Showing posts with label Einstein. Show all posts
Showing posts with label Einstein. Show all posts

Saturday, June 15, 2013

Cool horizons for entangled black holes



Schwarzschild wormholes


General relativity contains solutions in which two distant black holes are connected through the interior via a wormhole, or Einstein-Rosen bridge. These solutions can be interpreted as maximally entangled states of two black holes that form a complex EPR pair. We suggest that similar bridges might be present for more general entangled states.
In the case of entangled black holes one can formulate versions of the AMPS(S) paradoxes and resolve them. This suggests possible resolutions of the firewall paradoxes for more general situations.
Cool horizons for entangled black holes Juan Maldacena, Leonard Susskind




One of the most enjoyable and inspiring physics papers I have read in recent years is this one by Mark Van Raamsdonk. Building on earlier observations by Maldacena and by Ryu and Takayanagi. Van Raamsdonk proposed that quantum entanglement is the fundamental ingredient underlying spacetime geometry. Since my first encounter with this provocative paper, I have often mused that it might be a Good Thing for someone to take Van Raamsdonk’s idea really seriously. Entanglement=Wormholes preskill



See Also:

Thursday, September 01, 2011

Setting Time Aright



Time has no independent existence apart from the order of events by which we measure it.Albert Einstein

While Event has since past, I hope the lecture itself will remain in public domain. It helps so as to see the context of the discussion provided by this conference with regard to that subject of time.




Video streaming by Ustream

See:Setting Time Aright

In 1952, in his book Relativity, Einstein writes:

Since there exists in this four dimensional structure [space-time] no longer any sections which represent "now" objectively, the concepts of happening and becoming are indeed not completely suspended, but yet complicated. It appears therefore more natural to think of physical reality as a four dimensional existence, instead of, as hitherto, the evolution of a three dimensional existence
.

Setting Time Aright
View more presentations from Sean Carroll

***

  If man thinks of the totality as constituted of independent fragments, then that is how his mind will tend to operate, but if he can include everything coherently and harmoniously in an overall whole that is undivided, unbroken, and without a border then his mind will tend to move in a similar way, and from this will flow an orderly action within the whole. (David Bohm, Wholeness and the Implicate Order, 1980)


Lee Smolin:
I suspect this reflects the expectation many people have that time is not fundamental, but rather emerges only at a semiclassical approximation in quantum cosmology. If you believe this then you believe that the fundamental quantities a quantum cosmology should compute are timeless. This in turn reflects a very old and ultimately religious prejudice that deeper truths are timeless. This has been traced by scholars to the theology of Newton and contemporaries who saw space as “the sensorium” of an eternal and all seeing god. Perhaps the BB paradox is telling us it is time to give up the search for timeless probability distributions, and recognize that since Darwin the deep truths about nature cannot be divorced from time.

The alternative is to disbelieve the arguments that time is emergent-which were never very convincing- and instead formulate quantum cosmology in such a way that time is always real. I would suggest that the Boltzman Brain’s paradox is the reducto ad absurdum of the notion that time is emergent and that rather than play with little fixes to it we should try to take seriously the opposite idea: that time is real.

***

Bar of Lead Tungstate Source: A Quantum Diaries Survivor-Calorimeters for High Energy Physics experiments - part 1 April 6, 2008
Calorimeters measure the collective behavior of particles traveling along approximately the same path, and are thus naturally suited for the measurement of jets-Dorigo Tommaso


See

Tuesday, April 12, 2011

Entheorizing

LEONARD SUSSKIND:
And I fiddled with it, I monkeyed with it. I sat in my attic, I think for two months on and off. But the first thing I could see in it, it was describing some kind of particles which had internal structure which could vibrate, which could do things, which wasn't just a point particle. And I began to realize that what was being described here was a string, an elastic string, like a rubber band, or like a rubber band cut in half. And this rubber band could not only stretch and contract, but wiggle. And marvel of marvels, it exactly agreed with this formula.


I was pretty sure at that time that I was the only one in the world who knew this.

Thoughts cross my mind as it did with Susskind's journey into the understanding of how something like a rubber band could have helped him made sense of anything. Just as with Einstein, and how it finally came to him in the understanding of the geometry Grossmann had presented to him?

It was Grossmann who emphasized the importance of a non-Euclidean geometry called elliptic geometry to Einstein, which was a necessary step in the development of Einstein's general theory of relativity. Abraham Pais's book on Einstein suggests that Grossman mentored Einstein in tensor theory as well.

That intuitive leap is an important one in my view when it has been understood that all the data had been gone through, and ultimately, as if resting in some state of equilibrium( it should be understood that QGP and Lagrangian numbers provide such places in my mind), it was fortunate for an access to potential was realized by working to arrive at such a point.

If you picture probabilistic valuation as a link between such a funnel pointing toward the tip of Pascal's triangle, then what fills that funnel(potential) and what comes out of Pascal's triangle? What s the nature of that numbered system. Choose one?

If you can funnel such potential through a point it is more then the constraint with which others may see this proverbial struggle as to identify it as a koan, but more to realize that such potential is the very essence of accessing such a point and allowing the solution toward materialism, which was logically conducive to combing all that data.

So the idea here is that such a heat death could have happened within any mind that the very essence of such a QGP was to realize that it provide for such "a mean" in which transference of information could take place? So how can any mind ever go there?:)

I mean for sure, not only was I concerned about finding this place inside each of our selves and the truth seeking that goes on, but also toward understanding that this was a cosmological process about which sustenance of the universe could have ever been measured in it's "status quo?"




The shaky game: Einstein, realism, and the quantum theory By Arthur Fine



4 Arthur Fine (1986) characterizes such a move, this not the only instance in Einstein's thinking, as the "entheorizing" of a methodological principle in the form of a physical postulate. Fine, however, argues that determinism is, for Einstein, the entheorized version of realism.
Stanford Encyclopedia of Philosophy Notes to Einstein's Philosophy of Science-Citation Information Don A. Howard

It is most certainly important for myself to maintain some thread of consistency in regard to how we look at reality and how one theorizes about it. So sure... what was Einstein's Realism all about?

So you have to follow that line of thinking?

It still is about truth. About looking to understand it, and being able to know when you have come across it. Does it sound right to you, and does it ring at the very basis of your being when you recognize it?

***


Einstein and the Development of Twentieth-Century

Philosophy of Science
Don Howard
University of Notre Dame

And in a 28 November 1944 letter to Robert Thornton he echoed those words of nearly thirty years earlier:

I fully agree with you about the significance and educational value of methodology as well as history and philosophy of science. So many people today—and even professional scientists—seem to me like somebody who has seen thousands of trees but has never seen a forest. A knowledge of the historic and philosophical background gives that kind of independence from prejudices of his generation from which most scientists are suffering.
This independence created by philosophical insight is—in my opinion—the mark of distinction between a mere artisan or specialist and a real seeker after truth. (Einstein to
Thornton, 7 December 1944, EA 61-574)

Tuesday, June 22, 2010

Einstein Tower

Just wondering when the Einstein Tower was built?

