists have no answer has to do with "tunneling" -- the bizarre ability of particles to sometimes penetrate impenetrable barriers. This effect is not only well demonstrated; it is the basis of tunnel diodes and similar devices vital to modern electronic systems.

    Tunneling is based on the fact that quantum theory is statistical in nature and deals with probabilities rather than specific predictions; there is no way to know in advance when a single radioactive atom will decay, for example.

    The probabilistic nature of quantum events means that if a stream of particles encounters an obstacle, most of the particles will be stopped in their tracks but a few, conveyed by probability alone, will magically appear on the other side of the barrier. The process is called "tunneling," although the word in itself explains nothing.

    Chiao's group at Berkeley, Dr. Aephraim M. Steinberg at the University of Toronto and others are investigating the strange properties of tunneling, which was one of the subjects explored last month by scientists attending the Nobel Symposium on quantum physics in Sweden.

    "We find," Chiao said, "that a barrier placed in the path of a tunneling particle does not slow it down. In fact, we detect particles on the other side of the barrier that have made the trip in less time than it would take the particle to traverse an equal distance without a barrier -- in other words, the tunneling speed apparently greatly exceeds the speed of light. Moreover, if you increase the thickness of the barrier the tunneling speed increases, as high as you please.

    "This is another great mystery of quantum mechanics."


    Of course I am looking for processes in physics that would actually demonstrate this principal of energy calculated at the very beginning of the collision process, now explained in the detector, minus the extra energy that had gone where?



    This is the basis for the "Graviton in a can" example of what happens in the one scenario.

    Plato:
    A Bose-Einstein condensate (such as superfluid liquid helium) forms for reasons that only can be explained by quantum mechanics. Bose condensates form at low temperature


    Plasmas and Bose condensates

    So in essence the physics process that I am identifying is shown by understanding that the "graviton production" allows that energy to be transmitted outside the process of the LHC?

    This is the energy that can be calculated and left over from all the energy assumed in the very beginning of this collision process. Secondly, all energy used in this process would be in association with bulk perspective.

    This now takes me to the second process of "time travel" in the LHC process. The more I tried to figure this out the basis of thought here is that Cerenkov radiation in a vacuum still is slower then speed of light, yet within the medium of ice, this is a different story. So yes there are many corrections and insight here to consider again.

    The muon will travel faster than light in the ice (but of course still slower than the speed of light in vacuum), thereby producing a shock wave of light, called Cerenkov radiation. This light is detected by the photomultipliers, and the trace of the neutrinos can be reconstructed with an accuracy of a couple of degrees. Thus the direction of the incoming neutrino and hence the location of the neutrino source can be pinpointed. A simulation of a muon travelling through AMANDA is shown here (1.5 MB).


    So while sleeping last night the question arose in my mind as to the location of where the "higgs field" will be produced in the LHC experiment? Here also the the thoughts about the "cross over point" that would speak to the idea here of what reveals faster then light capabilities arising from the collision process?

    What are the main goals of the LHC?-
    The LHC will also help us to solve the mystery of antimatter. Matter and antimatter must have been produced in the same amounts at the time of the Big Bang. From what we have observed so far, our Universe is made of only matter. Why? The LHC could provide an answer.

    It was once thought that antimatter was a perfect 'reflection' of matter - that if you replaced matter with antimatter and looked at the result in a mirror, you would not be able to tell the difference. We now know that the reflection is imperfect, and this could have led to the matter-antimatter imbalance in our Universe.

    The strongest limits on the amount of antimatter in our Universe come from the analysis of the diffuse cosmic gamma-rays arriving on Earth and the density fluctuations of the cosmic background radiation. If one asumes that after the Big Bang, the Universe separated somehow into different domains where either matter or antimatter was dominant, then at the boundaries there should be annihilations, producing cosmic gamma rays. In both cases the limit proposed by current theories is practically equivalent to saying that there is no antimatter in our Universe.


    So we get the idea here in the collision process and from it the crossover point leaves a energy dissertation on what transpired from this condition and left the idea in my mind about the circumstances of what may have changed the the speed of the cosmos at varying times in the expansion process within our universe. So, this is where I was headed as I laid out the statement below.

