Monday, December 19, 2005

Big Bang Nucleosynthesis



You know it sometimes boogles my mind, why such adventures had not given perspective to the age of the universe? We are talking about created events, that we work to help us see the nature, from a inception time.

Something indeed troubles me as I look out towards this universe, that by giving it's age to 13.7 billions years, that we are taking such events as spoken below in regards to superfluid states, as elements spawned out of that early expression.

The high energy nuclear physics experimental group at Columbia University is conducting research to study the collisions of relativistic heavy nuclei to understand the properties of nuclear matter at extremely high densities (similar to the center of neutron stars) and very high temperatures (much hotter than at the center of the sun). In fact, the temperatures and densities reached in these collisions are similar to those found in the early universe a few microseconds after the Big Bang.


So what is that troubles me so much? Well if you have given the age of the universe, then you have alloted a time sequence to each and every event in the cosmos? There is not one event, that can be older then the age of our universe?

Okay now that this basis is understood, why would I be wrong? Is there not a logic that holds to tell us that each and every event will speak to the time and place of it's origination, within context of the whole universe and but never apart from the initial expression?

That if, for one moment you had seen the a galaxy, who elemental structure given to the signs of the measure of this universe, then it would have been, and related itself, to the very age of our universe and never older?

So you see my problem then? That if I saw this universe as a landscape. That given the context, the shape, and value assigned in the Omega values, such geometrical propensities would have enlisted the mind to consider?Tthat the very age of our univese plus the events held in context of the universe, would have lead one to see the values assigned in a much larger global context?

To holes in the very nature of the fabric.

Having seen the nature of Kravtsovs computer simulations, as cosmic strings, then you would have understood that each of the events in the galaxies would have been connected to each other? Never older, then the age of the universe itself?

The Physics Experiment

PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma

Sunday, December 18, 2005

Attributes of Superfluids


Professor Leggett was awarded a share in the 2003 prize for his research at Sussex in the early 1970s on the theory of superfluids.




There is a special class of fluids that are called superfluids. Superfluids have the property that they can flow through narrow channels without viscosity. However, more fundamental than the absence of dissipation is the behavior of superfluids under rotation. In contrast to the example of a glass of water above, the rotation in superfluids is always inhomogeneous (figure). The fluid circulates around quantized vortex lines. The vortex lines are shown as yellow in the figure, and the circulating flow around them is indicated by arrows. There is no vorticity outside of the lines because the velocity near each line is larger than further away. (In mathematical terms curl v = 0, where v(r) is the velocity field.)



Now you have to understand this is all struggle for me. I am trying understand circumstances where such valuations might have been presented as we traverse the subject of blackholes and such. Wormholes in the the space of produciton of a equilibrium between states of cold matter states and effects to superfluids inthos ecolliders What valuation can be drawn towards flat spacetime in these two extremes?

Can we drawn a relation in our perception taken down to such high energy valutions.

Under the auspices of gravitational collapse, if we are lead to circumstances where such a supefluid existed, then what form had we taken to lead our thinking. I have to be careful here. I identified Helium4 in the context of this opening subject, yet I would also draw my thought to production in the colliders?

I have to think on this some.



Plasmas and Bose condensates

A Bose-Einstein condensate (such as superfluid liquid helium) forms for reasons that only can be explained by quantum mechanics. Bose condensates form at low temperature

Plasmas tend to form at high temperature, since electrons then come off atoms leaving charged ions. High temperatures, more states are available to the atoms.

Our Own Quiet Spaces

Given that it is basically creationism with a new brand name not sure I need to.

Now while those who delve into the Kansas this and that, I don't want too, by association seem to be supporting or not, while those who struggle for their own identities, have them force it upon us and take the empowerment of our own choices from us.

I would rather do science(understand these models), yet I have the "freedom and choice" to work within my own quiet space? Because you are a leader in science do you think it right to impose your ideas upon us by the philosophies you had adopted and then go ahead and sanction us to abrand of ID?

It is tuff enough sometimes for those of us who want to delve into the subject of sciences, without agendas being swung at those less educated, and by those well educated, to describe aspects of and around the potentials of our efforts?

Knowing full well the requirements of science and it's methods, this has been well drilled into our heads endlessly, but not shamefully.

The time has come to severe this relationship from the work needed to do by us lay people to get to the "bottom of things." :) What the underlying basis is of reality without invoking God , but at best hoping to understand our involvement in the contiued expression of this reality? So, we are given options and models to work with.

Many of those head science came forward and made their statements about string/M as to "if proven or not", views of the "requirement of the background," that any responsible science leader could now say, "the health and welfare of their profession" is on track as long as the desired results in experimental process are perpetuated.

