Showing posts with label SuperKamiokande. Show all posts
Showing posts with label SuperKamiokande. Show all posts

Friday, July 06, 2012

The Bolshoi simulation

A virtual world?

 The more complex the data base the more accurate one's simulation is achieved. The point is though that you have to capture scientific processes through calorimeter examinations just as you do in the LHC.

So these backdrops are processes in identifying particle examinations as they approach earth or are produced on earth. See Fermi and capture of thunder storms and one might of asked how Fermi's picture taking would have looked had they pointed it toward the Fukushima Daiichi nuclear disaster?

So the idea here is how you map particulates as a measure of natural processes? The virtual world lacks the depth of measure with which correlation can exist in the natural world? Why? Because it asks the designers of computation and memory to directly map the results of the experiments. So who designs the experiments to meet the data?

 How did they know the energy range that the Higg's Boson would be detected in?





The Bolshoi simulation is the most accurate cosmological simulation of the evolution of the large-scale structure of the universe yet made ("bolshoi" is the Russian word for "great" or "grand"). The first two of a series of research papers describing Bolshoi and its implications have been accepted for publication in the Astrophysical Journal. The first data release of Bolshoi outputs, including output from Bolshoi and also the BigBolshoi or MultiDark simulation of a volume 64 times bigger than Bolshoi, has just been made publicly available to the world's astronomers and astrophysicists. The starting point for Bolshoi was the best ground- and space-based observations, including NASA's long-running and highly successful WMAP Explorer mission that has been mapping the light of the Big Bang in the entire sky. One of the world's fastest supercomputers then calculated the evolution of a typical region of the universe a billion light years across.

The Bolshoi simulation took 6 million cpu hours to run on the Pleiades supercomputer—recently ranked as seventh fastest of the world's top 500 supercomputers—at NASA Ames Research Center. This visualization of dark matter is 1/1000 of the gigantic Bolshoi cosmological simulation, zooming in on a region centered on the dark matter halo of a very large cluster of galaxies.Chris Henze, NASA Ames Research Center-Introduction: The Bolshoi Simulation



Snapshot from the Bolshoi simulation at a red shift z=0 (meaning at the present time), showing filaments of dark matter along which galaxies are predicted to form.
CREDIT: Anatoly Klypin (New Mexico State University), Joel R. Primack (University of California, Santa Cruz), and Stefan Gottloeber (AIP, Germany).
 THREE “BOLSHOI” SUPERCOMPUTER SIMULATIONS OF THE EVOLUTION OF THE UNIVERSE ANNOUNCED BY AUTHORS FROM UNIVERSITY OF CALIFORNIA, NEW MEXICO STATE UNIVERSITY



Pleiades Supercomputer

 MOFFETT FIELD, Calif. – Scientists have generated the largest and most realistic cosmological simulations of the evolving universe to-date, thanks to NASA’s powerful Pleiades supercomputer. Using the "Bolshoi" simulation code, researchers hope to explain how galaxies and other very large structures in the universe changed since the Big Bang.

To complete the enormous Bolshoi simulation, which traces how largest galaxies and galaxy structures in the universe were formed billions of years ago, astrophysicists at New Mexico State University Las Cruces, New Mexico and the University of California High-Performance Astrocomputing Center (UC-HIPACC), Santa Cruz, Calif. ran their code on Pleiades for 18 days, consumed millions of hours of computer time, and generating enormous amounts of data. Pleiades is the seventh most powerful supercomputer in the world.

“NASA installs systems like Pleiades, that are able to run single jobs that span tens of thousands of processors, to facilitate scientific discovery,” said William Thigpen, systems and engineering branch chief in the NASA Advanced Supercomputing (NAS) Division at NASA's Ames Research Center.
See|:NASA Supercomputer Enables Largest Cosmological Simulations



See Also: Dark matter’s tendrils revealed

Thursday, October 27, 2011

ICECUBE Blogging Research Material and more

In regards to Cherenkov Light

Thinking outside the box See: A physicist inthe cancer lab

Ackerman became interested in physics in middle school, reading popular science books about quantum mechanics and string theory. As an undergraduate at the Massachusetts Institute of Technology, she traveled to CERN, the European particle physics laboratory near Geneva, to work on one of the detectors at the Large Hadron Collider, the most powerful particle collider in the world. Then she spent a summer at SLAC working on BaBar, an experiment investigating the universe’s puzzling shortage of antimatter, before starting her graduate studies there in 2007.

 Linking Experiments(Majorana, EXO); How do stars create the heavy elements? (DIANA); What role did neutrinos play in the evolution of the universe? (LBNE). In addition, scientists propose to build a generic underground facility (FAARM) ...