    Of course this information is based on 2003 data but the jest of the idea here is that in order to go to a "fast forward" the conditions had to exist previously that did not included "sterile neutrinos" and were a result of this "cross over."


    So what is the jest of my thought here that I would go to great lengths here to speak about the ideas of what happens within the cosmos to change those varying times of expansion? It has to do with the Suns and the process within those suns that give the dark energy some value, in it's anti- gravity nature to align our selves and our thinking to the cosmological constant of Einstein. If we juggle the three ring circus we find that the curvature parameters can and do hold thoughts govern by the cosmological constant?

    It is thus equally important to identify this "physics process" that would allow such changes in the cosmos. So that we can understand the dynamical nature that the cosmos reveals to us can and does allow aspect of its galaxies within context of the universe to increase this expansive process while we question what drives such conditions.

    Thursday, November 16, 2006

    Three Ring Circus: Dark Energy

    "Observations always involve theory."Edwin Hubble


    Hopefully some day, I will be accepted as a student of this universe, and it's intrigue?



    Sometimes it is necessary to understand that having come to different consclusion about the geometry of this universe that underneath the complexity of these equations a schematic drawing of reality is unfolding? I think this is where Einstein's success came from? So assume from this point a supersymmetrical view of the universe?

    You can check out Wayne Hu's site for further info on computer simulation below


    A simulation of large-scale structure
    formation
    As the Universe expands, galaxies become more and more distant from each other. For an observer, such as ourselves, it appears that all other galaxies fly away from us. The further the galaxy, the faster it appears to recede. This recession affects the light emitted by the distant galaxies, stretching the wavelengths of emitted photons due to the Doppler redshift effect. The distance between galaxies is proportionalto the measure of this effect 1+z, where z is what astronomers call redshift. The redshift can be measured for each object if its spectrum is measured.


    All three geometrical positions demonstrated below each held the cosmologists to views of our universe. But we now know that Einstein may have been right. What allows us to think this way?

    Sorry about the quality of artistic rendition. But you get the jest right?

    Why is the universe speeding up, and what does this mean geometrically? There has to be some physics going on that would explain this? What may this be?

    Current evidence shows that neutrinos do oscillate, which indicates that neutrinos do have mass. The Los Alamos data revealed a muon anti-neutrino cross over to an electron neutrino. This type of oscillation is difficult to explain using only the three known types of neutrinos. Therefore, there might be a fourth neutrino, which is currently being called a "sterile" neutrino, which interacts more weakly than the other three neutrinos.


    Of course this information is based on 2003 data but the jest of the idea here is that in order to go to a "fast forward" the conditions had to exist previously that did not included "sterile neutrinos" and were a result of this "cross over."

    If we look back to the measures of supernova Ia measure and find that in that time measure there were differences in the inflationary aspect of that universe, then, the universe today would have allowed us to consider the universe quite capable of changing it's speed of inflation.

    While indeed we had held to inverse square law in our assumptions, what shall we do now? As you know, spending a couple of years on my own, I am learning, and yes, it shows sometimes. The "idea back then" presented by Savas Dimopoulos of Stanford University. "This gives us a totally new perspective for addressing theoretical and experimental problems," is what was understood in any theoretical development by scientists then and today?

    Inverse Fourth Power Law


    Savas Dimopoulos of Stanford University
    Instead of the Newtonian inverse square law you’ll have an inverse fourth power law. This signature is being looked for in the ongoing experiments.


    Also, I wouldn't one to think that the experimental process had been defunct what we are doing with Cosmic ray collision processes, to not include it with what the LHC is doing as well. Not only have we created the conditions for it in LHC we recognize as a natural process.

    While we know of the components of our universe distributed we understand that their is a part of this whole thing that is casing some questions about what we had thought held to the big bomb's inverse square law rules.

    What is causing the Speed increase?

    While indeed the layman here speculates, it made more sense if we can now explain what is going on. It has been a long journey in terms of comprehension development but I must say it has been rewarding.



    So while indeed I show cosmos particle showers here, it is to point out something that helps to fuel the idea behind the speeding up and slowing down of the universe? Cross over production demonstrate in LHC serves also to speak to the fluctuations in "differing speeds of inflation" in our cosmos?

