Showing posts with label Quantum Biology. Show all posts
Showing posts with label Quantum Biology. Show all posts

Sunday, January 24, 2016

Its All a Wave



The bizarre nature of reality as laid out by quantum theory has survived another test, with scientists performing a famous experiment and proving that reality does not exist until it is measured.

Physicists at The Australian National University (ANU) have conducted John Wheeler's delayed-choice thought experiment, which involves a moving object that is given the choice to act like a particle or a wave. Wheeler's experiment then asks - at which point does the object decide?

Common sense says the object is either wave-like or particle-like, independent of how we measure it. But quantum physics predicts that whether you observe wave like behavior (interference) or particle behavior (no interference) depends only on how it is actually measured at the end of its journey. This is exactly what the ANU team found. See:
Experiment confirms quantum theory weirdness


if and when......just for clarification.


Oddly enough, Shechtman has one complaint about the field that he originated: use of the word quasicrystal. "I do not like the term, since it implies that quasi-periodic crystals are not crystals, and according to the new International Union of Crystallographers definition, they are. But the term is widely used. I prefer to call them quasi-periodic materials. The term quasicrystal, in fact, does not appear in the article ranked eighth on our list of the ten most-cited Physical Review Letters.2011 Chemistry Nobel for . . . Quasicrystal Physics!
Is a quasi-crystal, just a diffraction pattern? If and when......we observe it?  So we can say that everything is a diffraction pattern/wave? As an observer, we collapse the wave function?

 We want to simplify it......all else is added to the simplicity to say.....you have this theory of everything to suggest......by comparison a virtual reality is a tool with which we collapse the wave function? See, it just become much more complicated? We are working on a wave function machine, not just a computer.

 Oh for sure, you want to get "a hold" of yourself. Then there is this causal connection to the beliefs that you form? You become much more responsible about the way in which you choose to do things, yes?


It is widely accepted that consciousness or, more generally, mental activity is in some way correlated to the behavior of the material brain. Since quantum theory is the most fundamental theory of matter that is currently available, it is a legitimate question to ask whether quantum theory can help us to understand consciousness. Several programmatic approaches answering this question affirmatively, proposed in recent decades, will be surveyed. It will be pointed out that they make different epistemological assumptions, refer to different neurophysiological levels of description, and use quantum theory in different ways. For each of the approaches discussed, problematic and promising features will be equally highlighted.Quantum Approaches to Consciousness -

The quantum mind or quantum consciousness[1] hypothesis proposes that classical mechanics cannot explain consciousness. It posits that quantum mechanical phenomena, such as quantum entanglement and superposition, may play an important part in the brain's function and could form the basis of an explanation of consciousness. It is not a single theory, but a collection of hypotheses.


So, Experiment confirms quantum theory weirdness and we are having problems with a classical interpretation of a quantum process in this thread? Help.

Quantum cognition is an emerging field which applies the mathematical formalism of quantum theory to model cognitive phenomena such as information processing by the human brain, decision making, human memory, concepts and conceptual reasoning, human judgment, and perception.[1][2] [3][4] The field clearly distinguishes itself from the quantum mind as it is not reliant on the hypothesis that there is something micro-physical quantum mechanical about the brain. Quantum cognition is based on the quantum-like paradigm[5][6] or generalized quantum paradigm [7] or quantum structure paradigm [8] that information processing by complex systems such as the brain, taking into account contextual dependence of information and probabilistic reasoning, can be mathematically described in the framework of quantum information and quantum probability theory.


Quantum cognition uses the mathematical formalism of quantum theory to inspire and formalize models of cognition that aim to be an advance over models based on traditional classical probability theory. The field focuses on modeling phenomena in cognitive science that have resisted traditional techniques or where traditional models seem to have reached a barrier (e.g., human memory [9] ), and modeling preferences in decision theory that seem paradoxical from a traditional rational point of view (e.g., preference reversals [10]). Since the use of a quantum-theoretic framework is for modeling purposes, the identification of quantum structures in cognitive phenomena does not presuppose the existence of microscopic quantum processes in the human brain.[11]


Maybe look at quantum erasure experiment first and draw your conclusion. Then, take in the experimental process being cited in the article link above.