 Dialogos of Eide: Neutrinoless Double Beta DecayCOBRA · CUORICINO and CUORE · EXO · GERDA · MAJORANA · MOON · NEMO-3 and SuperNEMO · SNO+. See Also:Direct Dark Matter Detection.

Also From my research:

  1. Neutrinoless Double Beta Decay
  2. A first look at the Earth interior from the Gran Sasso underground laboratory
  3. Mysterious Behavior of Neutrinos sent Straight through the Earth
    *** 
     
ICECUBE Blog put up some links that I wanted to go through to see what is happening there. Their links provided at bottom of blog post here. Each link of theirs I have provided additional information in concert while I explore above.

Thursday, September 29, 2011

Cassiopeia A

In conclusion, we have a rich panorama of experiments that all make use of neutrinos as probes of exotic phenomena as well as processes which we have to measure better to gain understanding of fundamental physics as well as gather information about the universe. See:Vernon Barger: perspectives on neutrino physics May 22, 2008


This image presents a beautiful composite of X-rays from Chandra (red, green, and blue) and optical data from Hubble (gold) of Cassiopeia A, the remains of a massive star that exploded in a supernova. Evidence for a bizarre state of matter has been found in the dense core of the star left behind, a so-called neutron star, based on cooling observed over a decade of Chandra observations. The artist's illustration in the inset shows a cut-out of the interior of the neutron star where densities increase from the crust (orange) to the core (red) and finally to the region where the "superfluid" exists (inner red ball). X-ray: NASA/CXC/UNAM/Ioffe/D. Page, P. Shternin et al.; Optical: NASA/STScI; Illustration: NASA/CXC/M. WeissSee Also:Superfluid and superconductor discovered in star's core

Illustration of Cassiopeia A Neutron Star
This is an artist's impression of the neutron star at the center of the Cassiopeia A supernova remnant. The different colored layers in the cutout region show the crust (orange), the higher density core (red) and the part of the core where the neutrons are thought to be in a superfluid state (inner red ball). The blue rays emanating from the center of the star represent the copious numbers of neutrinos that are created as the core temperature falls below a critical level and a superfluid is formed.
(Credit: Illustration: NASA/CXC/M.Weiss)


X-ray and Optical Images of Cassiopeia A
Two independent research teams studied the supernova remnant Cassiopeia A, the remains of a massive star, 11,000 light years away that would have appeared to explode about 330 years as observed from Earth. Chandra data are shown in red, green and blue along with optical data from Hubble in gold. The Chandra data revealed a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova. The data showed that it had cooled by about 4% over a ten-year period, indicating that a superfluid is forming in its core.
(Credit: X-ray: NASA/CXC/UNAM/Ioffe/D.Page,P.Shternin et al; Optical: NASA/STScI)
***

See: Galactic Neutrino Communications

Sunday, December 12, 2010

Antarctic Muon And Neutrino Detector Array....

Diagram of IceCube. IceCube will occupy a volume of one cubic kilometer. Here we depict one of the 80 strings of opctical modules (number and size not to scale). IceTop located at the surface, comprises an array of sensors to detect air showers. It will be used to calibrate IceCube and to conduct research on high-energy cosmic rays. Author: Steve Yunck, Credit: NSF




.....(AMANDA) is a neutrino telescope located beneath the Amundsen-Scott South Pole Station. In 2005, after nine years of operation, AMANDA officially became part of its successor project, IceCube.

AMANDA consists of optical modules, each containing one photomultiplier tube, sunk in Antarctic ice cap at a depth of about 1500 to 1900 meters. In its latest development stage, known as AMANDA-II, AMANDA is made up of an array of 677 optical modules mounted on 19 separate strings that are spread out in a rough circle with a diameter of 200 meters. Each string has several dozen modules, and was put in place by "drilling" a hole in the ice using a hot-water hose, sinking the cable with attached optical modules in, and then letting the ice freeze around it.

AMANDA detects very high energy neutrinos (50+ GeV) which pass through the Earth from the northern hemisphere and then react just as they are leaving upwards through the Antarctic ice. The neutrino collides with nuclei of oxygen or hydrogen atoms contained in the surrounding water ice, producing a muon and a hadronic shower. The optical modules detect the Cherenkov radiation from these latter particles, and by analysis of the timing of photon hits can approximately determine the direction of the original neutrino with a spatial resolution of approximately 2 degrees.

AMANDA's goal was an attempt at neutrino astronomy, identifying and characterizing extra-solar sources of neutrinos. Compared to underground detectors like Super-Kamiokande in Japan, AMANDA was capable of looking at higher energy neutrinos because it is not limited in volume to a manmade tank; however, it had much less accuracy because of the less controlled conditions and wider spacing of photomultipliers. Super-Kamiokande can look at much greater detail at neutrinos from the Sun and those generated in the Earth's atmosphere; however, at higher energies, the spectrum should include neutrinos dominated by those from sources outside the solar system. Such a new view into the cosmos could give important clues in the search for Dark Matter and other astrophysical phenomena.