See:Science Park "Albert Einstein" Potsdam

The connection to the design of the tower and the comment on pueblo design sparked familiarity with a image of a tower on the edge of the grand canyon and my posting on the Old One. 13.7 blog just recently had a blog posting on the religiosity of Einstein.

Desert View Watchtower was built in 1932 and is one of Mary Colter's best-known works. Situated at the far eastern end of the South Rim, 27 miles (43 km) from Grand Canyon Village, the tower sits on a 7,400 foot (2,256 m) promontory. It offers one of the few views of the bottom of the Canyon and the Colorado River. It is designed to mimic an Anasazi watchtower though it is larger than existing ones.[18]

I was wondering if there was some correlation that inspired Einstein with the Einstein Tower with that architectural design of the native culture?

 ***

It is designed to mimic an Anasazi watchtower though it is larger than existing ones
Picture of Einstein was in 1931 while tower was 1932?

Anyway, I thought this picture important from a mandalic understanding of giving a historical example of what can be embedded in the very soul of an individual, as if this is an example of the foundations of mathematics depicted even historically cast in design and what is common among human beings today in their foundational search for meaning.



Fred Kabotie (c.1900 - 1986) was a famous Hopi artist. Born Nakayoma (Day After Day) into the Bluebird Clan at Songo`opavi, Second Mesa, Arizona, Kabotie attended the Santa Fe Indian School, and learned to paint. In 1920, he entered Santa Fe High School, and commenced a long association with Edgar Lee Hewett, a local archaeologist, working at such excavations as Jemez Springs, New Mexico and Gran Quivira. He also sold paintings for spending money.

In 1926, Kabotie moved to Grand Canyon, Arizona, working for the Fred Harvey Company as a guide. After various other jobs and travel, he was hired in 1932 by Mary Colter to paint his first murals at her new Desert View Watchtower.

Kabotie went on to a distinguished career as a painter, muralist, illustrator, silversmith, teacher and writer of Hopi Indian life. He continued to live at Second Mesa. Kabotie was instrumental in establishing the Hopi Cultural Center and served as its first president.

Fred's son Michael Kabotie (born 1942) is also a well-known artist.

Source: Jessica Welton, The Watchtower Murals, Plateau (Museum of Northern Arizona), Fall/Winter 2005. ISBN 0897341325

Wednesday, January 23, 2008

Ueber die Hypothesen, welche der Geometrie zu Grunde liegen.

As I pounder the very basis of my thoughts about geometry based on the very fabric of our thinking minds, it has alway been a reductionist one in my mind, that the truth of the reality would a geometrical one.



The emergence of Maxwell's equations had to be included in the development of GR? Any Gaussian interpretation necessary, so that the the UV coordinates were well understood from that perspective as well. This would be inclusive in the approach to the developments of GR. As a hobbyist myself of the history of science, along with the developments of today, I might seem less then adequate in the adventure, I persevere.




On the Hypotheses which lie at the Bases of Geometry.
Bernhard Riemann
Translated by William Kingdon Clifford

[Nature, Vol. VIII. Nos. 183, 184, pp. 14--17, 36, 37.]

It is known that geometry assumes, as things given, both the notion of space and the first principles of constructions in space. She gives definitions of them which are merely nominal, while the true determinations appear in the form of axioms. The relation of these assumptions remains consequently in darkness; we neither perceive whether and how far their connection is necessary, nor a priori, whether it is possible.

From Euclid to Legendre (to name the most famous of modern reforming geometers) this darkness was cleared up neither by mathematicians nor by such philosophers as concerned themselves with it. The reason of this is doubtless that the general notion of multiply extended magnitudes (in which space-magnitudes are included) remained entirely unworked. I have in the first place, therefore, set myself the task of constructing the notion of a multiply extended magnitude out of general notions of magnitude. It will follow from this that a multiply extended magnitude is capable of different measure-relations, and consequently that space is only a particular case of a triply extended magnitude. But hence flows as a necessary consequence that the propositions of geometry cannot be derived from general notions of magnitude, but that the properties which distinguish space from other conceivable triply extended magnitudes are only to be deduced from experience. Thus arises the problem, to discover the simplest matters of fact from which the measure-relations of space may be determined; a problem which from the nature of the case is not completely determinate, since there may be several systems of matters of fact which suffice to determine the measure-relations of space - the most important system for our present purpose being that which Euclid has laid down as a foundation. These matters of fact are - like all matters of fact - not necessary, but only of empirical certainty; they are hypotheses. We may therefore investigate their probability, which within the limits of observation is of course very great, and inquire about the justice of their extension beyond the limits of observation, on the side both of the infinitely great and of the infinitely small.



For me the education comes, when I myself am lured by interest into a history spoken to by Stefan and Bee of Backreaction. The "way of thought" that preceded the advent of General Relativity.


Einstein urged astronomers to measure the effect of gravity on starlight, as in this 1913 letter to the American G.E. Hale. They could not respond until the First World War ended.

Translation of letter from Einstein's to the American G.E. Hale by Stefan of BACKREACTION

Zurich, 14 October 1913

Highly esteemed colleague,

a simple theoretical consideration makes it plausible to assume that light rays will experience a deviation in a gravitational field.

[Grav. field] [Light ray]

At the rim of the Sun, this deflection should amount to 0.84" and decrease as 1/R (R = [strike]Sonnenradius[/strike] distance from the centre of the Sun).

[Earth] [Sun]

Thus, it would be of utter interest to know up to which proximity to the Sun bright fixed stars can be seen using the strongest magnification in plain daylight (without eclipse).


Fast Forward to an Effect

Bending light around a massive object from a distant source. The orange arrows show the apparent position of the background source. The white arrows show the path of the light from the true position of the source.

The fact that this does not happen when gravitational lensing applies is due to the distinction between the straight lines imagined by Euclidean intuition and the geodesics of space-time. In fact, just as distances and lengths in special relativity can be defined in terms of the motion of electromagnetic radiation in a vacuum, so can the notion of a straight geodesic in general relativity.



To me, gravitational lensing is a cumulative affair that such a geometry borne into mind, could have passed the postulates of Euclid, and found their way to leaving a "indelible impression" that the resources of the mind in a simple system intuits.

Einstein, in the paragraph below makes this clear as he ponders his relationship with Newton and the move to thinking about Poincaré.

The move to non-euclidean geometries assumes where Euclid leaves off, the basis of Spacetime begins. So such a statement as, where there is no gravitational field, the spacetime is flat should be followed by, an euclidean, physical constant of a straight line=C?