Please do not try and implement your philosphies on us(decieve us by ID association), and we will not tolerate yours from the uneducated and ill informed. That we will strive as you did for reason and truth to make itself known.

Alas, there is then room in our own "quiet spaces" about those things that do not fall under the requirements of science that if you choose your own personal belief in what is not and what is, that this can be cultivated in the way that you seem and deemed responsible by you?

Saturday, December 17, 2005

Why this Universe?

Sea of Virtual Particles


http://fermat.nap.edu/openbook/0309074061/gifmid/19.gif


Who is to deny that such processes incorporated into our views of today would not have drawn the cosmologist and the deeper intracies of physics, to point to our nature and it's beginnings in our universe . To raise questions about how such families were to arise from that place and time, specified and leading from one science inclination to another?

The Universe is governed by cycles of matter and energy, an intricate series of physical processes in which the chemical elements are formed and destroyed, and passed back and forth between stars and diffuse clouds. It is illuminated with the soft glow of nascent and quiescent stars, fierce irradiation from the most massive stars, and intense flashes of powerful photons and other high energy particles from collapsed objects. Even as the Universe relentlessly expands, gravity pulls pockets of its dark matter and other constituents together, and the energy of their collapse and the resulting nucleosynthesis later work to fling them apart once again.



This all fell under the arrow of time, yet would it not recognize, that such exchanges between the cycles of energy and matter to take place in that process? That such exchanges would define the natures of galaxies in there beginnings and ends, as a geometrical consistancies born out of the beginnings of this universe? How so? Could such links be made to indicate, that this universe so unique, as to arise from the first inceptions as phase transitions? Some first principle?

Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century (2003)
Board on Physics and Astronomy (BPA)

Two essential conceptual features of the Standard Model theory have fundamentally transformed the understanding of nature. Already in QED the idea arose that empty space may not be as simple a concept as it had seemed. The Standard Model weak interaction theory takes this idea a step further. In formulating that theory, it became evident that the equations did

Friday, December 16, 2005

Grue and Bleen

Brian Greene:
In the late 1960s a young Italian physicist, named Gabriele Veneziano, was searching for a set of equations that would explain the strong nuclear force, the extremely powerful glue that holds the nucleus of every atom together binding protons to neutrons. As the story goes, he happened on a dusty book on the history of mathematics, and in it he found a 200-year old equation, first written down by a Swiss mathematician, Leonhard Euler. Veneziano was amazed to discover that Euler's equations, long thought to be nothing more than a mathematical curiosity, seemed to describe the strong force.

He quickly published a paper and was famous ever after for this "accidental" discovery.


If one did not seek to find a "harmonial balance" where is this, then what potential could have ever been derived from such situations about the possibilties of a negative expression geometriclaly enhanced?

Because the negative attributes have not added up to much in production of anti matter, have we assigned a conclusion to the world of geometerical propensities to not encourge such things a topological maps?

The puzzle to the right(above) was invented by Sam Loyd. The object of the puzzle is to re-arrange the tiles so that they are in numerical order.

The puzzle forms a model of how the positron moves in Dirac's theory. The numbered tiles represent the negative-energy electrons. The hole is the positron. When a negative-energy electron falls into the hole, the hole appears to have moved to another position.


While it would not have seemed likely, such redrawings of the pictures of Albrecht Dürer, this individual might not have caught my attention. I seen the revision of the painting redone, and what was caught in it. You had to really look, to get this sense.

Human Evolution has no Limits?

Topological What a search function might reveal when you type in.

I see no possibilties in the "filth" dimension, but I do in the fifth. :)

How could it be possible for the human capabilties within the context of geoemtrical design, to not "see" that it could have incorporated select words to describe those processes and may of compared it total human discrete function and sending such events into space, aromatically?

Is it a better process to lay claim to such physical abilites and prowness in our assessment of topolgical functions without ever wondering the extent of logic forming, that would exend our understanding from such filth? Or was it creatively inspired to bring vision to a suppposed journey, content in the fifth??

Wednesday, December 14, 2005

Second of Five Lagrangian Equilibrium Points

The more I thought about it, the more it made sense that one image we're getting, is quite different(lensing) from the image that is behind the brane? The idea of brane collision from steinhardt and turok perspective, created this space bewteen the branes, while the image behind this(the other image) is receding?

I am not sure exactly.