After two short years of integrated operation as part of IceCube[1], the AMANDA counting house (in the Martin A. Pomerantz Observatory) was finally decommissioned in July and August of 2009.

See also

References

  1. ^ http://icecube.wisc.edu/science/publications/pdd/pdd12.php

External links


****
When a neutrino collides with a water molecule deep in Antarctica’s ice, the particle it produces radiates a blue light called Cerenkov radiation, which IceCube will detect (Steve Yunck/NSF)

See:Dual Nature From Microstate Blackhole Creation?

Monday, March 22, 2010

A first look at the Earth interior from the Gran Sasso underground laboratory

The Gran Sasso National Laboratory (LNGS) is one of four INFN national laboratories.
It is the largest underground laboratory in the world for experiments in particle physics, particle astrophysics and nuclear astrophysics. It is used as a worldwide facility by scientists, presently 750 in number, from 22 different countries, working at about 15 experiments in their different phases.

It is located between the towns of L'Aquila and Teramo, about 120 km from Rome
.
The underground facilities are located on a side of the ten kilometres long freeway tunnel crossing the Gran Sasso Mountain. They consist of three large experimental halls, each about 100 m long, 20 m wide and 18 m high and service tunnels, for a total volume of about 180,000 cubic metres.
***
Slide by Takaaki Kajita
In June 1998 the Super-Kamiokande collaboration revealed its eagerly anticipated results on neutrino interactions to 400 physicists at the Neutrino ’98 conference in Takayama, Japan. A hearty round of applause marked the end of a memorable presentation by Takaaki Kajita of the University of Tokyo that included this slide. He presented strong evidence that neutrinos behave differently than predicted by the Standard Model of particles: The three known types of neutrinos apparently transform into each other, a phenomenon known as oscillation.

Super-K’s detector, located 1000 meters underground, had collected data on neutrinos produced by a steady stream of cosmic rays hitting the Earth’s atmosphere. The data allowed scientists to distinguish between two types of atmospheric neutrinos: those that produce an electron when interacting with matter (e-like), and those that produce a muon (μ-like). The graph in this slide shows the direction the neutrinos came from (represented by cos theta, on the x-axis); the number of neutrinos observed (points marked with crosses); and the number expected according to the Standard Model (shaded boxes).

In the case of the μ-like neutrinos, the number coming straight down from the sky into the detector agreed well with theoretical prediction. But the number coming up through the ground was much lower than anticipated. These neutrinos, which originated in the atmosphere on the opposite side of the globe, travelled 13,000 kilometers through the Earth before reaching the detector. The long journey gave a significant fraction of them enough time to “disappear”—shedding their μ-like appearance by oscillating into a different type of neutrino. While earlier experiments had pointed to the possibility of neutrino oscillations, the disappearance of μ-like neutrinos in the Super-K experiment provided solid evidence.
***
Click on this BlogTitled link



The Borexino Collaboration announced the observation of geo-neutrinos at the underground Gran Sasso National Laboratory of Italian Institute for Nuclear Physics (INFN), Italy. The data reveal, for the first time, a definite anti-neutrino signal with the expected energy spectrum due to radioactive decays of U and Th in the Earth well above background.

The International Borexino Collaboration, with institutions from Italy, US, Germany, Russia, Poland and France, operates a 300-ton liquid-scintillator detector designed to observe and study low-energy solar neutrinos. The low background of the Borexino detector has been key to the detection of geo-neutrinos. Technologies developed by Borexino Collaborators have achieved very low background levels. The central core of the Borexino scintillator is now the lowest background detector available for these observations. The ultra-low background of Borexino was developed to make the first measurements of solar neutrinos below 1 MeV and has now produced this first, firm observation of geo-neutrinos.

Geo-neutrinos are anti-neutrinos produced in radioactive decays of naturally occurring Uranium, Thorium, Potassium, and Rubidium. Decays from these radioactive elements are believed to contribute a significant but unknown fraction of the heat generated inside our planet. The heat generates convective movements in the Earth's mantle that influence volcanic activity and tectonic plate movements inducing seismic activity, and the geo-dynamo that creates the Earth's magnetic field.
More above......