Einstein:

I attach special importance to the view of geometry which I have just set forth, because without it I should have been unable to formulate the theory of relativity. ... In a system of reference rotating relatively to an inert system, the laws of disposition of rigid bodies do not correspond to the rules of Euclidean geometry on account of the Lorentz contraction; thus if we admit non-inert systems we must abandon Euclidean geometry. ... If we deny the relation between the body of axiomatic Euclidean geometry and the practically-rigid body of reality, we readily arrive at the following view, which was entertained by that acute and profound thinker, H. Poincare:--Euclidean geometry is distinguished above all other imaginable axiomatic geometries by its simplicity. Now since axiomatic geometry by itself contains no assertions as to the reality which can be experienced, but can do so only in combination with physical laws, it should be possible and reasonable ... to retain Euclidean geometry. For if contradictions between theory and experience manifest themselves, we should rather decide to change physical laws than to change axiomatic Euclidean geometry. If we deny the relation between the practically-rigid body and geometry, we shall indeed not easily free ourselves from the convention that Euclidean geometry is to be retained as the simplest. (33-4)


It is never easy for me to see how I could have moved from what was Euclid's postulates, to have graduated to my "sense of things" to have adopted this, "new way of seeing" that is also accumulative to the inclusion of gravity as a concept relevant to all aspects of the way in which one can see reality.

See:

  • On the Hypothese at the foundations of Geometry

  • Gravity and Electromagnetism?

  • "The Confrontation between General Relativity and Experiment" by Clifford M. Will
  • Friday, February 02, 2007

    Change that Had Consequences

    In the post, Hermetic Ties, I showed how historically information was engraved, crafted, into the woodcuts, for knowledge based on alchemist interests. I further explained the process as I have come to know of it in terms of developing this "inquisitive search into the mystery's of what life" is about how the questioning mind of any person can become the "way of the teacher" as well, enclosed within that same person.

    The teacher/student relation then is inherent in each of us, that we understand how one can push the other in our inquirers. Comparable to "this Arch of understanding" I spoke about.

    Geometrically, I laid this over top of the circle, mandalic in interpretation, that it served to raise the wonder in mind of what is driving this relation of the student with the world around them. "As the teacher" finding consequence to every inquisitive act, in answer.

    Such results then become the new and alternate plan to what is used to describe this new found relation. Ways in which the driving force of "wanting to learn" become an inherent "topological feature" of what begins descriptively, now has this inner/outer consequent to "expanding the frontiers of our knowledge base," inherently expanding the "fluttering of this egg of colour" that surrounds each of us.

    Debate if you will the words associated to "fluttering of this egg" and ask your self about what science has accomplished in mapping neurological sequences with the patterns of thought in relation to the condensible brain? What it might reveal of the "condensible features." Might such action also reveal in the "outer cover?"

    "In 1680, Isaac Newton worked on the abstract problem of gravity and he changed the world. In 1820, Michael Faraday discovered a connection between the exotic phenomena of electricity and magnetism and his discoveries electrified the world. Einstein's 1905 conceptual obsession with space and time led to nuclear energy and the operation of accelerators for knowledge, for cancer therapy and for machines that provide luminescent x-ray photographs of viruses and toxins. In 1897, the "useless" electron was discovered. In 1977, Fermilab discovered the bottom quark and in 1995 the top quark was found. The lessons of history are clear. The more exotic, the more abstract the knowledge, the more profound will be its consequences." Leon Lederman, from an address to the Franklin Institute, 1995


    So before this "act of change existed," the position of the student/teacher had already formed a consensus. I was looking to find this place amongst the order of such changes. It became the study I have placed myself "in" as I look to understand what scientists are saying from the "accepted position" they assume. As they work to develop "insight" and "model changes" to what we already know. To push "beyond" these boundaries of thought. The "standard model" perhaps.

    That I may give credence to what is hidden by Raphael in "his painting" is to gather a lot of perspective of the history of the times. To have them all resting on the "stairs and ladder of progression" to perfecting this relation "of the inquirer."

    The painting serves in this "mandalic sense" to represent the action of Plato and Aristotle as key figures in this relationship of "above and below." Inner and outer. Why their centralized location in the picture

    I have been short on time, so the articles that I have read are snippets of the "larger picture" while I can get back to more research.

    But the essence "is" that along with "this change with discoveries," scientists have this way about handling things. This has been reiterated by Clifford and others in science. So I just wanted to highlight this. AS part of this fundamental status of moving to ward these consequences and statement of change.

    The science press and scientists themselves do science a disservice when they seek to dramatize a discovery by emphasizing that it discredits a previous theory. Such coverage typically does not discuss whether the earlier theory was tentative or whether the new result modifies a well-established but incomplete theory. This dramatization feeds the popular image that all scientific knowledge is tentative. Much is tentative, but much is well understood and unlikely to be discredited. We scientists need to convey more about the status of our knowledge than can be learned from the muddy "most scientists believe" statement. We need our listeners to know what is tentative and what is not so that they understand better the ragged but cumulative progression of science and can use current knowledge effectively, with an understanding of its inherent uncertainties, in personal and political decision making.


    So again by giving credence to what scientists have requested by those who are of the science themself, serve as role models for what is accepted, as we investigate and report.

    To visit perspective scientists in the know, are not the way in which to say, "hey listen I have found this to be so and so," and have some "revolutionary change." To let them alone, and continue to push the boundaries of the trade by investigating the work that they do, and learn accordingly. To read what they have written, and join in by asking what you are not sure about. Of course depending on the scientist's openness to sharing of themself, realizing "the greater message" can be conveyed to the many.

    How did they get to their perspective positions that they know more then what you know and we had not assimilated the required knowledge? What is every statement saying, about what you know of the science "against" what they have learnt and we may lack the comprehensive understanding of what laws we see applied in every case.

    Under this whole post exist the thoughts then about Thomas Kuhn and the paradigm as it would have shown itself as "change that had consequence." Only now do you see this relation here while speaking about change and consequence, did you not know that it followed some rules according to some kind of model and research?

    Thomas Kuhn

    See here for more information on the person, and model perspective. The paragraph is taken to show the connection to the research work already done in the past, on my part. The label as well will reveal earlier thinking as I integrate what I understood of the philosophy, and "other perspectives" as well.

    The explanation of scientific development in terms of paradigms was not only novel but radical too, insofar as it gives a naturalistic explanation of belief-change. Naturalism was not in the early 1960s the familiar part of philosophical landscape that it has subsequently become. Kuhn's explanation contrasted with explanations in terms of rules of method (or confirmation, falsification etc.) that most philosophers of science took to be constitutive of rationality. Furthermore, the relevant disciplines (psychology, cognitive science, artificial intelligence) were either insufficiently progressed to support Kuhn's contentions concerning paradigms, or were antithetical to them (in the case of classical AI). Now that naturalism has become an accepted component of philosophy, there has recently been interest in reassessing Kuhn's work in the light of developments in the relevant sciences, many of which provide corroboration for Kuhn's claim that science is driven by relations of perceived similarity and analogy to existing problems and their solutions (Nickles 2003b, Nersessian 2003). It may yet be that a characteristically Kuhnian thesis will play a prominent part in our understanding of science.