    The "crossover" is a point in the collision process of LHC. So by creating these conditions in the LHC, we have effectively recognized where the "new physics" will emerged from. Also, it presents the opportunity for the "first time here" to address what the effects of the LHC will do for us in terms of what has been presented in terms of the dark energy announced below.



    So as close as we came to discerning the mass of the neutrino, what have we now come to know? That their could be "a form" of dark matter? The "point here" was to look for the crossover that was taking place and presenting the opportunities for "new physics" to emerge.

    The Los Alamos data revealed a muon anti-neutrino cross over to an electron neutrino. This type of oscillation is difficult to explain using only the three known types of neutrinos.


    I have some "thought bubbles" percolating to the surface awareness of my mind(a philosopher?), so we will have to see what strange brew materializes. This is a post in developmental mode.

    Scientists using NASA's Hubble Space Telescope have discovered that dark energy is not a new constituent of space, but rather has been present for most of the universe's history. Dark energy is a mysterious repulsive force that causes the universe to expand at an increasing rate. Investigators used Hubble to find that dark energy was already boosting the expansion rate of the universe as long as nine billion years ago. This picture of dark energy is consistent with Albert Einstein's prediction of nearly a century ago that a repulsive form of gravity emanates from empty space. Data from Hubble provides supporting evidence to help astrophysicists to understand the nature of dark energy. This will allow them to begin ruling out some competing explanations that predict that the strength of dark energy changes over time.



    The title itself of this blog post is not to make fun of what is happening in cosmology right now with the new announcement today. It is about "forcing the mind" to look at "Friedman's equation" in each of the rings. Now the thought is the "whole show" is the Einstein cosmsological constant circus and entertainment, that is happening simultaneously.

    Yet it is the idea of the "oscillating nature" behind the geometrical principals that is what I am speculating about.

    But thanks to good professor below there is an more in depth explanation shared.



    Maybe with the development of the vision, "beyond the spacetime" we had come to know and love, we have now come to a unique point in time? That we understand the greater "depth of the universe" is now open for questions about it's inherent nature?

    Sunday, November 05, 2006

    Tonal Perception Changes


    Sir Isaac Newton
    It is true without lying, certain and most true. That which is Below is like that which is Above and that which is Above is like that which is Below to do the miracles of the Only Thing. And as all things have been and arose from One by the mediation of One, so all things have their birth from this One Thing by adaptationSir Isaac Newton


    Of course I see these things a little differently then some of you because I have researched and found, "model changes using theoretical perceptions," allowed such perspectives to form. Sort of like "shifting perspective" by the shifting of the Tonal.

    Now seen, and understood in context of current science valuation demonstrated, I thought it important to understand how the "effect of" the sun as a central theme, could have been transmitted to "our way of thinking," to a humanistic point of view?

    Atheistic or not, you cannot change what the result of your biochemical thinking does and "subsequent states of consciousness" if you did not understand the deeper correlation to what "point of view" is being explored here.

    Plato:
    What if we “reversed” the way we believe the “mind is inherently embodied” to, “the body” is inherently embodied by the mind?”

    Is this acceptable/not aceptable, to a scientist?


    Now I don't want you to think that because my own life's research has been "shallow" and "just starting," that I might have been called a professor by now in years spent?

    That I use the term "layman" because each departing point of perspective I find through such research, seems apparently "new" to my thinking. To others as well, I am quite sure?

    What we have learned

    We have found consciousness can be described as an emergent property of the complex electromagnetic process generated from predictable biochemical and biological processes. Although the terms soul and mind may have been useful at one time to describe this process, they are no longer required. They are more like the term "phlogiston" that was employed to describe why things burned before modern chemistry emerged. When there is no electrical current moving through the parts of a television, there is no picture. When the specific electromagnetic patterns are not generated within the brain structures there is no consciousness or awareness.