. Setup of the delayed choice quantum eraser experiment of Kim et al. Detector D0 is movable

 A delayed choice quantum eraser experiment, first performed by Yoon-Ho Kim, R. Yu, S.P. Kulik, Y.H. Shih and Marlan O. Scully,[1] and reported in early 1999, is an elaboration on the quantum eraser experiment that incorporates concepts considered in Wheeler's delayed choice experiment. The experiment was designed to investigate peculiar consequences of the well-known double slit experiment in quantum mechanics as well as the consequences of quantum entanglement.

Shall I be so bold then to announce that "everything," is a wave?

  The QL model developed in this article has a temporal basis, based on a (hypothetical) argument that cognitive processes are based on at least two time scales: a (very fine) subcognitive one and a (much coarser) cognitive one.  See: The quantum-like brain on the cognitive and subcognitive time scales


Who is observing? If everything is a wave, then "who" is observing? Look around you there is all these waves.......who is observing all these waves? Who, is observing this screen in front of you? Who is manipulating the components(waves) of this wave function box in order to make "waves" on your screen?
 When they observed it as to how it was measured? Again, should I be so bold to say it all is a wave?

Sunday, August 23, 2015

Yves Couder . Explains Wave/Particle Duality via Silicon Droplets [Through the Wormhole]



The modern double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanical phenomena. This experiment was performed originally by Thomas Young in 1801 (well before quantum mechanics) simply to demonstrate the wave theory of light and is sometimes referred to as Young's experiment.[1] The experiment belongs to a general class of "double path" experiments, in which a wave is split into two separate waves that later combine into a single wave. Changes in the path lengths of both waves result in a phase shift, creating an interference pattern. Another version is the Mach–Zehnder interferometer, which splits the beam with a mirror.Double-slit experiment




To some researchers, the experiments suggest that quantum objects are as definite as droplets, and that they too are guided by pilot waves — in this case, fluid-like undulations in space and time. These arguments have injected new life into a deterministic (as opposed to probabilistic) theory of the microscopic world first proposed, and rejected, at the birth of quantum mechanics. See:
Have We Been Interpreting Quantum Mechanics Wrong This Whole Time?

***



The Binary Pulsar PSR 1913+16:


In youtube example video given, I must say if you have ever seen Taylor and Hulse's binary system, I couldn't help but see some relation. Such rotation, would cause gravitational wave that seems to hold the droplet in position for examination......but the gravitational wave production, is an affect of this rotation so I am puzzled by this.


Natalie Wolchover is pretty good at her job, and I think drew attention to the idea of a Bohemian mechanics/Pilot wave theory. This, as an alteration of choice of quantum mechanics it became clear, how interpretation was pervasive at the time between these two groups, as a point of view. Not saying this is the case, but as I read I see the division between the scientists as to how an interpretation arose between them, some choose one way and others, another. And still they did not discard the world of the two groups but leaned specifically to one side over another.


As de Broglie explained that day to Bohr, Albert Einstein, Erwin Schrödinger, Werner Heisenberg and two dozen other celebrated physicists, pilot-wave theory made all the same predictions as the probabilistic formulation of quantum mechanics (which wouldn’t be referred to as the “Copenhagen” interpretation until the 1950s), but without the ghostliness or mysterious collapse. -Have We Been Interpreting Quantum Mechanics Wrong This Whole Time?
I am looking at the experiment itself as illustrated in my link to youtube video of respective scientists given the relation and analogy used. This is to see the aspect of their relation to something current in our understanding "as observation," and something much more to it as particle and wave together. Still trying to understand the analogy. In the experiment, what leads the way, the wave, or the particle/droplet? The "wave function" guides the particle/droplet, yes? Why of course, it is called pilot-wave theory.