    Friday, January 05, 2007

    Images or Numbers By Themself

    “Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reason to believe that it is a mystery into which the mind will never penetrate” (cited by Ivars Peterson in Science News, 5/4/2002).


    I have an idea in mind here that will be slow to show because I am not sure how it is supposed to be laid out. So maybe by showing these numbers by them self? What use, if one did not, or was not able to see in another way?


    Figure 22.10: Double slit diffraction


    I looked at the "straight lines" of Thomas Young's trajectories of photon emission and while quite understandably shown to be of consequence in this post "Interference." I was more interested in how something could start off in one place and do this rotation of sorts, and then come back for examination again in the real world. The Spectrum

    Plato:
    What a novel idea to have the methods used by the predecessors like Maxwell, to have been united from Faraday's principals? To have Maxwell's equation Gaussian in interpretation of Riemann geometry, somehow, united by the geometries of Einstein and defined as gravity?


    But it is also in mind "that the image" has to be put here also before the numbers can show them self. What use these numbers if I do not transcend them to what they can imply in images, to know that the thinking here has to be orientated in such a way that what was simple and straight forward, could have non-euclidean orientations about it?


    Michael Faraday (September 22, 1791 – August 25, 1867) was a British scientist (a physicist and chemist) who contributed significantly to the fields of electromagnetism and electrochemistry.


    So one reads history in a lot of ways to learn of what has manifested into todays thinking. What lead from "Gaussian coordinates in an "non-euclidean way" to know that it had it's relation in today's physics. To have it included in how we see the consequences of GR in the world. It had been brought together for our eyes in what the photon can do in the gravitational field.

    Our Evolution to Images


    The Albrecht Durer's Magic Square



    Ulam's Spiral



    Pascal's Triangle


    Evolve to What?

    Who was to know what Leonard Susskind was thinking when his mathematical mind was engaged in seeing this "rubber band" had some other comparative abstraction, as something of consequence in our world. Yet, people focus on what they like to focus on, other then what "lead the mind" to think the way they do?


    Poincaré Conjecture
    If we stretch a rubber band around the surface of an apple, then we can shrink it down to a point by moving it slowly, without tearing it and without allowing it to leave the surface. On the other hand, if we imagine that the same rubber band has somehow been stretched in the appropriate direction around a doughnut......


    I have to rest now.

    Tuesday, January 02, 2007

    The Sun's Before Us

    The Cosmic Ray of Creation

    We are "shadows" of the Sun's creations.


    Sometimes it good to go back to "the beginning" so that one can see the context of what exists in reality, has a much "greater story to tell" then what we of the real world live under.

    Those of science, have been focused in their own worlds. We just had to understand why they were so absorbed.

    "String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap. This increases the number of 'down' neutrinos detected. At the same time, the creation of black holes causes 'up' neutrinos to be caught in the Earth's crust, reducing the number of 'up' neutrinos. The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."


    Who is to know of what is sent to earth, and not understand, that what happens above us, also happens within the LHC?


    Jacque Distler:

    Travis Stewart reports that the LHC’s ATLAS detector has seen cosmic ray events, an excellent sign that things are working as they should.


    One does not have to think, or be insulted by "such stories" that have captured minds in our history. The "ideas of cultures" are pervaded by such religious practises and context, by the fascination of some greater being? Having worked with them long enough?

    As a scientist, you know your place in the world. Yet, you dream of such "fantastical stories." About things travelling through the little towns in Europe, as if, seeing the "Overlords of Science." Like some futuristic God making it's way through the town of some primitive era on earth. "Shocked people" looking from windows, as this enormous object in the "war of the worlds," has finally come upon us.

    The article traces in non-technical language the historical development of our understanding of nuclear fusion reactions as the source of stellar energy, beginning with the controversy over the age of the sun and earth between Darwin and Kelvin, and including the discovery of radioactivity, the experimental demonstration that four hydrogen nuclei are heavier than a helium nucleus, and the theoretical insights provided by Einstein, Gamow, and Bethe. The concluding sections concern solar neutrino experiments that were designed to test the theory of stellar evolution and which, in the process, apparently revealed new aspects of microscopic physics.


    It is important that one understands that such a thing having been studied by our scientists, is still a "noble thing." Where we learn to understand what these things could represent symbolically? Enlightenment possibly? When all the understanding of the "Neutrino overlords" are understood in their place and time.



    The winged sun was an ancient (3rd millennium BC) symbol of Horus, later identified with Ra.
    A solar deity is a god or goddess who represents the sun, or an aspect of it. People have worshipped the sun and solar deities for all of recorded history; sun worship is also known as heliolatry. Hence, many beliefs and legends have been formed around this worship, most notably the various myths containing the "missing sun" motif from around the world. Although many sources contend that solar deities are generally male, and the brother, father, husband and/or enemy of the lunar deity (usually female), this is not cross-culturally upheld, as sun goddesses are found on every continent. Some mythologists, such as Brian Branston, therefore contend that sun goddesses are more common worldwide than their male counterparts. They also claim that the belief that solar deities are primarily male is linked to the fact that a few better known mythologies (such as those of ancient Greece and Egypt) sometimes break from this rule. The dualism of sun/male/light and moon/female/darkness is found in many (but not all) European traditions that derive from Orphic and Gnostic philosophies, with a notable exception being Germanic mythology, where the Sun is female and the Moon is male.

    Sun worship is a possible origin of henotheism and ultimately monotheism. In ancient Egypt's Eighteenth Dynasty, Akhenaten's heretical Atenism used the old Aten solar deity as a symbol of a single god. The neolithic concept of a solar barge, the sun as traversing the sky in a boat, is found in ancient Egypt, with Ra and Horus. Proto-Indo-European religion has a solar chariot, the sun as traversing the sky in a chariot. At Roman Empire, a festival of the birth of the Unconquered Sun (or Dies Natalis Solis Invicti) was celebrated when the duration of daylight first begins to increase after the winter solstice, — the "rebirth" of the sun. In Germanic mythology this is Sol, in Vedic Surya and in Greek Helios and (sometimes) Apollo. Mesopotamian Shamash plays an important role during the Bronze Age, and "my Sun" is eventually used as an address to royalty. Similarly, South American cultures have emphatic Sun worship, see Inti. See also Sol Invictus.

    Monday, January 01, 2007

    Symmetries Can be Chaotically Complex



    Imagine in an "action of a kind" you start off from one place. A photon travelling through a slit of Thomas Young's, to get through "a world" to the other side. Sounds like some fairy tale doesn't it? Yet, "the backdrop" is where you started?