    Some individuals with very different brain structures show different electromagnetic correlates that are associated with their ability to discern stimuli others cannot detect. Counter clockwise rotation of weak magnetic fields around the skull at specific rates of change (derivatives) can affect subjective time and allow the average person to experience many of the altered states reported by practitioners of mystical traditions as well as "paranormal" phenomena. The critical variables, like any chemical reaction, are the complexity and specificity of the temporal parameters. One component of consciousness may be "sequestered" within second or third derivatives of very narrow bands of changes in frequency within the theta range. Our calculations of resonance, based upon the power changes within quantitative electroencephalographic measures, suggest that one electromagnetic source of consciousness may actually exist within the 10 cm region outside of and surrounding the cranium.


    I add this underline portion to show why I would assume such a statement represented in Cosmic Variance comment section under the God Conundrum presented by Sean Carroll.

    Also the link in general to give Sean Carroll something to think about as he speaks of what the presence in terms of what a God might mean to him regardless of what he had to say from a atheistic position or from anyone else for that matter.

    We are all responsible for building the walls/tonal around us. If you work hard enough to build the understanding you have and supportive positions then why would you not think the desired result would have far reaching consequences?

    Plato:
    While Persinger was not able to induce the desire state for even the “most skeptical,” the research is interesting nonetheless.


    "Organized religion" for those "less then kind" for what a God might have meant to us? Those, "less then human" in their evolution, their actions in the name of?" Would this have been a safe statement under the guise of conformity?

    We have seen enough rationalization under the "auspice of religious tenets," to know that such a statement is "shallow" from the animalistic brain? Fight or flight response?

    As we evolve to the "frontal cortex," then does it not seem strange that our thinking would/should evolve too, while all the aspects of the brains physical development follows the thoughts accordingly?? Qui Non?

    Sunday, October 29, 2006

    The Higg's Boson and Memory?

    While some like chocolate bars and the bubble nature of candy, some also like the molasses and ice cream? :)


    If Plato Had thought "the new born" was not really such a "blank slate" then what did he mean exactly? If we could remember, "in what form" would these memories have manifested?

    The origins of thought would have found that what existed before, had to make it's way into what we are doing today? So is it really "lost" since we cannot and do not remember what was before? Or, is it possible to remember?

    Not many can see in this abstract way, or have considered how a photon might have traveled? Sure they have understood satellites and the travel through space, but have they consider this in context of CSL lensing? Sean put up a link yesterday that had me seeing how such a travel over distance might have had some photon's strange journies in context of such lensings.


    So how does this lump of clay ever take with it all that was before. Is it just a slight shift in our tonal? What was "not apparent before" is now very much a a part of our views of nature now. Before, it was "very pleasing," and now, it is "still very pleasing" that our cosmological views have been extended some how? :)

    Likewise, if the very fabric of the Universe is in a quantum-critical state, then the "stuff" that underlies reality is totally irrelevant-it could be anything, says Laughlin. Even if the string theorists show that strings can give rise to the matter and natural laws we know, they won't have proved that strings are the answer-merely one of the infinite number of possible answers. It could as well be pool balls or Lego bricks or drunk sergeant majors.


    Of course we always look for directions as to which way we'll have to look for things to understand just what our perceptions reveal and what is the basis for our thoughts as to the nature of the universe?

    For example, theory says that Higgs particles are matter particles, but in most respects the Higgs behaves more like a new force than like a particle. How can this be? In truth, the Higgs is neither matter nor force; the Higgs is just different.


    So it is never easy for me to follow from one thought to the next.

    Imagine, the "molasses" here for a minute. What gives mass it's shape while we cannot discern the very beginning as an asymmetrical valuation? Based on the notion, that there was a simpler time entropically, how do we know what is discretely measured?

    Why the discrete measure and it's shape?



    New measurements of top quark mass at Fermilab have revised estimates for the mass of the Higgs boson.
    Scientists believe that the Higgs boson, named for Scottish physicist Peter Higgs, who first theorized its existence in 1964, is responsible for particle mass, the amount of matter in a particle. According to the theory, a particle acquires mass through its interaction with the Higgs field, which is believed to pervade all of space and has been compared to molasses that sticks to any particle rolling through it. The Higgs field would be carried by Higgs bosons, just as the electromagnetic field is carried by photons.

    "In the Standard Model, the Higgs boson mass is correlated with top quark mass," says Madaras, "so an improved measurement of the top quark mass gives more information about the possible value of the Higgs boson mass."