Before the experiment begins then, you know the particles state "as a wave function," and given that this is already known, "the particle" rides the wave function, is exemplary of the nature of the perspective in the first place, as to what is already known. Hmmmm....sounds a little confusing to me as I was seeing the waves in the experiment, but given that such state of coalesce exists when experiment is done, raises questions for me about the shaker as a necessity?

 So cosmological you are looking to the past? You look up at the night sky and when were all these messages received in the classical sense but to be an observer of what happened a long time ago. You recognize the pathway as a wave function already before the experimenter of the double slit even begins. It has a trajectory path already given as the wave function is known with regard to A to B. These are not probabilities then, if recognized as potential of the wave function as already defining a pathway.

The pathway expressed as the pattern, had to already been established as a causative event in the evolution in the recognition of a collision course regarding any synchronized event located in the quantum world, as a wave function pattern. You are dealing with a Bohemian interpretation here.

***

 On the flip side, I see spintronics, as a wave function giving consideration to the y direction. It is a analogy that comes to mind when I think of the fluid. Whether right or not, I see an association.

The idea, as a wave function is seen in regard to this chain as an illustration of the complexity of the fluid surface https://youtu.be/pWQ3r-2Xjeo

To go further then,


Known as a major facet in the study of quantum hydrodynamics and macroscopic quantum phenomena, the superfluidity effect was discovered by Pyotr Kapitsa[1] and John F. Allen, and Don Misener[2] in 1937. It has since been described through phenomenological and microscopic theories. The formation of the superfluid is known to be related to the formation of a Bose–Einstein condensate. This is made obvious by the fact that superfluidity occurs in liquid helium-4 at far higher temperatures than it does in helium-3. Each atom of helium-4 is a boson particle, by virtue of its zero spin.
Bold and underline added for emphasis


A Bose–Einstein condensate (BEC) is a state of matter of a dilute gas of bosons cooled to temperatures very close to absolute zero (that is, very near 0 K or −273.15 °C). Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which point macroscopic quantum phenomena become apparent.
So fast forward to the idealistic perception of the analog by comparison in today's use against a backdrop of the theories and what do we see?


Nevertheless, they have proven useful in exploring a wide range of questions in fundamental physics, and the years since the initial discoveries by the JILA and MIT groups have seen an increase in experimental and theoretical activity. Examples include experiments that have demonstrated interference between condensates due to wave–particle duality,[25] the study of superfluidity and quantized vortices, the creation of bright matter wave solitons from Bose condensates confined to one dimension, and the slowing of light pulses to very low speeds using electromagnetically induced transparency.[26] Vortices in Bose–Einstein condensates are also currently the subject of analogue gravity research, studying the possibility of modeling black holes and their related phenomena in such environments in the laboratory. Experimenters have also realized "optical lattices", where the interference pattern from overlapping lasers provides a periodic potential. These have been used to explore the transition between a superfluid and a Mott insulator,[27] and may be useful in studying Bose–Einstein condensation in fewer than three dimensions, for example the Tonks–Girardeau gas. -https://en.wikipedia.org/wiki/Bose%E2%80%93Einstein_condensate#Current_research

Sunday, May 31, 2015

Quantum Cognition

Niels Bohr, one of the founding fathers of quantum physics, suspected that it could provide insights into human psychology. Now a new field called quantum cognition is exploring how quantum math can explain some seemingly irrational human behavior. See: Quantum math makes human irrationality more sensible


Quantum cognition community states that the activity of such neural networks can produce effects which are formally described as interference (of probabilities) and entanglement. In principle, the community does not try to create the concrete models of quantum (-like) representation of information in the brain
I would take note of ,"in the brain."

Sunday, December 21, 2014

The Architecture of Matter?