    Thomas Young (June 14, 1773 – †May 10,1829)
    was an English scientist, researcher, physician and polymath. He is sometimes considered to be "the last person to know everything": that is, he was familiar with virtually all the contemporary Western academic knowledge at that point in history. Clearly this can never be verified, and other claimants to this title are Gottfried Leibniz, Leonardo da Vinci, Samuel Taylor Coleridge, Johann Wolfgang Goethe and Francis Bacon, among others. Young also wrote about various subjects to contemporary editions of the Encyclopedia Britannica. His learning was so prodigious in scope and breadth that he was popularly known as "Phenomenon Young."



    Simplistically this "massless entity" is affected by the "geometrics of gravity?" Is affected from it's "first light." All the way to some "other point in reality" to some image, called the spectrum.

    I am dreaming. I am walking down the street and there is this "N category cafe."

    Imagine walking off the street into this very public venue and seeing the philosophy shared is also held to certain constraints. :)Philosophy? Yes, we all have our "points of view."

    Travelling the Good Life with Ease

    So in this travel how is one to see this "curve of light" or "slide" and we get this sense of what gravity can do.

    Imagine indeed, "a hole cosmological related" in the three body problem, it has to travel through, and we get this sense of "lensing and distortion," abstractually gravitationally induced?



    So as we look at the cosmos what illusion is perpetrated on our minds as we look into the "great distance of measure" that somehow looking to the journey of "an event local," from our place on and about earth, has not been "chaotically entrained in some way, as we look deep into space?


    The Magic Square
    Plato:Like Pascal, one finds Albrecht has a unique trick, used by mathematicians to hide information and help, to exemplify greater contextual meaning. Now you have to remember I am a junior here in pre-established halls of learning, so later life does not allow me to venture into, and only allows intuitive trials poining to this solid understanding. I hope I am doing justice to learning.


    Moving in abstract spaces

    It was necessary to explain why I added "the image" to the right in my index.

    Some would think me so "esoteric" that I had somehow lost touch with the realities of science? That to follow any further discussion here "has to be announced" to save one's dignity? What ever?:)I am esoteric in that my views of the world come from a different place, not unlike your expression of where you had come from living your life. How would I come to know all that you are in a "single sentence." A single and very short equation? It's really not that easy is it?:)

    So I read you from all the things that you say and get the sense of who you are no different then what is implied in the language of poetic art implied carefully from choosing your words?

    Artistically Inclined?

    I tried to give some hint of the "ideas floating" around in my head. I understand quite well that my challenge has been to get those "images in my head" transmitted onto paper, in a way that one would not become confused as to what is being implied.

    So a good writer I may not be, a "not so good scientist" whose mathematics very ill equipped.

    Thus I am faced with these challenges in the new year? A "recognition" of trying to produce that clarity. Whether in "latex" the symbols of mathematics, it is quite a challenge for me, whilst all these things are still engaged in abstract views of reality.

    So someone like Clifford, may look at Robert by what he has written and say, "hey, my fellow scientists are indeed in trouble" from what Robert has learnt. So I Clifford will provide "the latex sandbox" for you to play in?

    It "appears" I am not alone. My struggle, are to be many a struggle.

    Art and the Abstract

    But to my amazement this morning in checking up the links associated of Clifford's, I was amazed to see the article of, Hooking Up Manifolds

    Now how interesting that what is being displayed there in terms of fun, mathematics, art, could have been so abstractly appealing? "Moving over these surfaces" in ways that one might never appreciated, had you not known about how one can look at the universe in the "two ways mentioned previously," and by simple experiment, transcend such things to art.

    Thursday, December 21, 2006

    Hubble Finds Evidence for Dark Energy in the Young Universe



    I had to go back to the article for some further reading.


    These snapshots, taken by NASA's Hubble Space Telescope, reveal five supernovae, or exploding stars, and their host galaxies.

    The arrows in the top row of images point to the supernovae. The bottom row shows the host galaxies before or after the stars exploded. The supernovae exploded between 3.5 and 10 billion years ago.

    Astronomers used the supernovae to measure the expansion rate of the universe and determine how the expansion rate is affected by the repulsive push of dark energy, a mysterious energy force that pervades space. Supernovae provide reliable measurements because their intrinsic brightness is well understood. They are therefore reliable distance markers, allowing astronomers to determine how far away they are from Earth.

    Pinpointing supernovae in the faraway universe is similar to watching fireflies in your back yard. All fireflies glow with about the same brightness. So, you can judge how the fireflies are distributed in your back yard by noting their comparative faintness or brightness, depending on their distance from you.

    Only Hubble can measure these supernovae because they are too distant, and therefore too faint, to be studied by the largest ground-based telescopes.

    These Hubble observations show for the first time that dark energy has been a present force for most of the universe's history. A spectral analysis also shows that the supernovae used to measure the universe's expansion rate today look remarkably similar to those that exploded nine billion years ago and are just now seen by Hubble.

    These latest results are based on an analysis of the 24 most distant known supernovae, most of them discovered within the last three years by the Higher-z SN Search Team. The images were taken between 2003 and 2005 with Hubble's Advanced Camera for Surveys.



    Illustration of Cosmic Forces-Credit: NASA, ESA, and A. Feild (STScI)
    Scientists using NASA's Hubble Space Telescope have discovered that dark energy is not a new constituent of space, but rather has been present for most of the universe's history. Dark energy is a mysterious repulsive force that causes the universe to expand at an increasing rate.

    Investigators used Hubble to find that dark energy was already boosting the expansion rate of the universe as long as nine billion years ago. This picture of dark energy is consistent with Albert Einstein's prediction of nearly a century ago that a repulsive form of gravity emanates from empty space.

    Data from Hubble provides supporting evidence that help astrophysicists to understand the nature of dark energy. This will allow scientists to begin ruling out some competing explanations that predict that the strength of dark energy changes over time.

    Researchers also have found that the class of ancient exploding stars, or supernovae, used to measure the expansion of space today look remarkably similar to those that exploded nine billion years ago and are just now being seen by Hubble. This important finding gives additional credibility to the use of these supernovae for tracking the cosmic expansion over most of the universe's lifetime.

    "Although dark energy accounts for more than 70 percent of the energy of the universe, we know very little about it, so each clue is precious," said Adam Riess, of the Space Telescope Science Institute and Johns Hopkins University in Baltimore. Riess led one of the first studies to reveal the presence of dark energy in 1998 and is the leader of the current Hubble study. "Our latest clue is that the stuff we call dark energy was relatively weak, but starting to make its presence felt nine billion years ago."

    To study the behavior of dark energy of long ago, Hubble had to peer far across the universe and back into time to detect supernovae. Supernovae can be used to trace the universe's expansion. This is analogous to seeing fireflies on a summer night. Fireflies glow with about the same brightness, so you can judge how they are distributed in the backyard by their comparative faintness or brightness, depending on their distance from you. Only Hubble can measure these ancient supernovae because they are too distant, and therefore too faint, to be studied by the largest ground-based telescopes.