    According to the Standard Model, at the beginning of the universe there were six different types of quarks. Top quarks exist only for an instant before decaying into a bottom quark and a W boson, which means those created at the birth of the universe are long gone. However, at Fermilab's Tevatron, the most powerful collider in the world, collisions between billions of protons and antiprotons yield an occasional top quark. Despite their brief appearances, these top quarks can be detected and characterized by the D-Zero and CDF experiments.


    So yes there are these experiments that lead us to think about how the universe came into being? All these things that we see in the universe, are they so very different from every other point in space. How is it's particle nature revealed and we have gained much from discerning the quantum dynamically nature of what, "just is."

    What just "is?"

    Physically, the effect can be interpreted as an object moving from the "false vacuum" (where = 0) to the more stable "true vacuum" (where = v). Gravitationally, it is similar to the more familiar case of moving from the hilltop to the valley. In the case of Higgs field, the transformation is accompanied with a "phase change", which endows mass to some of the particles.


    I mean it's vague to me that such a memory could have been transferred to other things. The Universe has become very large, and entropically complex? Our universe of discrete things, have become complex in discretized values. How would we have ever seen the "purity of thought manifest" if we did not delve ever deeper into the nature of things?

    In 2000 the same analogy was used to establish the robustness of the spectrum of primordial density fluctuations in inflationary models. This analogy is currently stimulating research for experimenting Hawking radiation. Finally it could also be a useful guide for going beyond the semi-classical description of black hole evaporation.

    Saturday, October 14, 2006

    "Lead by Physics," Faces the "Trouble With Physics"


    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around the world use RHIC to study what the universe may have looked like in the first few moments after its creation. RHIC drives two intersecting beams of gold ions head-on, in a subatomic collision. What physicists learn from these collisions may help us understand more about why the physical world works the way it does, from the smallest subatomic particles, to the largest stars



    Well I have to deal with first things first here. This article above correlates the one given by Stefan. This is not to contest what you are saying, just to show you the informtaion I myself had gone through to arrive at the conclusions I do.

    Ion-Smashing Yields New Knowledge, But Some Still Question Risk
    By Carolyn Weaver

    Seen from above, the Relativistic Heavy Ion Collider, or RHIC, at New York’s Brookhaven National Laboratory, looks like a racetrack. And it is a kind of race track: two “beam pipes” in a tunnel nearly four kilometers around, in which gold nuclei are accelerated to close to the speed of light, and are crashed into each other at intersecting points along the way. Out of the kinetic energy of those collisions, new matter is created for a brief instant: a shower of quarks and gluons, the smallest particles known – and at seven trillion degrees, hotter than anything now in the universe.



    Brookhaven physicist Peter Steinberg
    “It’s basically a living embodiment of E=mc squared,” says Brookhaven physicist Peter Steinberg. “Einstein’s theory told us a hundred years ago that you can trade off energy for mass, and vice versa. We’re essentially converting the kinetic energy, the energy from the motion of these nuclei, converting it into lots of particles.”

    The four detectors that bestride the collision points are massive machines, with “time projection chambers” that record the collisions and their after-moments. The latest results made big news last year when Brookhaven physicists reported that the quark-gluon plasma was not a gas as expected, but rather a very dense liquid.


    You say strangelets do not exist? And that no connection has been found between string theory, and strangelets. I have to then argue my case so you see it in light of what the reductionistic physics is actually doing, while string theory and it's energy values hover overhead of all these interactions. How th epaticle inclination must also include microstate blackhole creation.

    So bear with me if you can.


    Hi Plato,

    strange matter and strangelets are a very interesting topic, but, unfortunately, there has been no experimental evidence for them so far. They are not really connected to string theory either, besides the fact that it was an early paper of Witten that resuscitated interest in them with nuclear physicists, I think.

    Strangelets have been thought of as possible culprits for RHIC disaster scenarios (besides the ubiquitous black holes ;-), and as responsible for potential cosmic ray particles beyond the GZK cutoff.

    But as far as I know, there has been no experimental verification of any of these ideas (and the world still exists: RHIC has produced no greedy strangelets which would have eaten up the Earth).