Buckminsterfullerene-perspective-3D-balls

I cannot say for certain and I speculate. Bucky balls then bring to mind this architectural structure? Let me give you an example of a recent discovery. I have to wonder if Bucky was a Platonist at heart......with grand ideas? Perhaps you recognze some Platonist idea about perfection as if mathematically a Tegmarkan might have found some truth? Some absolute truth? Perhaps a Penrose truth (Quasicrystal and Information)?

 Aperiodic tilings serve as mathematical models for quasicrystals, physical solids that were discovered in 1982 by Dan Shechtman[3] who subsequently won the Nobel prize in 2011.[4] However, the specific local structure of these materials is still poorly understood .Aperiodic tilings -


 While one starts with a single point of entry......the whole process from another perspective is encapsulated. So you might work from the hydrogen spectrum as a start with the assumption, that this process in itself is enclosed.

 
 The future lies in encapsulating all electromagnetic forces under the auspice and enclosed within the understanding of gravity?

 240 E₈ polytope vertices using 5D orthographic_projection to 2D using 5-cube (Penteract) Petrie_polygon basis_vectors overlaid on electron diffraction pattern of an Icosahedron Zn-Mg-Ho Quasicrystal. E8_(mathematics) and Quasicrystals
At the same time one might understand the complexity of the issue?

 By now it is known theoretically that quantum angular momentum of any kind has a discrete spectrum, which is sometimes imprecisely expressed as "angular momentum is quantized".Stern–Gerlach experiment -

 ***

So possibly a Photon polarization principle inherent in a quantum description of the wave and such a principle inherent in the use of photosynthesis to describe a property not just of the capability of using sun light, but of understanding this principle biologically in human beings? I actually have a example of this use theoretically as a product. Maybe Elon Musk might like to use it?


Photonic molecules are a synthetic form of matter in which photons bind together to form "molecules". According to Mikhail Lukin, individual (massless) photons "interact with each other so strongly that they act as though they have mass". The effect is analogous to refraction. The light enters another medium, transferring part of its energy to the medium. Inside the medium, it exists as coupled light and matter, but it exits as light.[1]


While I would like to make it easy for you, I can only leave a title for your examination. "The Nobel Prize in Physics 1914 Max von Laue." Yes, but if it is understood that some correlate process can be understood from "a fundamental position," as to the architecture of matter, what would this light have to say about the component structuralism of the information we are missing?


The idea is not new. From a science fiction point of view, StarTrek had these units that when you were hungry or wanted a drink you would have this object materialize in a microwave type oven? Not the transporter.

So, you have this 3d printer accessing all information about the structure and access to the building blocks of all matter in energy, funneled through this replicator.

***



 When Bucky was waving his arm between the earth and the moon.....did he know about the three body problem, or how to look at the space between these bodies in another way. If people think this is not real, then you will have to tell those who use celestial mechanics that they are using their satellite trajectories all wrong.

 Ephemeralization, a term coined by R. Buckminster Fuller, is the ability of technological advancement to do "more and more with less and less until eventually you can do everything with nothing".[1] Fuller's vision was that ephemeralization will result in ever-increasing standards of living for an ever-growing population despite finite resources.

 Exactly. So it was not just "hand waving" Buckminister Fuller is alluding too, but some actual understanding to "more is less?" One applies the principle then? See? I am using your informational video to explain.

 ARTEMIS-P1 is the first spacecraft to navigate to and perform stationkeeping operations around the Earth-Moon L1 and L2 Lagrangian points. There are five Lagrangian points associated with the Earth-Moon system. ARTEMIS - The First Earth-Moon Libration Orbiter -

 To do more with less, it has to be understood that distance crossed needs minimum usage of fuel to project the satellite over a great distance. So they use "momentum" to swing satellites forward?