Dark matter in the high-redshift cluster CL 0152-1357. Gravitational lensing analysis with the Advanced Camera for Surveys (ACS) reveals the complicated dark matter distribution (purple) in unprecedented detail when the Universe was at half its present age. The yellowish galaxies are the visible cluster member galaxies forming a filamentary structure, possibly in the process of merging.
(Jee et al. 2005, Astrophysical Journal)


Not many can see in this abstract way, or have considered how a photon might have travelled? Sure they have understood satellites and the travel through space, but have they consider this in context of CSL lensing? Sean put up a link yesterday that had me seeing how such a travel over distance might have had some photonic strange journies in context of such lensings.



The second of five Lagrangian equilbrium points, approximately 1.5 million kilometers beyond Earth, where the gravitational forces of Earth and Sun balance to keep a satellite at a nearly fixed position relative to Earth.

This picture below really set the final stage for me. Thus simplification has been mounted in how we see such tubes formed within the greater context of the universe and here we have a way of seeing that is new? It helps one to view universe travel and paves the way for roads through such space?

Is it so hard to visualize? Is it so hard not to consider how one should make there way through such space?


Weak Lensing Distorts Universe?


IN order to extend the link to the information supplied in previous article presented by Sean Carroll, Fraser Cain here links us to the following conversation.

Feynman's Path Integrals

While this following comment might seem inappropriate to the content of this post, I place it because of what I see in determination of the langangian methods used to help us see how gravitatonal equilibrium points, speak to how such travels would have been initiated in sum over paths used as Feynman's distributes the actions according to set model held i a cosmological sense I am looking at the the picture above here and the path ways shown.



December 15th, 2005 at 2:35 pm
Tony Smith:


As to the time of Feynman soving the QED problem, in 1941 (according to Mehra’s Feynman biography The Beat of a Different Drum (Oxford 1994)) Feynman had the inspiration from Dirac’s paper of using the Lagrangian method, which led to Feynman’s 1942 Ph.D. thesis. As to that thesis, Mehra says “… Feynman mentioned that “the problem of the form that relativistic quantum mechanics, and the Dirac equation, take from this point of view, remains unsolved. …”. So, Feynman’s Shelter Island relativistic QED solution was developed after his 1942 Ph.D. thesis.


I had been looking for this relationship and how Feynman’s toys models came into being? Can this be the beginning as you relate?

Tuesday, December 13, 2005

On Blogging and Experiment

Variation of the Standard Two-Pin-hole "welcher-Weg" Optics Experiment



George R. Welch setting up an optics experiment with graduate student Sophia Ilina


Uncertain Principles :
So, “A Week in the Lab” has come to an end. The experiment itself goes on, of course, but the week of blogging the experiment is at an end.

As physics, it wasn’t terribly successful– the experiment didn’t succeed, after all. As a life-in-science blogging event, I think it worked pretty well. I got to cover a fair range of the experimental physics process, from the basic design stuff, to the nuts-and-bolts assembly, to the prelimanry calibration measurements, to the process of figuring things out from sketchy data, to the frustration of an incomplete experiment. I wouldn’t call it the most successful week of my experimental physics career, but I think I might be happier with how this played out than anything else I’ve done on this blog. I’ll have to look back at it again in a couple of weeks and see if I still feel that way, but at least at this early stage, I like the results.




Plato:
So I thought I would point you to another case. I mean sure there is going to be trials and errors.


I was pointed to the failure of the system of blogging that did not seem up to par with a link given by Sean in regards to experimentation and it's falure? While I see it as a success, presented in the following way.

The Ties that Bind?
John Cramer:)
The Blind Men and The Quantum (1,338k) - The First Hal Clement Memorial Lecture, given at the Boskone 41 Science Fiction Convention, Boston Sheraton Hotel, February 15, 2004. A 50 minute discussion of quantum paradoxes and interpretations, with emphasis on new data (The Afshar Experiment) that appears to falsify the Copenhagen and Many-Worlds Interpretations, but is consistent with the Transactional Interpretation.


It sort of stays in the family.:)

kathryn cramer
The Transactional Interpretation, which involves a forward/back in time handshake, is one of the few (perhaps the only) interpretation(s) left standing after the Afshar test.


Why is it so important? If scientific perspective had been isolated from the vast resources of people spread throughout such probabilistic valuations in science? In consideration, how would chance have it, that someone could comment on the experimentation? Help the experimentor, and discuss it from a theoretical standpoint how such and such should go? Lubos comment section helps greatly here to assess how this might have gone?

Shahriar S. Afshar
Dear Lubos,

"Therefore we have humiliated Bohr, Heisenberg, Dirac, the Copenhagen interpretation, complementarity, the uncertainty principle, quantum mechanics as well as the rest of physics."