    Einstein first conceived of the notion of a repulsive force in space in his attempt to balance the universe against the inward pull of its own gravity, which he thought would ultimately cause the universe to implode.

    His "cosmological constant" remained a curious hypothesis until 1998, when Riess and the members of the High-z Supernova Team and the Supernova Cosmology Project used ground-based telescopes and Hubble to detect the acceleration of the expansion of space from observations of distant supernovae. Astrophysicists came to the realization that Einstein may have been right after all: there really was a repulsive form of gravity in space that was soon after dubbed "dark energy."

    Over the past eight years astrophysicists have been trying to uncover two of dark energy's most fundamental properties: its strength and its permanence. These new observations reveal that dark energy was present and obstructing the gravitational pull of the matter in the universe even before it began to win this cosmic "tug of war."

    Previous Hubble observations of the most distant supernovae known revealed that the early universe was dominated by matter whose gravity was slowing down the universe's expansion rate, like a ball rolling up a slight incline. The observations also confirmed that the expansion rate of the cosmos began speeding up about five to six billion years ago. That is when astronomers believe that dark energy's repulsive force overtook gravity's attractive grip.

    The latest results are based on an analysis of the 24 most distant supernovae known, most found within the last two years.

    By measuring the universe's relative size over time, astrophysicists have tracked the universe's growth spurts, much as a parent may witness the growth spurts of a child by tracking changes in height on a doorframe. Distant supernovae provide the doorframe markings read by Hubble. "After we subtract the gravity from the known matter in the universe, we can see the dark energy pushing to get out," said Lou Strolger, astronomer and Hubble science team member at Western Kentucky University in Bowling Green, Ky. Further observations are presently underway with Hubble by Riess and his team which should continue to offer new clues to the nature of dark energy.




    Credit: NASA, ESA, and A. Feild (STScI)

    Tuesday, December 19, 2006

    Cosmic ray spallation


    As this NASA chart indicates, 70 percent or more of the universe consists of dark energy, about which we know next to nothing
    Other explanations of dark energy, called "quintessence," originate from theoretical high-energy physics. In addition to baryons, photons, neutrinos, and cold dark matter, quintessence posits a fifth kind of matter (hence the name), a sort of universe-filling fluid that acts like it has negative gravitational mass. The new constraints on cosmological parameters imposed by the HST supernova data, however, strongly discourage at least the simplest models of quintessence.


    Of course my mind is thinking about the cosmic triangle of an event in the cosmos. So I am wondering what is causing the "negative pressure" as "dark energy," and why this has caused the universe to speed up.


    SNAP-Supernova / Acceleration Probe-Studying the Dark Energy of the Universe
    The discovery by the Supernova Cosmology Project (SCP) and the High-Z Supernova team that the expansion of the universe is accelerating poses an exciting mystery — for if the universe were governed by gravitational attraction, its rate of expansion would be slowing. Acceleration requires a strange “dark energy’ opposing this gravity. Is this Einstein’s cosmological constant, or more exotic new physics? Whatever the explanation, it will lead to new discoveries in astrophysics, particle physics, and gravitation.


    By defining the context of particle collisions it was evident that such a place where such a fluid could have dominated by such energy in stars, are always interesting as to what is ejected from those same stars. What do those stars provide for the expression of this universe while we are cognoscente of the "arrow of time" explanation.


    This diagram reveals changes in the rate of expansion since the universe's birth 15 billion years ago. The more shallow the curve, the faster the rate of expansion.


    So of course these thoughts are shared by the perspective of educators to help us along. But if one did not understand the nature of the physical attributes of superfluids, how would one know to think of the relativistic conditions that high energy provides for us?


    NASA/WMAP Scientific Team: Expanding Universe



    So recognizing where these conditions are evident would be one way in which we might think about what is causing a negative pressure in the cosmos.

    Given the assumption that the matter in the universe is homogeneous and isotropic (The Cosmological Principle) it can be shown that the corresponding distortion of space-time (due to the gravitational effects of this matter) can only have one of three forms, as shown schematically in the picture at left. It can be "positively" curved like the surface of a ball and finite in extent; it can be "negatively" curved like a saddle and infinite in extent; or it can be "flat" and infinite in extent - our "ordinary" conception of space. A key limitation of the picture shown here is that we can only portray the curvature of a 2-dimensional plane of an actual 3-dimensional space! Note that in a closed universe you could start a journey off in one direction and, if allowed enough time, ultimately return to your starting point; in an infinite universe, you would never return.


    Of course it is difficult for me to understand this process, but I am certainly trying. If one had found that in the relativistic conditions of high energy scenarios a "similarity to a flattening out" associated with an accelerating universe what would this say about information travelling from the "origins of our universe" quite freely. How would this effect dark energy?

    In physics, a perfect fluid is a fluid that can be completely characterized by its rest frame energy density ρ and isotropic pressure p.

    Real fluids are "sticky" and contain (and conduct) heat. Perfect fluids are idealized models in which these possibilities are neglected. Specifically, perfect fluids have no shear stresses, viscosity, or heat conduction.

    In tensor notation, the energy-momentum tensor of a perfect fluid can be written in the form

    [tex] T^{\mu\nu}=(\rho+p)\, U^\mu U^\nu + P\, \eta^{\mu\nu}\,[/tex]



    where U is the velocity vector field of the fluid and where ημν is the metric tensor of Minkowski spacetime.

    Perfect fluids admit a Lagrangian formulation, which allows the techniques used in field theory to be applied to fluids. In particular, this enables us to quantize perfect fluid models. This Lagrangian formulation can be generalized, but unfortunately, heat conduction and anisotropic stresses cannot be treated in these generalized formulations.

    Perfect fluids are often used in general relativity to model idealized distributions of matter, such as in the interior of a star.


    So events in the cosmos ejected the particles, what geometrical natures embued such actions, to have these particle out in space interacting with other forms of matter to create conditions that would seem conducive to me, for that negative pressure?

    Cosmic ray spallation is a form of naturally occurring nuclear fission and nucleosynthesis. It refers to the formation of elements from the impact of cosmic rays on an object. Cosmic rays are energetic particles outside of Earth ranging from a stray electron to gamma rays. These cause spallation when a fast moving particle, usually a proton, part of a cosmic ray impacts matter, including other cosmic rays. The result of the collision is the expulsion of large members of nucleons (protons and neutrons) from the object hit. This process goes on not only in deep space, but in our upper atmosphere due to the impact of cosmic rays.

    Cosmic ray spallation produces some light elements such as lithium and boron. This process was discovered somewhat by accident during the 1970s. Models of big bang nucleosynthesis suggested that the amount of deuterium was too large to be consistent with the expansion rate of the universe and there was therefore great interest in processes that could generate deuterium after the big bang.