 This is a list of various types of equilibrium, the condition of a system in which all competing influences are balanced. List of types of equilibrium -

Saturday, December 20, 2014

A Wavicle

Etymology

 Blend of wave and particle. Noun  

Wavicle (plural wavicles)

 (quantum mechanics) A wave-particle; an entity which simultaneously has the properties of a wave and a particle.

See also:


*** 

Quantum physics says that particles can behave like waves, and vice versa. Research published in Nature Communications shows that this 'wave-particle duality' is simply the quantum uncertainty principle in disguise.
An international team of researchers has proved that two peculiar features of the quantum world – previously considered distinct – are different manifestations of the same thing. The result is published 19 December in Nature Communications.

Patrick Coles, Jedrzej Kaniewski, and Stephanie Wehner made the breakthrough while at the Centre for Quantum Technologies at the National University of Singapore. They found that 'wave-particle duality' is simply the quantum 'uncertainty principle' in disguise, reducing two mysteries to one.

"The connection between uncertainty and wave-particle duality comes out very naturally when you consider them as questions about what information you can gain about a system. Our result highlights the power of thinking about physics from the perspective of information," says Wehner, who is now an Associate Professor at QuTech at the Delft University of Technology in the Netherlands.

The discovery deepens our understanding of quantum physics and could prompt ideas for new applications of wave-particle duality................... SEE : CQT (Centre for Quantum Technologies)-Two quantum mysteries merged into one

Friday, December 12, 2014

The Lagrangian Configuration Box

  "Gravitation is not responsible for people falling in love. Albert Einstein"
 Of course I look a Einstein's statement here and I am perplexed as one might distance them self from the subject of gravity to see that such a comparison as I list below can run contradictory to Einstein's rule? But when considering the context of "emotive valence" as a subject worthy of the innovative materialist design products,  I consider the physiological application that emotive valence might have in understanding our world today.

Quantum chemistry is a branch of chemistry whose primary focus is the application of quantum mechanics in physical models and experiments of chemical systems. It is also called molecular quantum mechanics.
When one moves through the subject of quantum biology one is lead toward the chemistry of life so as to see this trend toward understanding the conversion process that can take place as to the quantum effects as seen in quantum biology.

  The science and history of the minimal length has now been covered in a recent book by Amit Hagar:


 The Planck limits may cause a researcher to ask what particulars may be seen within reason toward the larger picture? If something is discrete in its measure then what would such particularization mean in terms of a wave?

 Several questions about consciousness must be resolved in order to acquire a full understanding of it. These questions include, but are not limited to, whether being conscious could be wholly described in physical terms, such as the aggregation of neural processes in the brain. If consciousness cannot be explained exclusively by physical events, it must transcend the capabilities of physical systems and require an explanation of nonphysical means. For philosophers who assert that consciousness is nonphysical in nature, there remains a question about what outside of physical theory is required to explain consciousness. See: The Hard Problem of Consciousness

Unification of gravity and the electrical forces may have some profound insight as too, the unification possibility that such a design could bring an understanding of logic and emotive forces. I believe,  which must be brought to bear on understanding the whole being/body? Understanding each individual's Truth. An Effective Field Theory of Emotion?

 Gravimetry is the measurement of the strength of a gravitational field.


The conversion process was self explanatory in terms of the energy consideration as to the particularity of the universe? So we look at the world in different way.

 (The CIE 1931 colour space chromaticity diagram with wavelengths in nanometers. The colours depicted depend on the colour space of the device on which the image is viewed.) International Commission on Illumination

Consider this for a moment. What may be defined as dimensional attributes, is a conversion process of the "emotive application" that I am moving toward, may have some has relevance in the affective decisions we have? I've based this on how we can see the universe in terms of Lagrangian?

A contour plot of the effective potential due to gravity and the centrifugal force of a two-body system in a rotating frame of reference. The arrows indicate the gradients of the potential around the five Lagrange points—downhill toward them (red) or away from them (blue). Counterintuitively, the L4 and L5 points are the high points of the potential. At the points themselves these forces are balanced.