    In the case of the potential quark star you cite, RX J185635-375, again, and unfortunately, as far as I remember, it came out that the radius determination was not completely safe. Bottomline was that this star could be well understood as a common neutron star. I am not completely sure, though, about the current status of this object, whether it is thought to be a quark star or not.

    Anyway, it is a good example for an exciting observation which is reported in the press, but which has to be partially revisd later - only that these revisions don't make in the press releases. I guess it would often be quite interesting to have a kind of follow-up reporting, where one could read what is, eventually, the fate of some discovery that has been announced in the press.

    The strange particles I was talking about are not strangelets, but the common hadrons with strangeness, especially the Ξs and the Ωs, with two and three strange quarks, respectively. These are the particles that I had mentioned in my earlier post, and whereof I should finish the second part, finally ;-). You typically find much more of these particles in nucleus-nucleus collisions than in (properly scaled) nucleon-nucleus collisions, which is a strong indication for an intermediate QGP state, where stange-antistrang quark pairs can easily be produced.

    Best, stefan



    One, as we know can make wide sweeping generalization about the physics and why is it that any position taken by any scientist would not have been one that becomes the point of departure for all scientists? An example her ei the rationship to the Heavy Ion collsions an dstringtheory and by this very nature to the strangelets as postulated.

    This article below is to correlate with the article you showed me of 2004, while I had made this ocnlusion myself early in 2006, lets not forget the number of people involved in the "ghost particle, and Pauli" through out the years and what we have seen theoretically of the strangelets as they had been related to the disaster scenario as consequential microstate blackholes created in the RHIC and LHC.

    Is this too drastic a scenario to have you think about what all these “particles in press” are saying about the science, that any one scientist themselves might be following to correct? You say, "just get it right?" Well there are many within the blogs who are writers for those articles? Why do you think they are amongst you?

    I had noticed the grouping and conversations between blogs that had been developing over the last year and half. I continue to see some of the same people. Some, that constantly referred to the reporting that goes on. So I had to address this or forever be banished to the realm of reporting as someone just profiled.

    Strangelet Search at RHIC by STAR Collaboration

    Three models of strangelet production in high-energy heavy-ion collisions have been proposed in the 1980s and 1990s: coalescence [10], thermal statistical production [11], and distillation from a Quark Gluon Plasma (QGP) [12, 13]. The first two models usually predict low strangelet production cross sections at mid-rapidity, as verified by measurements of the related processes of coalescence of nucleons into nuclei [14]. If a QGP is created in heavy ion collisions, it could cool down by distillation (kaon emission) and condense to strange-quark-rich matter in its ground state – a strangelet. However, this requires a net baryon excess and a non-explosive process in the collisions [12, 15]. Neither of these conditions is
    favored at mid-rapidity in ultra-high energy heavy ion collisions, as suggested by results from the Relativistic Heavy Ion Collider (RHIC) at BNL [16]. Recently a new mechanism for strangelet


    I want you to have a good look at the number of names listed in this Pdf file as well the universities involve.

    Clifford of Asymptotia made this point clear about the vast network of scientists even within the string theory network of people and about who knows whom? Can you possibly know everyone, or, like the paper whose citations are referred to more as we refer to any particular scientist? We then come to see the make up and nature as we hold our views to the particular few.

    So before I begin here I wanted to make it clear, that having spent considerable time as hobby and interest about science. It is not without my own motivations that the interest would be the memory of one’s childhood, or the magazine that we looked at, but the reality we are dealing with and what we call the “nature of things.”

    An anomaly that cannot be explained nor shall it be removed because of the lack of evidence. It’s just one of those things that you cannot change in the person’s make up who has seen the world in a different way then normal. So shall he endeavor to accumulate all the things that are wrong to destabilization the view of truth of the world just so he can corrupt all those around him?

    I ask myself the question about "what is natural" because I seen what scientists were doing to each other about the theoretical/concepts/ideas models that they were adopting in their research, that I wanted to make sure that what I had been researching had been as up to date.

    Would one "leave out information that I had assembled" as they deal with me?

    As I have said before while the students have been engaged in the classroom I had been following the physics development as best I could. Spent years watching and learning

    So here's the thing.