***
Links borrowed from here

Browsing experiments
 • auger (7 photos)
 • borexino (6 photos)
 • cobra (6 photos)
 • cresst (5 photos)
 • cryostem (2 photos)
 • cuore (5 photos)
 • cuoricino (3 photos)
 • dama (9 photos)
 • eastop (4 photos)
 • ermes (2 photos)
 • genius (3 photos)
 • gerda (1 photos)
 • gigs (3 photos)
 • gno (6 photos)
 • hdms (2 photos)
 • hmbb (1 photos)
 • icarus (19 photos)
 • lisa (1 photos)
 • luna (5 photos)
 • lvd (4 photos)
 • macro (4 photos)
 • mibeta (1 photos)
 • opera (26 photos)
 • tellus (1 photos)
 • underseis (8 photos)
 • vip (1 photos)
 • warp (10 photos)
 • xenon (4 photos)
 • zoo (3 photos)


*** 
See Also:

Tuesday, August 04, 2009

Pushing Back Time

Credit: X-ray: NASA/CXC/PSU/S.Park & D.Burrows.; Optical: NASA/STScI/CfA/P.Challis

February 24, 2007 marks the 20th anniversary of one of the most spectacular events observed by astronomers in modern times, Supernova 1987A. The destruction of a massive star in the Large Magellanic Cloud, a nearby galaxy, spawned detailed observations by many different telescopes, including NASA's Chandra X-ray Observatory and Hubble Space Telescope. The outburst was visible to the naked eye, and is the brightest known supernova in almost 400 years.

This composite image shows the effects of a powerful shock wave moving away from the explosion. Bright spots of X-ray and optical emission arise where the shock collides with structures in the surrounding gas. These structures were carved out by the wind from the destroyed star. Hot-spots in the Hubble image (pink-white) now encircle Supernova 1987A like a necklace of incandescent diamonds. The Chandra data (blue-purple) reveals multimillion-degree gas at the location of the optical hot-spots. These data give valuable insight into the behavior of the doomed star in the years before it exploded.
See:Supernova 1987A:
Twenty Years Since a Spectacular Explosion
(Bold added by me for emphasis)


Supernova Starting Gun: Neutrinos

.....
Next they independently estimated how the hypothetical neutrinos would be picked up in a detector as massive as Super-Kamiokande in Japan, which contains 50,000 tons of water. The detector would only see a small fraction of the neutrinos. So the team outlined a method for matching the observed neutrinos to the supernova's expected luminosity curve to figure out the moment in time--to within about 10 milliseconds--when the sputtering star would have begun emitting neutrinos. In their supernova model, the bounce, the time of the first gravitational waves, occurs about 5 milliseconds before neutrino emission. So looking back at their data, gravitational wave hunters should focus on that point in time.
(again bold added for emphasis)

***


See Also:SciDAC Computational Astrophysics Consortium

Tuesday, April 01, 2008

Images of Super-Kamiokande events from tscan

The Navier-Stokes equations are also of great interest in a purely mathematical sense. Somewhat surprisingly, given their wide range of practical uses, mathematicians have yet to prove that in three dimensions solutions always exist (existence), or that if they do exist they do not contain any infinities, singularities or discontinuities (smoothness). These are called the Navier-Stokes existence and smoothness problems. The Clay Mathematics Institute has called this one of the seven most important open problems in mathematics, and offered a $1,000,000 prize for a solution or a counter-example.



SETH LLOYD — HOW FAST, HOW SMALL, AND HOW POWERFUL?: MOORE'S LAW AND THE ULTIMATE LAPTOP
His stunning conclusion?

"The amount of information that can be stored by the ultimate laptop, 10 to the 31st bits, is much higher than the 10 to the 10th bits stored on current laptops. This is because conventional laptops use many degrees of freedom to store a bit whereas the ultimate laptop uses just one. There are considerable advantages to using many degrees of freedom to store information, stability and controllability being perhaps the most important. Indeed, as the above calculation indicates, to take full advantage of the memory space available, the ultimate laptop must turn all its matter into energy. A typical state of the ultimate laptop's memory looks like a plasma at a billion degrees Kelvin — like a thermonuclear explosion or a little piece of the Big Bang! Clearly, packaging issues alone make it unlikely that this limit can be obtained, even setting aside the difficulties of stability and control."


Ask Lloyd why he is interested in building quantum computers and you will get a two part answer. The first, and obvious one, he says, is "because we can, and because it's a cool thing to do." The second concerns some interesting scientific implications. "First," he says, "there are implications in pure mathematics, which are really quite surprising, that is that you can use quantum mechanics to solve problems in pure math that are simply intractable on ordinary computers." The second scientific implication is a use for quantum computers was first suggested by Richard Feynman in 1982, that one quantum system could simulate another quantum system. Lloyd points out that "if you've ever tried to calculate Feynman diagrams and do quantum dynamics, simulating quantum systems is hard. It's hard for a good reason, which is that classical computers aren't good at simulating quantum systems."
Bold emphasis added by me.