From the content of your response, I can only conclude that you have not fully read my preprint:
www.irims.org/quant-ph/030503/


Now that the process has been seen in this context of blogging potential I thought I would add one more for consideration? In terms of what Aldeberger had to say to those on Cosmic Variance in terms of those extra dimensions and the experimental process Evotos is unfolding in this regard.

String Theory Displays Golden Ratio Tendency?

Srinivas Ramanujan (1887-1920):
Ramanujan was a mathematician so great his name transcends jealousies, the one superlatively great mathematician whom India has produced in the last hundred years. "His leaps of intuition confound mathematicians even today, seven decades after his death. ..the brilliant, self-taught Indian mathematician whose work contains some of the most beautiful ideas in the history of science. His legacy has endured. His twenty-one major mathematical papers are still being plumbed for their secrets, and many of his ideas are used today in cosmology and computer science. His theorems are being applied in areas - polymer chemistry, computers, cancer research - scarcely imaginable during his lifetime. His mathematical insights yet leave mathematicians baffled that anyone could divine them in the first place.'

Namagiri, the consort of the lion god Narasimha. Ramanujan believed that he existed to serve as Namagiri´s champion - Hindu Goddess of creativity. In real life Ramanujan told people that Namagiri visited him in his dreams and wrote equations on his tongue.



Artist's impression of the setup.

The disks represent the bosonic condensate density and the blue balls in the vortex core represent the fermionic density. The black line is a guide to the eye to see the wiggling of the vortex line that corresponds to a so-called Kelvin mode, which provides the bosonic part of the superstring (image and text:


http://arxiv.org/abs/cond-mat/0505055

Plato:
When I was a kid, I liked to take buttons and place a thread through them. Watching Mom, while I prep the button, she got ready to sew. I would take both ends of the thread and pull it tightly. I liked the way the button could spin/thread depending on how hard I pull the thread


I was thinking about this toy model developed for strng theory comprehension and all of a sudden the attempts by Lubos of Solving the Riemann Hypothesis came into view?

Now some of you know that such consistancies built up from the very idea of "Liminocentric structures" are always pleasing to me. Because of the energy valuations I might have associated to the "circles within circles" as ideas manifest( their degrees of manifest).



A KK tower about 1r radius valuation seen in the varing shapes of tubes? At what stage were these and what could I tell about the idea as it merged from that deep source and probabilstic value of where we all draw from.




That soothing watery world( our dream world ) of ideas that could manifest for us into nature, taken as an consequence relayed, from the continued circles of action? We are better predictors then we think? We did not know where this idea could manifest from, and what energy relations could have given such suttle thoughts repercussions in the very world they could have manifested into?

The relation and perplexing problem I had with identify how such a structure intrigued by Sklar would make it difficult to identify which circle is describing which stage of whee we are at with the innner/outer, was raised when it came to the developing the understanding and differences on how rubber bands placed over a apple, might have a different connotation, when moved over a donut?

Continuity of this action as a color vaiation would have made me then think of Mendeleev in his table of constituents, as I looked at the relation in the world of such discrete things.



Imagine the complexity of music that could be most pleasing, could also be very destructive in the "fields of thought"? I had espoused this in Plato's academy? All of this contained in the light sensation in a little music disc?

What stories indeed have we converted to light, in our apprehensions? Philosophically, I could be committed for my heresy, for all the things I might have assigned to "Heavens ephemeral qualities." Verging on the crackpotism, I know.:)

See:

  • Fool's Gold

  • Big Horn Medicne Wheel
  • Monday, December 12, 2005

    Decoherence

    How to understand this quantum-to-classical transition linking two incompatible descriptions of reality is still a matter of debate among the various interpretations of quantum theory. In any case, one can probe the borderline between the classical and the quantum realm by performing interference experiments with particles of increasing complexity.


    Of course I am cocnerned about the determinations of the paticle natures seen in a particular light. These constituent s are part an dparcel of a much larger view from increase entrophy( I always get these things a**backwards), and cooling temperatures?

    Decoherence is relevant (or is claimed to be relevant) to a variety of questions ranging from the measurement problem to the arrow of time, and in particular to the question of whether and how the ‘classical world’ may emerge from quantum mechanics. This entry mainly deals with the role of decoherence in relation to the main problems and approaches in the foundations of quantum mechanics.


    Of course I am paying attention and listening. :)Of course I want to find my way back to the classical world from where probabilistic valuations reigned. I was acting as a "gathering point" in my quest for a "philosophical design" (not to be confused with ID?). :) Okay, I understand this is not acceptable.