On a classical scale its influence regarding the three body problem, allows one to see "variations of the gravity field" between these bodies?



Animation showing the relationship between the five Lagrangian points (red) of a planet (blue) orbiting a star (yellow), and the gravitational potential in the plane containing the orbit (grey surface with purple contours of equal potential). The potential was computed in POV-Ray using


 For fun apply a color scale to this view? You use a "configuration box" that if applied to some color scale has value in that "such points within the relationship of the three body detail aspects of the nature of this gravity?" So think about this comparison for a moment.

 We know that colour is a psychophysical experience of an observer which changes from observer to observer and is therefore impossible to replicate absolutely. In order to quantify colour in meaningful terms we must be able to measure or represent the three attributes that together give a model of colour perception. i.e. light, object and the eye. All these attributes have been standardised by the CIE or Commission Internationale de l'Eclairage. The colours of the clothes we wear and the textiles we use in our homes must be monitored to ensure that they are correct and consistent. Colour measurement is therefore essential to put numbers to colour in order to remove physical samples and the interpretation of results.See: Colour measuring equipment 

Monday, September 01, 2014

Interstellar: Traversing the Wormhole

The story has a premise with which to share an idea and if it is intriguing to the average mind, then how much more so when a scientist entertains it? He or she might even propose a way in which to use measure with regard to the subject of a black hole?:)
But later I found out more about wormholes, and learned about “topological censorship.” It turns out that if energy is nonnegative, Einstein’s gravitational field equations prevent you from traversing a wormhole — the throat always pinches off (or becomes infinitely long) before you get to the other side. It has sometimes been suggested that quantum effects might help to hold the throat open (which sounds like a good idea for a movie), but today we’ll assume that wormholes are never traversable no matter what you do. SEE: Entanglement = Wormholes
***



A group of explorers make use of a newly discovered wormhole to surpass the limitations on human space travel and conquer the vast distances involved in an interstellar voyage. Interstellar

Thursday, April 10, 2014

More on Quantum Biology

If you push perspective into the area of quantum biology you will be very surprised.

 QUANTUM CHLOROPHYLL: Sunlight triggers wave-like motion in green chlorophyll, embedded in a protein structure, ........ that guides its function. GREGORY ENGEL




Early visions of wireless power actually were thought of by Nikola Tesla basically about 100 years ago. The thought that you wouldn't want to transfer electric power wirelessly, no one ever thought of that. They thought, "Who would use it if you didn't?" And so, in fact, he actually set about doing a variety of things. Built the Tesla coil. This tower was built on Long Island back at the beginning of the 1900s. And the idea was, it was supposed to be able to transfer power anywhere on Earth. We'll never know if this stuff worked. Actually, I think the Federal Bureau of Investigation took it down for security purposes, sometime in the early 1900s.See: http://www.ted.com/talks/eric_giler_demos_wireless_electricity.html


I think people have been behind the times a bit here on what may have been a interesting proposal in order to help the recharging system. Think of Photosynthesis and then think of nano-particulates and you will see they are quite advanced in terms of using this proposal in a varied productive means and not just with solar panels. I know of companies using this approach in shingle application.

But the one that I had thought of was one has its applicability toward helping electric cars is my favorite. You want to know? Do not have time and money to do development but I know the process is being explored and probably at this point being worked towards an application. Interested? Any developers here?:)

Nanocrystal solar: The solar cells at top were made on a roll-to-roll printer from an ink consisting of the rod-shaped inorganic semiconducting nanocrystals shown below. The cells were printed on a flexible metal foil and will be topped with a glass plate.
Credit: Solexant

An Idea: Percolating to the Surface




As well you might have understood why I claimed  Aristarchus Crater and Surrounding Region that since thinking beyond the boundaries on the planet it is important that quantum processes are used to develop the energy that is needed to survive on the moon?:)