The issue of computer language would have been to reveal the deeper implications of the cosmos, while we entertain the "phase changes the universe will go through." While we may think of the blackhole used as a weapon on April fools day, what use the Ipod in Mission Impossible III if it were to melt into a superfluid and bring forth all the ills of the past? It 's in the supefluid state that all of the information of the past makes it's way again into this universe, and supplies the dark energy for the current state of the Universe?

Plato said:

Hey I got one for you. You remember mission impossible. Well in this case, your only able to use the ipod once, then it turns into a super liquid.


While we consider newer technologies what use to "see the sun in a different way" now that we understand the range of "the window of the universe" now incorporates gamma ray detection, it forces upon us the end result of Tscan compiled data?

The Tip of the Pyramid and Quantum Gravity

Michio Kaku:
I like to compare it to wandering in the desert, and stumbling over a tiny pebble. When we push away the sand, we find that this "pebble" is actually the tip of a gargantuan pyramid. After years of excavation, we find wondrous hieroglyphics, strange tunnels and secret passageways. Every time we think we are at the bottom stage, we find a stage below it. Finally, we think we are at the very bottom, and can see the doorway.

One day, some bright, enterprising physicist, perhaps inspired by this article, will complete the theory, open the doorway, and use the power of pure thought to determine if string theory is a theory of everything, anything, or nothing.

Only time will tell if Einstein was correct when he said, "But the creative principle resides in mathematics. In a certain sense, therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed."


Tscan

Tscan ("Trivial Scanner") is an event display, traditionally called a scanner, which I developed. It is a program that shows events graphically on the computer screen.

It was designed to be simple ("trivial") internally, and to have a simple user interface. A lot of importance was given to giving the user a large choice of options to display events in many different ways.

Tscan proved to be a very useful tool for the development of fitters. A particularly useful feature is the ability to show custom data for every photpmultiplier tube (PMT). Instead of the usual time and charge, it can show expected charge, scattered light, likelihood, chi-squared difference, patches, and any other data that can be prepared in a text format.
See:Trivial Scanner

Credit: Super-Kamiokande/Tomasz Barszczak Three (or more?) Cerenkov rings

Multiple rings of Cerenkov light brighten up this display of an event found in the Super-Kamiokande - neutrino detector in Japan. The pattern of rings - produced when electrically charged particles travel faster through the water in the detector than light does - is similar to the result if a proton had decayed into a positron and a neutral pion. The pion would decay immediately to two gamma-ray photons that would produce fuzzy rings, while the positron would shoot off in the opposite direction to produce a clearer ring. Such kinds of decay have been predicted by "grand unified theories" that link three of nature's fundamental forces - the strong, weak and electromagnetic forces. However, there is so far no evidence for such decays; this event, for example, did not stand up to closer scrutiny.
See:Picture of the Week

Thursday, April 12, 2007

The CrossOver Point within the Perfect Fluid?

I had been following this research because of what I had been trying to understand when we take our understanding down to a certain level. That level is within the context of us probing the collision process for evidence of "some new physics" that we had not seen before.

Evidence for Neutrino Oscillations from the LSND Experiment
One of the only ways to probe small neutrino masses is to search for neutrino oscillations, where a neutrino of one type (e.g. numubar ) spontaneously transforms into a neutrino of another type (e.g. nuebar ) For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. The probability for 2-flavor neutrino oscillations can then be expressed as P=sin2(2theta) sin2(1.27 m2L/E) , where theta is the mixing angle, m2 is the difference in neutrino masses squared in eV2, L is the neutrino distance in meters, and E is the neutrino energy in MeV. In 1995 the LSND experiment [1] published data showing candidate events that are consistent with numubar->nuebar oscillations. [2] Additional data are reported here that provide stronger evidence for numubar->nuebar oscillations [3] as well as evidence for numu->nue oscillations. [4] The two oscillation searches have completely different backgrounds and systematics from each other.


What valuation of this process allows us to think that while speaking to "probing this perfect fluid" that we had not discovered some mechanism within it, that allows us to see Coleman Mandula effects being behind, as a geometrical unfoldment from one state into another?

If we had looked at the Genus 1 figure then what avenue would help us discern what could come from the string theory landscape and the "potential hill" discerned from the blackhole horizon? What tunnelling effect could go past the hill climbers and valley crossers to know that you could cut "right through the hill?"

MiniBooNE opens the box

BATAVIA, IllinoisScientists of the MiniBooNE1 experiment at the Department of Energy's Fermilab2 today (April 11) announced their first findings. The MiniBooNE results resolve questions raised by observations of the LSND3 experiment in the 1990s that appeared to contradict findings of other neutrino experiments worldwide. MiniBooNE researchers showed conclusively that the LSND results could not be due to simple neutrino oscillation, a phenomenon in which one type of neutrino transforms into another type and back again.

The announcement significantly clarifies the overall picture of how neutrinos behave.