    Cosmic ray spallation was investigated as a possible process to generate deuterium. As it turned out, spallation could not generate much deuterium, and the excess deuterium in the universe could be explained by assuming the existence of non-baryonic dark matter. However, studies of spallation showed that it could generate lithium and boron. Isotopes of aluminum, beryllium, carbon(carbon-14), chlorine, iodine and neon, are also formed through cosmic ray spallation.



    Talk about getting tongue tied, can you imagine, "these fluctuations can generate their own big bangs in tiny areas of the universe." Read on.


    Photo credit: Lloyd DeGrane/University of Chicago News Office
    Carroll and Chen’s scenario of infinite entropy is inspired by the finding in 1998 that the universe will expand forever because of a mysterious force called “dark energy.” Under these conditions, the natural configuration of the universe is one that is almost empty. “In our current universe, the entropy is growing and the universe is expanding and becoming emptier,” Carroll said.

    But even empty space has faint traces of energy that fluctuate on the subatomic scale. As suggested previously by Jaume Garriga of Universitat Autonoma de Barcelona and Alexander Vilenkin of Tufts University, these fluctuations can generate their own big bangs in tiny areas of the universe, widely separated in time and space. Carroll and Chen extend this idea in dramatic fashion, suggesting that inflation could start “in reverse” in the distant past of our universe, so that time could appear to run backwards (from our perspective) to observers far in our past.

    Friday, November 24, 2006

    Status of "Warp Drive"

    Time is of your own making;
    its clock ticks in your head.
    The moment you stop thought
    time too stops dead.
    Angelus Silesius


    The plot created here in this post in this fictional sense(?) so that I too may deal with the issues of time travel?

    Of course time travel is on my mind for reason that some may not suspect, yet it is with "past history" that we are "embedded with knowledge" from our past attempts. From these, if knowledge is acquired for each soul, then how is it that it sat for for the day to be awaken properly? Where did we begin?


    Two main difficulties arise from Plato's view of Transmigration. First, Plato says that we have knowledge of universals because of the experiences of our souls in past lives. However, whence comes the knowledge of the first soul? In purely Platonic theory, it must have had no knowledge at all, and hence Plato's concept of transmigration as the basis for innate knowledge fails. A second difficulty lies in explaining the varying, and especially the apparently increasing number of incarnated souls over history.


    So this knowledge is somewhere? Is it as if we move our focus on the Tonal, and we see differently, or, that by profound shifts in our perspective on model apprehension, that we see anew?


    Sir Isaac Newton



    If we had been changed then, had it been from the Tabula Rusa being blank?

    It is as if, "the cosmologist has been detained," bewteen the beginning and end of this universe, yet, shall not ask, "what is it" and, "how did it begin?" That it's very existance it came from nothing, thus, shall never end? How illogical is this?

    Plato:One of the things that appeared so strange to me was in how we could look at gravitational variances with scientific means. As we know now, this is being accomplished in ways that test the minds imagination, as to how we would apply these features here to earth, and beyond. Timespeak

    How "warped the mind then," to create such a controversy. Use this to exemplify a point about creativity? Have I some how degraded "the wording" to show that "what is possssible" is indeed the imaginary mind that likes to play tricks, whilst it developes this whole new train of thought? Simultaneity?


    Francis Bacon (1561 - 1626)


    Sir William Shakespeare



    Sir Francis Bacon, disguised by "Shakespearean thought," was just an actor of "creativity," portraying a role of a political man? Yet, the thoughts extended, as if this man was in another place and time? Is it that easy? This story true?

    Plato:Creativity? Ways in which we allow "information" to travel through? Play the game? Allow "ingenuity" as the "poetic river that flows" to the surface on you, from everything, or, the blank slate?

    Is it useless knowledge then or that science requires this blank slate to allow us to deliver on the basis of science? Each starting position, that we write clearly and hence know that from that time forward, what is being built upon?

    Time travel

    Plato:Thus the initial idea here to follow is that the process had to have a physics relation. This is based on the understanding of anti-particle/particle, and what becomes evident in the cosmos as a closed loop process. Any variation within this context, is the idea of "blackhole anti-particle expression" based on what can be seen at the horizon?Tunneling in Faster then Light


    Warp Drives", "Hyperspace Drives", or any other term for Faster-than-light travel is at the level of speculation, with some facets edging into the realm of science. We are at the point where we know what we do know and know what we don’t, but do not know for sure if faster than light travel is possible.

    The bad news is that the bulk of scientific knowledge that we have accumulated to date concludes that faster than light travel is impossible. This is an artifact of Einstein’s Special Theory of Relativity. Yes, there are some other perspectives; tachyons, wormholes, inflationary universe, spacetime warping, quantum paradoxes...ideas that are in credible scientific literature, but it is still too soon to know if such ideas are viable.

    One of the issues that is evoked by any faster-than-light transport is time paradoxes: causality violations and implications of time travel. As if the faster than light issue wasn’t tough enough, it is possible to construct elaborate scenarios where faster-than-light travel results in time travel. Time travel is considered far more impossible than light travel.


    So previous(Tunneling in Faster than Light) to this post, I tried to show where my thinking was currently held in regards to anti-particle/particle, as examples of what is happening in LHC.

    Also, I cleared the air of what was held in mind in terms of the Cerenkov radiation transported ahead of, in faster then light medium capabilities as the blue light. This does not remove my speculations in terms of what is happening in probing the "perfect fluid" and the dissipative effect of microstate blackhole creation. What happens in that moment of high energy collision processes.

    Wednesday, November 22, 2006

    Tunnelling in Faster then Light

    Underneath this speculation of mine is the geometrical inclination of the universe in expression. If it's "dynamical nature is revealed" what allows us to think of why this universe at this time and junction, should be flat(?) according to the time of this universe in expression?

    Omega=the actual density to the critical density

    If we triangulate Omega, the universe in which we are in, Omegam(mass)+ Omega(a vacuum), what position geometrically, would our universe hold from the coordinates given?


    Positive energy density gives spacetime of the universe a positive curvature. A sphere? Negative curvature a region of spacetime that is negative and curved like a saddle? For time travel, and travel into the past, you need a universe that has a negative energy density.

    Thus the initial idea here to follow is that the process had to have a physics relation. This is based on the understanding of anti-particle/particle, and what becomes evident in the cosmos as a closed loop process. Any variation within this context, is the idea of "blackhole anti-particle expression" based on what can be seen at the horizon?



    A anti-particle can be considered as a particle moving back in time? Only massless particle can travel faster then light. Only faster then light massless particles can travel back in time? So of course, I am again thinking of the elephant process of Susskind and the closed loop process of the virtual particle/anti-particle. What comes out of it?