Wednesday, April 09, 2014

Quantum Music



Quantum: Music at the Frontier of Science - QNC Performance

Published on Oct 19, 2012 The Kitchener-Waterloo Symphony and the Institute for Quantum Computing teamed up on Sept. 29, 2012, to present an innovative musical experiment called "Quantum: Music at the Frontier of Science." The concert served as the the grand finale of the grand opening celebrations of the Mike & Ophelia Lazaridis Quantum-Nano Centre at the University of Waterloo. Through narration, an eclectic musical programme, live narration and "sound experiments," the concert explored the surprisingly parallel paths followed by quantum science and orchestral music over the past century. The concert was created over the period of a year through meetings and brainstorming sessions between KW Symphony Music Director Edwin Outwater and researchers from the Institute for Quantum Computing.

***

See Also:


Sunday, February 09, 2014

What is Beauty in a Abstract World?

 Pierre Curie (1894): “Asymmetry is what creates a phenomenon.”

This has been of some interest to me as this issue is explained.  I can see where such abstraction when not in some way connected to the real world would to one seem as if it is a dry unimaginative world,  just moving through qualitative functions. It has to mean something more, doesn't it?

Pauli understood that physics necessarily gives an incomplete view of nature, and he was looking for an extended scientific framework. However, the fact that the often colloquial and speculative style of his letters is in striking contrast to his careful and refined publications should advise us to act with caution. His accounts are extremely stimulating, but they should be considered as first groping attempts rather than definitive proposals. See: Pauli’s ideas on mind and matter in the context of contemporary science

Held in context we trust that the philosophical basis is understood as it is being represented in today's world of science. This position with what is self evident must be correlated between theory and physics. So,  I wanted to point to something quite significant for the dry and death forborne mathematician who finds no correlates in the real world. Just goading.

Many prediction-making abilities are low-level and innate. We might say that trees \predict" the arrival of winter and decide to shed their leaves, for example. But in discussing the sense of beauty we are dealing with something that is uniquely human, or nearly See: Whence the Beauty of Mathematics?

It has not past my attention that Beauty is described as not being significant by some of these mathematicians who find no value to it. It means nothing? But for a minute,  think, that if supersymmetry is not established,  then does this in some way reduce the effectiveness of math to explain the symmetrical nature of reality? Should we try to describe these abstract things as being less then beautiful? What use then "any language" that is established,  from that math?

Professor Gates,  what would happen with the beauty of the Adinkra?

***

See Also:

Monday, January 20, 2014

Quantum Tunnelling

Quantum tunnelling or tunneling (see spelling differences) refers to the quantum mechanical phenomenon where a particle tunnels through a barrier that it classically could not surmount. This plays an essential role in several physical phenomena, such as the nuclear fusion that occurs in main sequence stars like the Sun.[1] It has important applications to modern devices such as the tunnel diode,[2] quantum computing, and the scanning tunnelling microscope. The effect was predicted in the early 20th century and its acceptance, as a general physical phenomenon, came mid-century.[3]



ABSTRACT Surprisingly robust quantum effects have been observed in warm biological systems. At the same time quantum information technology has moved closer to physical realization. This one day workshop will examine the significance of mesoscopic quantum coherence, tunneling and entanglement in biomolecular membranes, proteins, DNA and cytoskeleton, with particular attention to recently discovered megahertz ballistic conductance in microtubules. Potential utilization of biomolecular quantum information in regulation of cellular activities will be addressed, along with implications for disease and therapy as well as the future development of quantum computation and artificial intelligence.Google Workshop on Quantum Biology, Welcome and Introduction, Presented by Hartmut Neven

See Also:

Saturday, November 30, 2013

Quantum Computing and Evolution?