So while I am looking for some indications as I did in the strangelet case, as, evidence of this crossover, this had to have some relation to how we seen the neutrinos in development. This was part of the development as we learnt of the history of John Bahcall.

John Bahcall 1934 to 2005 See also "John Bahcall and the Neutrinos"


Plato Apr 11th, 2007 at 8:47 pm

the quark-gluon plasma behaves according to hydrodynamic calculations in which the matter is like a liquid that flows with no viscosity whatsoever.” See here

No cross over point? What role would Navier Stokes play in this?
See here

This does not minimize the work we see of Gran Sasso in relation to the LHC project.

Honestly, I do not know how someone who could work on the project, could not know what they were working on? It as if the "little parts" of the LHC project only cater to the worker Bees working just aspects of the project and their specializations.

Whilst now, you go way up and overlook this project. To see the whole context measured within that "one tiny big bang moment." Trust me when I say, we shall not minimize the effect of calling the collision process as "one tiny moment," for you may never see the whole context of this project being developed for this "one thing."

I did not realize the shortcomings that scientists place on themselves when they do specialize. I just assumed they would know as much as I did and see the whole project? I do not say this unkindly, just that it is a shock to me that one could work the string theory models and not realize what they are working on. I have heard even Jacques say there is no connection and listening to Peter Woit, I was equally dismayed that he did not realize what the string theory model was actually doing as it found it's correlation in the developing views of how we look at the moments of creation.

Bigger is better if you’re searching for smaller

Neutrinos may be in CERN's Future

The next step will again be taken in Japan, with the new J-PARC accelerator starting in 2009 to send neutrinos almost 300 km, again to the Super-Kamiokande experiment, to probe the third neutrino mixing angle that has not yet been detected in either atmospheric or solar neutrino experiments. This may also be probed in a new experiment being proposed for the Fermilab NuMI beam. One of the ideas proposed at CERN is to probe this angle with an underwater experiment moored in the Gulf of Taranto off the coast of Italy, viewing neutrinos in a modified version of CERN's current Gran Sasso beam.
See "CERN and Future Experiments"

Plato Apr 12th, 2007 at 7:31 am

I think my comment on previous post of looking for the perfect fluid should have been here.

Also I do not think this changes how we look at string theory as a model probing the perfect fluid, and "the understanding" of developing a mechanism for this "cross over point?"

Topologically, how would this have been revealed in the string theory landscape??
See here and know that Clifford again deleted the short little post above. The point is I think for some reason once I mention string theory or evn M theory in relation to what is transpiring in the views of model development he doe not like this and would be support by Jacques as well.

That would be my job to convince them and anyone else that hold their views that taking our view to the microseconds, there is a definite relation to the timeline whether you agree with this or not. By introducing "the point of the cross over" you in effect have taken the model and presented it as part of the mechanism for this universe and effectively given new meaning to the "string theory landscape."

You may want it to be "background independent" like Lee wants it to be, but if you view the background as a oscillatory one, then any idea as configured to the mass of any particle, then you have define this particle as a energy relation? So Lee does not like the oscillatory universe?

See "Finiteness of String Theory and Mandelstam"

It is contained "within the moment" of the creation of this universe, yet, we do not know what design this particle is to be in context of the microscopic view of geometrical topologically finishes? As the Genus 1 figure and as an expression of this universe? You had to know what was lying in those valleys, and the potentials of expression, and I relay that in the blackhole horizon as a potential hill.

The time has come for some changes in this blog and I have been thinking about moving on. While a layman, I do not like to be treated like a fool. Maybe not educated fully and with some work to do, but never as a fool.

Thursday, October 19, 2006

Central Theme is the Sun



A lot of times people do not understand the effects something can have and after we see these effects, we wonder how did we ever miss the importance of what layed underneath this process in Physics.


Richard Feynman-Dancing With Neutrinos-Nova



Much as we looked at the stars above, the views became much clearer with hubble and such, that we see the depth is necessary as we quantum dynamically learn to see with a greater comprehension.

481 MeV muon neutrino (MC) produces 394 MeV muon which later decays at rest into 52 MeV electron. The ring fit to the muon is outlined. Fuzzy electron ring is seen in yellow-green in lower right corner. This is perspective projection with 110 degrees opening angle, looking from a corner of the Super-Kamiokande detector (not from the event vertex). Option -show_non_hit was used to show all PMTs. Color corresponds to time PMT was hit by Cerenkov photon from the ring. Color scale is time from 830 to 1816 ns with 15.9 ns step. The time window was widened from default to clearly show the muon decay electron in different color. In the charge weighted time histogram to the right two peaks are clearly seen, one from the muon, and second one from the delayed electron from the muon decay. Size of PMT corresponds to amount of light seen by the PMT. PMTs are drawn as a flat squares even though in reality they look more like huge flattened golden light bulbs.