    The difference between quantum and classical behaviour is exemplified by the famous “double-slit experiment”, in which photons are fired at a barrier containing two slits, and then allowed to fall on a screen opposite the barrier. Classical particles would pass through (at most) one slit at a time, but photons can pass through both simultaneously. The two waves associated with the photon passing through the two different slits fall in and out of phase with each other at different points on the screen — the phase of these waves being related to the total distance the photon travels from source to screen — so they interfere either constructively or destructively, producing a pattern of light and dark bands.




    What motivated such cosmlogical design, as a crunching inevitable to have found the limitations of the energy having found itself turning back? So we do not see this right now and we speculate. this did ont take away from the isolated examples of unfoldment as a cyclcical process between energy and matter did it??

    Oh for heaven's sake, where will my ramblings take me next? :)

    Lubos Motl:
    I would not promote overly technical lecture notes, especially not about things covered in many books. But the interpretation of quantum mechanics in general and decoherence in particular - a subject that belongs both to physics as well as advanced philosophy - is usually not given a sufficient amount of space in the textbooks


    Those are strong words [shut up and calculate] for a layman to consider, when he is groping to trying to find his way.

    Lecture 23 was pointed out by Lubos Motl in his article for consideration. More was considered from the list contained here.

    If such energies were to be amongst the recognition of the quantum world, had we really been that separated from cosmological recognition of what constitued that beginning? Am I suppose to dismiss Weinberg in his first three minutes, for what might have been recognized in the first three seconds?? Remeber I am in the fifth dimension, where temeprature and entropic findings would have found a furthe rvalue to the discussion of what went this way and what that way. The entangling process is very profound.

    So in looking back, we do not know where such a thing could begin? I think I understand that from what , although, if such proceses were recognized in the cyclcial nature of the cosmos why would we not entertain the rejuvenation of geometrical propensities to models inherent already in the universe? See the universe as a much "larger process" much different then the scope through which we might have treated each galaxy in it's rotations? Everett? Hmmm....

    To map the "invisible" Universe of dark matter and gas expelled during the birth of galaxies: a large-aperture telescope for imaging and spectroscopy of optical and ultraviolet light.

    To measure the motions of the hottest and coldest gas around black holes: a radio interferometer in space.

    To see the birth of the first black holes and their effect on the formation of galaxies, and to probe the behavior of matter in extreme environments: a very large aperture arc-second X-ray imaging telescope.

    To determine the nature and origin of the most energetic particles in the Universe today: a mission to track them through their collisions with the Earth.


    I have been troubled indeed by the "orbital mapping" I speculated to the cosmological design, seen as "events" in that cosmo. By such happen stance, such relations seem to spark some wonder about the arrangement, to the fundamental library of that same orbital design. I made this mistake before, and I need to correct it now.

    Slow down! "Antimatter?" "Pure energy?" What is this, Star Trek?

    But you can see evidence for antimatter in this early bubble chamber photo. The magnetic field in this chamber makes negative particles curl left and positive particles curl right. Many electron-positron pairs appear as if from nowhere, but are in fact from photons, which don't leave a trail. Positrons (anti-electrons) behave just like the electrons but curl in the opposite way because they have the opposite charge. (One such electron-positron pair is highlighted.)


    The collider ring as a boson, whose overall contention could have been seen in the total energy involved, and the dispensing to those extra dimensional perspectives within the "natural world" of our settings? Have I misunderstood the values of the Pierre Auger experiment to see better, then we had seen before, not to have seen a topological question about how one would interpret the sphere with one hole, as a donut? What values circles then?


    Decoherence represents an extremely fast process for macroscopic objects, since these are interacting with many microscopic objects in their natural environment. The process explains why we tend not to observe quantum behaviour in everyday macroscopic objects since these exist in a bath of air molecules and photons. It also explains why we do see classical fields from the properties of the interaction between matter and radiation.


    Angels/demons seem to make there way into view here? Yet in the world of Dirac might he seen the consequence of possible pathways in the construction of the matrix involved and intoduced the i of questionable directives as results in the arrangement of that same matrix?? Feynman took over for sure in his toy models.

    Then of course I come across this statement previous and I am back to scratching my head. Oh boy!

    You might imagine antimatter as a possible temporary storage medium for energy, much like you store electricity in rechargeable batteries. The process of charging the battery is reversible with relatively small loss. Still, it takes more energy to charge the battery than what you get back out of it. For antimatter the loss factors are so enormous that it will never be practical.

    If we could assemble all the antimatter we've ever made at CERN and annihilate it with matter, we would have enough energy to light a single electric light bulb for a few minutes.


    Hmmmm......more confusion again.:)



    What value from such gravitonic perceptions from the modifications if events such as these above are not held to the dynamical nature of the spacetime fabric itself?