    If I did not answer Stefan at Backreaction about the information about strangelets then it might have been left off where Stefan decided too as he continues to show his elementary particle thinking( finish the second part Stefan).

    Continued reference to strangelets might everyone think the conclusion as written I the way Stefan has shown it? Would information I had been developing have been less than the standard of what scientists hold as standard. How could anyone know it all? Hold the badge over the trial of LHC or RHIC and say I had broken the law with my insolence and corruptible behavior?:) Non! Qui?

    So here again is the conundrum I had placed in front of me as I looked and interacted with the various blogs who have commented on Lee Smolin’s book, “The trouble With Physics.”

    But first let me then deal with Stefan at Backreaction.

    Lubos Motl:
    Well, I think that even if someone believes that theoretical physics can't be trusted - and many people clearly do - there exists a less scientific argument why the accelerator won't lead to such a catastrophe: the Earth is bombed by a lot of very high-energy cosmic rays and the center-of-mass energy of the collisions is comparable to the LHC energies. So far, these collisions haven't destroyed the Earth, so it is reasonable that some additional collisions we create won't be able to do so either.


    While I had these similar thoughts it was not wothpt some basis the Blogett would have pointe dyou to think about strnagelets and then in my own assumptions, the comic particle collsions from what Ellis had taught us to think about. Yes, it was the natural collider in space for sure, and it's "energy values" well beyond what is availiable at LHC.

    So yes "Microstate creation of blackholes in space"

    In strangelets do not exist, I had come to the same conclusion Stefan did about what is "theoretically challenged" might have engaged the thinking mind as to the relationship to what the neutrino may have been in that exercise of the QGP, compared to this one on strangelets.

    So I gathered information to help me see the direction the physics was going. Least it escaped the mantra that I had been hearing exemplified in my dealings as best I can.

    “Lead by the Physics.” Now I face, "the trouble with Physics."

    See:

  • Strangelets Do Not Exist?
  • The Fate of our Planet?
  • Are Strangelets Natural?-Saturday, September 30, 2006
  • Monday, September 25, 2006

    Why do physicists want to study particles?

    A few "cosmic rays" pass through our body every second of every day, regardless of where we are.

    They consist of particles created when high energy atomic nuclei (mainly protons) coming from outer space collide with the atoms at the top of the earth's atmosphere. Such particles are not just electrons, protons and neutrons, but also other kinds of particle.

    Near the ground, the cosmic rays include muons, similar to the electrons but more than 200 times heavier. Unlike electrons, which live forever, a muon will live about 2.2 microseconds, and then convert into an electron and two neutrinos (electron-neutrino and muon-neutrino; these are like a very light neutral version of the electron and of the muon).

    The muons themselves emerge mainly from the decays of other short-lived particles. Some of these particles, called pions, are made from up and down quarks. However, others (kaons) contain a third type of quark, called the strange quark.

    Cosmic matter is then made up of more components than the atoms. In addition to the electron, electron-neutrino, up quark and down quark, we have the muon, the muon-neutrino and the strange quark.


    Do Blackholes Radiate

    The possibility that non-radiating "mini" black holes exist should be taken seriously; such holes could be part of the dark matter in the Universe. Attempts to place observational limits on the number of "mini" black holes (independent of the assumption that they radiate) would be most welcome.

    Friday, September 22, 2006

    What is Natural?


    Fig. 2. Image showing how an 8 TeV black hole might look in the ATLAS detector (with the caveat that there are still uncertainties in the theoretical calculations).


    The question I would pose to those who do not have the dynamical nature of the universe in mind, are you happy with what you are seeing? Is it enough that your measure will be in the value of Steven Weinberg's first three minutes?

    Becuase I have taken you down to the microseconds, we can now see of this uiverse, do you think it so unlikely that the very methods for blackhole dyamics would not have include thermodynamic realizations held in context of the issue brought forward by the introduction by Paul of the Conformal Field theory and the issues relate to Penrose?

    Of course I jump ahead, based on the current knowledge base I have been able to put together by reading, sharing ideas and learning. So "you see," and "I see" what?

    Gamma ray detection is just the beginning of the lesson behind deeper perceptions of our universe and it is in this way that you are taken to view the universe on a much more dynamical level.