Now it is important to me that when I seen the relationships of physics extolling itself in nature, I wanted to understand how this evidence came to be. But, before I lay what nature has shown me, I wanted to explain a little further what I am starting put together in my head, about what has become common in our understanding, was not easily so from a theoretical/concept/idea standpoint. That it was indeed "progressive/reductionistic" as our views became ever more progressive as we see the same picture of the cosmo(astrophysics) in an ever widening view of understanding.

The neutrino detector for the Super-Kamiokande experiment in Japan contains ultrapure water surrounded by an array of thousands of photo-tubes, arranged to catch the flashes of light from neutrino interactions in the water. In 1998, researchers at "Super-K" found evidence for a small mass for neutrinos coming to earth from particle interactions in cosmic rays. If neutrinos, until recently thought to be massless, actually do have a mass, the implications will be profound, not only for particle physics but for astronomy and cosmology. At right is the MINOS collaboration at the Department of Energy’s Fermilab, before a slice of the 10,000-ton detector they will build to capture neutrino interactions. The MINOS experiment will use beams of accelerator-produced neutrinos by Fermilab's Tevatron to investigate neutrino mass.


Now the lesson above is quite simplistic in the sense that what was once held in theoretical views could/would have made it's way into the depths of how we see things now in nature. So in having understood that process, I wanted to show two more that you might be interested in?


Astronaut's view of the Aurora Australis, or southern lights, from aboard Space Shuttle Discovery 1991 (Courtesy: NASA)


The picture below here is what I see from my backyard when mist and rain has fallen.



So here you have it. A couple of views of nature that have been exemplifed in our search for understanding. What does this all reveal to you? Well, that's the continung saga of what the depth of perception has endowed all us human beings, as we look ever deeper into the nature of the cosmo, and the beginning of this universe.

While we had been given the Sun to look at in one of it's diverse ways, I wanted and did show that meeting the views of how we look at things. That it had been extended, by understanding the "valuation of the energy" as it has ensued from the very heart of what that burning sun is. How we gain immediate results, not ony in the particle showers, but of what evidence we have lain before us, as the physical outcome, as we look from space, and how, we look from earth.

See:

  • SOLAR B and Van Ellen Belts
  • Friday, April 08, 2005

    Pierre Auger Observatory


    In his excellent paper, Louis LePrince-Ringuet, citing a remark of Powell's at the Conference of Bagneres-de-Bigorre in 1953, declared that from that date on, particle accelerators took the place of cosmic rays, which more or less faded into the background. And yet, even today accelerators have not caught up with cosmic rays.


    Pierre Auger on Cosmic Rays


    "For in 1938, I showed the presence in primary cosmic rays of particles of a million Gigavolts -- a million times more energetic than accelerators of that day could produce. Even now, when accelerators have far surpassed the Gigavolt mark, they still have not attained the energy of 1020eV, the highest observed energy for cosmic rays. Thus, cosmic rays have not been dethroned as far as energy goes, and the study of cosmic rays has a bright future, if only to learn where these particles come from and how they are accelerated. You know that Fermi made a very interesting proposal that particles are progressively accelerated by bouncing off moving magnetic fields, gaining a little energy each time. In this way, given a certain number of "kicks," one could perhaps account for particles of 1018 -- 1020 electron volts. As yet, however, we have no good theory to explain the production of the very-high-energy particles that make the air showers that my students and I discovered in 1938 at Jean Perrin's laboratory on a ridge of the Jungfrau."
    -- Pierre Auger, Journal de Physique, 43, 12, 1982



    On the vast plain known as Pampa Amarilla in western Argentina, a new window on the universe is taking shape. There the Pierre Auger Cosmic Ray Observatory has begun its study of the universe's highest energy particles. These rare messengers should tell an important story about how they originate. Experiments have so far failed to decipher their message, and their existence has become a profound puzzle. The Auger Observatory is attacking this enigma of the highest energy cosmic rays with unprecedented collecting power and experimental controls.




    John Ellis:
    The next step will again be taken in Japan, with the new J-PARC accelerator starting in 2009 to send neutrinos almost 300 km, again to the Super-Kamiokande experiment, to probe the third neutrino mixing angle that has not yet been detected in either atmospheric or solar neutrino experiments. This may also be probed in a new experiment being proposed for the Fermilab NuMI beam. One of the ideas proposed at CERN is to probe this angle with an underwater experiment moored in the Gulf of Taranto off the coast of Italy, viewing neutrinos in a modified version of CERN's current Gran Sasso beam.



    Aussois, Savoie, France
    After "Neutrino 2004" the convergence of results from atmospheric, solar, reactor and accelerator experiments confirms the massive neutrino and gives the first opportunity to test physics beyond the Standard Model. The neutrino oscillations picture is still missing 3 fundamental ingredients: the mixing angle θ13, the mass pattern and the CP phase δ.