The unique capability of quantum mechanics to evolve alternative possibilities in parallel is appealing and over the years a number of quantum algorithms have been developed offering great computational benefits. Systems coupled to the environment lose quantum coherence quickly and realization of schemes based on unitarity might be impossible. Recent discovery of room temperature quantum coherence in light harvesting complexes opens up new possibilities to borrow concepts from biology to use quantum effects for computational purposes. While it has been conjectured that light harvesting complexes such as the Fenna-Matthews-Olson (FMO) complex in the green sulfur bacteria performs an efficient quantum search similar to the quantum Grover's algorithm the analogy has yet to be established. See: Evolutionary Design in Biological Quantum Computing



The Bloch sphere is a representation of a qubit, the fundamental building block of quantum computers.


Quantum Light Harvesting Hints at Entirely New Form of Computing






See:




Tuesday, October 15, 2013

Tuesday, July 30, 2013

ScienceCasts: The Sound of Earthsong



A NASA spacecraft has recorded eerie-sounding radio emissions coming from our own planet. These beautiful "songs of Earth" could, ironically, be responsible for the proliferation of deadly electrons in the Van Allen Belts.

 
EARTH: If you're squeamish, you may not want to listen to the strange whistle of ultra-cold liquid helium-3 that changes volume relative to the North Pole and Earth's rotation. 





See Also:

Tuesday, June 04, 2013

Quantum Biology and the Hidden of Nature


Can the spooky world of quantum physics explain bird navigation, photosynthesis and even our delicate sense of smell? Clues are mounting that the rules governing the subatomic realm may play an unexpectedly pivotal role in the visible world. Join leading thinkers in the emerging field of quantum biology as they explore the hidden hand of quantum physics in everyday life and discuss how these insights may one day revolutionize thinking on everything from the energy crisis to quantum computers.See:Quantum Biology and the Hidden Nature of Nature World Science Festival

Monday, February 18, 2013

History Displays Newton's Optics and Organic Chemistry?



 The Errors & Animadversions of Honest Isaac Newton

by Sheldon Lee Glashow


ABSTRACT:

Isaac Newton was my childhood hero. Along with Albert Einstein, he one of the greatest scientists ever, but Newton was no saint. He used his position to defame his competitors and rarely credited his colleagues.His arguments were sometimes false and contrived, his data were often fudged, and he exaggerated the accuracy of his calculations. Furthermore, his many religious works (mostly unpublished) were nonsensical or mystical, revealing him to be a creationist at heart. My talk offers a sampling of Newton’s many transgressions, social, scientific and religious.

This is an entry in progress but if one has been following one may have asked indeed where did such a history begin to say that in today's world there is this emergence of the trades in combination. Theoretical Physics and Organic Chemistry.

You may be familiar with Isaac Newton from such inventions as calculus and the law of universal gravitation. What you may not know is that he was also an avid "chymist," or alchemist. In fact, Newton actually wrote roughly a million words about alchemy and his experiments with it — as Indiana University science historian William Newman has noted, Newton probably spent more time doing alchemy than he did on any of his other scientific pursuits. See: Incredible videos recreate Isaac Newton’s experiments with alchemy

Analysis of white light by dispersing it with a prism is an example of spectroscopy
 
So while looking at the future it is always interesting to see where such thought predate the thinking that cross pollination with regard to the science could have seen any benefit in looking at Spectroscopy. So you can see where I might have displayed an ancient idea suggested of alchemy as to the psychology as an end result of the complexity of simple formulation of the physics of things we did not see useful before.

It forces my thinking as to the assumptions that will eventually reveal the nature of our thoughts processes and evidences as existing in the idea of consciousnesses explained?

There is no doubt there is some relevance in my thinking that what may be termed spiritual may have some weight attached to how I think we may be held to our experiences. How the weight of our experiences could have affects as to what is perceivable outside the parameters of and circumference of our established lives.  On a classical level, the matter distinctions are apparent and anything beyond that as related too, quantum effects,  is a much more deeper request for new and measurable techniques to the psychology of our being and examination of what consciousness really is?