    That's not all. The fact that space-time itself is accelerating - that is, the expansion of the universe is speeding up - also creates a horizon. Just as we could learn that an elephant lurked inside a black hole by decoding the Hawking radiation, perhaps we might learn what's beyond our cosmic horizon by decoding its emissions. How? According to Susskind, the cosmic microwave background that surrounds us might be even more important than we think. Cosmologists study this radiation because its variations tell us about the infant moments of time, but Susskind speculates that it could be a kind of Hawking radiation coming from our universe's edge. If that's the case, it might tell us something about the elephants on the other side of the universe.


    So the anti-particle falls into the blackhole? How is it that I resolve this?? You can consider the anti-particle as traveling back in time. The micro perspective of the blackhole allows time travel backwards.


    Getty Images
    Although a 1916 paper by Ludwig Flamm from the University of Vienna [4] is sometimes cited as giving the first hint of a wormhole, "you definitely need hindsight to detect it," says Matt Visser of Victoria University in Wellington, New Zealand. Einstein and Rosen were the first to take the idea seriously and to try to accomplish some physics with it, he adds. The original goal may have faded, but the Einstein-Rosen bridge still pops up occasionally as a handy solution to the pesky problem of intergalactic travel.


    There are two cases in which the thoughts about faster then light particles are created and this is the part where one tries to get it right so as not to confuse themselves and others.

    Wormholes?

    Plato:
    So "open doorways" and ideas of "tunneling" are always interesting in terms of how we might look at an area like GR in cosmology? Look for way in which such instances make them self known.

    Are they applicable to the very nature of quantum perceptions that such probabilities could have emerged through them? Held to "time travel scenarios" and grabbed the history of what had already preceded us in past tense, could have been brought again forward for inspection?


    Sure I am quoting myself here, just to show one of the options I am showing by example. The second of course is where I was leading too in previous posts.

    So I was thinking here in context of one example in terms of the containment of the "graviton in a can" is really letting loose of the information in the collision process, as much as we like this "boundary condition" it really is not so.

    Another deep quantum mystery for which physicists have no answer has to do with "tunneling" -- the bizarre ability of particles to sometimes penetrate impenetrable barriers. This effect is not only well demonstrated; it is the basis of tunnel diodes and similar devices vital to modern electronic systems.

    Tunneling is based on the fact that quantum theory is statistical in nature and deals with probabilities rather than specific predictions; there is no way to know in advance when a single radioactive atom will decay, for example.

    The probabilistic nature of quantum events means that if a stream of particles encounters an obstacle, most of the particles will be stopped in their tracks but a few, conveyed by probability alone, will magically appear on the other side of the barrier. The process is called "tunneling," although the word in itself explains nothing.

    Chiao's group at Berkeley, Dr. Aephraim M. Steinberg at the University of Toronto and others are investigating the strange properties of tunneling, which was one of the subjects explored last month by scientists attending the Nobel Symposium on quantum physics in Sweden.

    "We find," Chiao said, "that a barrier placed in the path of a tunneling particle does not slow it down. In fact, we detect particles on the other side of the barrier that have made the trip in less time than it would take the particle to traverse an equal distance without a barrier -- in other words, the tunneling speed apparently greatly exceeds the speed of light. Moreover, if you increase the thickness of the barrier the tunneling speed increases, as high as you please.

    "This is another great mystery of quantum mechanics."


    Of course I am looking for processes in physics that would actually demonstrate this principal of energy calculated at the very beginning of the collision process, now explained in the detector, minus the extra energy that had gone where?



    This is the basis for the "Graviton in a can" example of what happens in the one scenario.

    Plato:
    A Bose-Einstein condensate (such as superfluid liquid helium) forms for reasons that only can be explained by quantum mechanics. Bose condensates form at low temperature


    Plasmas and Bose condensates

    So in essence the physics process that I am identifying is shown by understanding that the "graviton production" allows that energy to be transmitted outside the process of the LHC?

    This is the energy that can be calculated and left over from all the energy assumed in the very beginning of this collision process. Secondly, all energy used in this process would be in association with bulk perspective.

    This now takes me to the second process of "time travel" in the LHC process. The more I tried to figure this out the basis of thought here is that Cerenkov radiation in a vacuum still is slower then speed of light, yet within the medium of ice, this is a different story. So yes there are many corrections and insight here to consider again.

    The muon will travel faster than light in the ice (but of course still slower than the speed of light in vacuum), thereby producing a shock wave of light, called Cerenkov radiation. This light is detected by the photomultipliers, and the trace of the neutrinos can be reconstructed with an accuracy of a couple of degrees. Thus the direction of the incoming neutrino and hence the location of the neutrino source can be pinpointed. A simulation of a muon travelling through AMANDA is shown here (1.5 MB).


    So while sleeping last night the question arose in my mind as to the location of where the "higgs field" will be produced in the LHC experiment? Here also the the thoughts about the "cross over point" that would speak to the idea here of what reveals faster then light capabilities arising from the collision process?

    What are the main goals of the LHC?-
    The LHC will also help us to solve the mystery of antimatter. Matter and antimatter must have been produced in the same amounts at the time of the Big Bang. From what we have observed so far, our Universe is made of only matter. Why? The LHC could provide an answer.

    It was once thought that antimatter was a perfect 'reflection' of matter - that if you replaced matter with antimatter and looked at the result in a mirror, you would not be able to tell the difference. We now know that the reflection is imperfect, and this could have led to the matter-antimatter imbalance in our Universe.

    The strongest limits on the amount of antimatter in our Universe come from the analysis of the diffuse cosmic gamma-rays arriving on Earth and the density fluctuations of the cosmic background radiation. If one asumes that after the Big Bang, the Universe separated somehow into different domains where either matter or antimatter was dominant, then at the boundaries there should be annihilations, producing cosmic gamma rays. In both cases the limit proposed by current theories is practically equivalent to saying that there is no antimatter in our Universe.


    So we get the idea here in the collision process and from it the crossover point leaves a energy dissertation on what transpired from this condition and left the idea in my mind about the circumstances of what may have changed the the speed of the cosmos at varying times in the expansion process within our universe. So, this is where I was headed as I laid out the statement below.

    Of course this information is based on 2003 data but the jest of the idea here is that in order to go to a "fast forward" the conditions had to exist previously that did not included "sterile neutrinos" and were a result of this "cross over."


    So what is the jest of my thought here that I would go to great lengths here to speak about the ideas of what happens within the cosmos to change those varying times of expansion? It has to do with the Suns and the process within those suns that give the dark energy some value, in it's anti- gravity nature to align our selves and our thinking to the cosmological constant of Einstein. If we juggle the three ring circus we find that the curvature parameters can and do hold thoughts govern by the cosmological constant?

    It is thus equally important to identify this "physics process" that would allow such changes in the cosmos. So that we can understand the dynamical nature that the cosmos reveals to us can and does allow aspect of its galaxies within context of the universe to increase this expansive process while we question what drives such conditions.