    Future neutrino beams of conventional and novel design aimed at a megaton type detector could give access to these parameters. Such a detector would also be the next generation facility for proton decay searches and an invaluable supernovae neutrino observatory.




    To understand the Higgs mechanism, imagine that a room full of physicists chattering quietly is like space filled with the Higgs field ...


    So who is the professor that crosses the room? It is Albert Einstein:)


    Any such Blackhole would quickly decay into a shower of Hawking radiation (mainly into standard model particles on our brane, rather than into grvaitons into the bulk). This shower of radiation would be quite different from showers arising from, say, the collsion of cosmic-ray proton with a atmospheric atomic nucleus. Gravity is "flavor blind," so when a microscopic blackhole evaporates it produces all the Standard Model particles with equal probability. Once one accounts for spin and color, it turns out that particles produced when a blackhole decays are about 72 percent quarks and Gluons, 18 percent leptons, and the rest are bosons. Such a distinctive shower of particles would be hard to miss. So there is the possibility that the Pierre Auger Observatory will detect blackholes.
    Page 262, Out of this World, by Stephen Webb


    Two of the tanks in the Pierre Auger Observatory are shown. They each hold 12 tonnes of clean water and are viewed by 3 X 8” diameter photomultipliers. The electronics for recording and data transmission are powered by solar cells. These tanks are placed close together so that cross-tank measurements of densities and arrival times can be made but the nearest neighbour for all other tanks is 1.5 km away. In this way 3000 km2 can be covered with only 1600 detectors.

    Monday, April 04, 2005

    CERN and Future Experiments



    I needed to come back down to earth for a minute to see where the trend is going with those who shall lead us poor earthlings into the future of experimental research and profound understandings.

    It would be nice to see perspectives by Lubos, PeterWoit the group here(meaning their blogs), as we look in this direction for a moment? Peter might be able to set his Dirac Moduli space views here?:)

    Peter Woit for emphasizing the importance of the Dirac operator on the moduli space of Calabi-Yau four-folds and the importance of string theory to him.


    The next step will again be taken in Japan, with the new J-PARC accelerator starting in 2009 to send neutrinos almost 300 km, again to the Super-Kamiokande experiment, to probe the third neutrino mixing angle that has not yet been detected in either atmospheric or solar neutrino experiments. This may also be probed in a new experiment being proposed for the Fermilab NuMI beam. One of the ideas proposed at CERN is to probe this angle with an underwater experiment moored in the Gulf of Taranto off the coast of Italy, viewing neutrinos in a modified version of CERN's current Gran Sasso beam.



    So having quickly gone today I went to look at John Ellis site, and was formally introduced to some of the things that have been happening with him and avenues of experimentation that seem very interesting to me.

    High Energy Physics Group

    The Theory of Cosmic Rays


    Cosmic rays, which have historically provided the first tool to study high-energy phenomena, are playing a new role in modern physics. The origin of high-energy cosmic rays, gamma rays and neutrinos is still an open question in astrophysics. On-going and future experiments will give us new information on astrophysical sources and on high-energy processes.


    It still retains high energy considerations even in face of LHC questions about particle reductionism and the effects of dynamical interrelations as we see this travel in neutrino functions. I wanted to point to further information here in terms of micro-state black-hole detection. I get this soon.


    2004 promises to be an exceptionally exciting year in General Relativity and Gravitation: the LIGO/VIRGO/GEO/TAMA network of detectors has begun generating scientific results, ushering in the era of gravitational wave astronomy. These detectors will search for gravitational wave signals of the collision of black holes, neutron star mergers and other astronomical events previously undetectable. The fundamentally new science of gravitational wave astronomy opens up a new window on the universe. Up until now, astronomy has relied on observations of electromagnetic wave signals (e.g. visible light, radio waves). The detection of gravitational waves offers a completely new perspective on the universe: they will enable us to "hear" the cosmic orchestra as well as to see it! GR17 will provide the scientific community with one of the earliest opportunities to discuss the first scientific results of this era.


    I wanted to add a little more information here to further bolster this idealization that I have found in Brian Greene's statement about turning our views skyward in the hope of seeing strings and cosmological thinking in a new way.

    Flight of the Phenix

    If mini black holes can be produced in high-energy particle interactions, they may first be observed in high-energy cosmic-ray neutrino interactions in the atmosphere. Jonathan Feng of the University of California at Irvine and MIT, and Alfred Shapere of the University of Kentucky have calculated that the Auger cosmic-ray observatory, which will combine a 6000 km2 extended air-shower array backed up by fluorescence detectors trained on the sky, could record tens to hundreds of showers from black holes before the LHC turns on in 2007.