    But wait, I don't talk lightly of Planck scale and the measure of the square box.

    Nature (also called the material world, the material universe, the natural world, and the natural universe) is all matter and energy, especially in its essential form. Nature is the subject of scientific study. In scale, "nature" includes everything from the universal to the subatomic. This includes all things animal, plant, and mineral; all natural resources and events (hurricanes, tornadoes, earthquakes)....en.wikipedia.org/wiki/Nature


    On to the Validity of the LHC

    I encounter a concept the other day that took me back some. If we intercede and experiment to find the fundamental working associated with "dynamcial thinking" then how could one actually do this, while holding a "cosmological view" to all that we are exposed too in the space, around earth, and beyond?

    So of course, while we are being treated to the vast views given to us by Hubble and all the satellites, how much more could we have been satisfied to say, "look at what we have accomplished?"

    That is enough for the cosmologist is it not?


    In physics, natural units are physical units of measurement defined in terms of universal physical constants in such a manner that some chosen physical constants take on the numerical value of one when expressed in terms of a particular set of natural units. Natural units are intended to elegantly simplify particular algebraic expressions appearing in physical law or to normalize some chosen physical quantities that are properties of universal elementary particles and that may be reasonably believed to be constant. However, what may be believed and forced to be constant in one system of natural units can very well be allowed or even assumed to vary in another natural unit system. Natural units are natural because the origin of their definition comes only from properties of nature and not from any human construct. Planck units are often, without qualification, called "natural units" but are only one system of natural units among other systems. Planck units might be considered unique in that the set of units are not based on properties of any prototype, object, or particle but are based only on properties of free space.


    So as strange as it may seem "this concept" held in mind argues the validity of the LHC as a process that is "natural" as it is used to delve into the energies that allow us to see this "cascade of nature as particle manifestations. In this way, we have to support our views on what?

    So, we develope instruments to help us look to the very beginnings of creation? We talk about blackholes and we ask, "are these real?"

    Microstate Blackholes

    What gave us the ability to entertain such concepts that we again ask ourselves, "are these real?" All we had known is that Blackholes exist in nature? So the point I am making is that if you follow the natural costants, what use the microstate in, or as a valuation of what is real in cosmological association?

    If, as some suspect, the Universe contains invisible, extra dimensions, then cosmic rays that hit the atmosphere will produce tiny black holes. These black holes should be numerous enough for the observatory to detect, say Jonathan Feng and Alfred Shapere of the Massachusetts Institute of Technology in Cambridge, Massachusetts.


    Fortunately while we were being occupied by the news of LHC and all the workers found busy there constructing, there were others who were very busy too. They were helping us see in ways that we were not accustom as well, in regards too, the cosmic particle collisions. Now what use this information if we had thought this avenue not fruitful and necessary?


    Nevertheless, astroparticle and collider experiments should provide useful input to the theoretical work in this area. Indeed, the signatures are expected to be spectacular, with very high multiplicity events and a large fraction of the beam energy converted into transverse energy, mostly in the form of quarks/gluons (jets) and leptons, with a production rate at the LHC rising as high as 1 Hz. An example of what a typical black-hole event would look like in the ATLAS detector is shown in figure 2.

    If mini black holes can be produced in high-energy particle interactions, they may first be observed in high-energy cosmic-ray neutrino interactions in the atmosphere. Jonathan Feng of the University of California at Irvine and MIT, and Alfred Shapere of the University of Kentucky have calculated that the Auger cosmic-ray observatory, which will combine a 6000 km2 extended air-shower array backed up by fluorescence detectors trained on the sky, could record tens to hundreds of showers from black holes before the LHC turns on in 2007.


    Lest the knowledge doesn't serve us then what will be the quest of LHC? What new route to be taken? And it is in this design of measure that we will see something more direct to the basis of what these energy valuations serve?

    CLIC is based on a novel technology in which an intense low-energy electron beam is used to generate an electromagnetic wave that is used to push a lower-intensity beam to much higher energies in a relatively small distance. It seems to be the only realistic chance of colliding electrons and positrons at multi-TeV energies so, if it works, it will allay (at least for a while) some of David Gross's concerns about the prospects for future big physics projects-John Ellis