Showing posts with label CERN. Show all posts
Showing posts with label CERN. Show all posts

Monday, October 02, 2006

The Periodic Table of the Moon's Strata


Clementine color ratio composite image of Aristarchus Crater on the Moon. This 42 km diameter crater is located on the corner of the Aristarchus plateau, at 24 N, 47 W. Ejecta from the plateau is visible as the blue material at the upper left (northwest), while material excavated from the Oceanus Procellarum area is the reddish color to the lower right (southeast). The colors in this image can be used to ascertain compositional properties of the materials making up the deep strata of these two regions. (Clementine, USGS slide 11)
Clementine gravity experiment used measurements of perturbations in the motion of the spacecraft to infer the lunar gravity field


Like Grace, I choose to build an understanding of the gravity fields.

S-Band Transponder Doppler Gravity Experiment

The gravity experiment used measurements of perturbations in the motion of the spacecraft to infer the lunar gravity field. Clementine was equipped with an S-band microwave transponder and 2 S-band omni-directional high-rate antennas which were used for tracking by the NRL tracking station in Pomonkey, MD, and the NASA Deep Space Network. The frequency of the S-band transmission was measured every 10 sec, and the Doppler shift would give the relative velocity of the spacecraft towards or away from the Earth. Accelerations were calculated from changes in the velocity, and after accounting for the orbit, relative motions of Earth and moon, and Earth and solar gravity, these accelerations are converted to lunar gravity effects on the spacecraft.
The calculated lunar gravity field can be used to model subsurface lunar structure. The Pomonkey station could measure the velocity to an accuracy of 3 mm/sec, while the Deep Space Network stations could achieve about 0.3 mm/sec. Tracking was not possible on most of the lunar far side (120° to 240° long, -45° to 45° lat), when the moon was between the spacecraft and the Earth. In all, over 361,000 observations were made, approximately 57,000 at less than 1000 km altitude.


As our physical interpretation of this lovely pearl(earth) we live on has changed in the conceptual views of "times clocks and such," it became evident in GRACE that the world was quite different then what was first view from space in triumph.

As you might well know, all matter in the universe consists of small particles called atoms and each atom contains electrons that circle around a nucleus. This is how the world is made.
If one places an atom (or a large piece of a matter containing billions and billions of atoms) in a magnetic field, electrons doing their circles inside do not like this very much. They alter their motion in such a way as to oppose this external influence.

Incidentally, this is the most general principle of Nature: whenever one tries to change something settled and quiet, the reaction is always negative (you can easily check out that this principle also applies to the interaction between you and your parents). So, according to this principle, the disturbed electrons create their own magnetic field and as a result the atoms behave as little magnetic needles pointing in the direction opposite to the applied field*.



But of course may I infer "floating ships" over mineral deposits that were conducive to transportation in regards to the superconductors, floating frogs and such? An "attenuator of a kind" for the strength's and weaknesses of such composite gatherings?

But anyway before this "energy is considered in it's matter formed," how did such asymmetrical breaking from the origins not have ocnsidered such constitutions built on the very matters of the moon or such, in it's construction? In the end the gravity field is worth what?

At SLAC and elsewhere in the 1990s, precision measurements probing quantum effects from physics at higher energy scales were very successful. Precision electroweak measurements accurately predicted the mass of the top quark before it was discovered at the Tevatron at Fermilab, and they were cited in the awarding of the 1999 Nobel Prize to Veltmann and t'Hooft, which recognized their work in developing powerful mathematical tools for calculating quantum corrections and demonstrating that the Standard Model was a renormalizable theory. The discovery and mass measurement of the top quark at Fermilab's Tevatron and the precise Z0 boson mass measurement from CERN experiments added to well established values for other Standard Model parameters, to allow predictions for the only Standard Model parameter not yet measured, the Higgs mass.



What is a coupling constant? This is some number that tells us how strong an interaction is. Newton's constant GN, which appears in both Newton's law of gravity and the Einstein equation, is the coupling constant for gravitational interactions. For electromagnetism, the coupling constant is related to the electric charge through the fine structure constant a



While the idea in my mind is "the extension of all elements demonstrated in some way arising from the standard model, what said that "this element or that" could not have been created from a oscillatory expression of the big bang, and the particles that issue forth, are not without some geometrical expression as "inhernet structures" of that table?



As a "resonantial value" of a point along the length of the string?

Dr. Timmothy Stowe's physicists periodic table



So you see, I had a vision about the future. A time when I will work in space deploying satellites. But what said that future would not ascertain the requirements when our fossil fuels will have to be disregarded? Change the way the planets inhabitants will look forward to the benefits of such conceptual changes?

So this is a fictional posting then, about that future.

CP Violation

The value of non-Euclidean geometry lies in its ability to liberate us from preconceived ideas in preparation for the time when exploration of physical laws might demand some geometry other than the Euclidean. Bernhard Riemann




ON a macroscale the blackhole is a understanding of when we investigate curvature parameters with regards to the nature of our universe in spacetime. We understand this right?

What are the "entropic valuations" being recognized as we look to a earlier time of when the QGP existed and then such manifestaion in the "matters states" have exemplified such characteristics as?


Both space and spacetime can either be curved or flat.


I am going to give you a quick summation of what GR is. It is about "Gravity." Now if you hold that in mind you should not loose any time with what I am telling you.

Now, how is it that we can see the dynamcial nature of the universe, yet, we would not consider the effect of the presence of microstate blackholes in regards to such gatherings in the space, of what we call "spacetime?" What would "such gatherings" show of itself?


A circle of radius r has a curvature of size 1/r. Therefore, small circles have large curvature and large circles have small curvature. The curvature of a line is 0. In general, an object with zero curvature is "flat."


Think about the "circle" and it's 2D view of what the blackhole is doing in 3D +time in context of many blackholes. I always refer to "one" so you can see the comparative view that I am having little success in transferring to you, in what I am seeing.

The curvature parameters are closely associated to the thermodynamic realizations. This is importnat not only on a cosmological level, but on a microstate as well.

Lubos explains that here.

Lubos:
There are lots of other examples what you can do to increase the number of black holes. Change the couplings so that the stars burn their fuel faster, and they will collapse into black hole faster. Reduce the gap between the Planck scale and the QCD scale, and nuclear collisions will be more likely to end up as black holes.

It is quite obvious that the change of virtually any parameter of the Standard Model (plus inflation) in the right direction (one of the two directions) will result in an increase of the number of black holes. How can you doubt such a trivial thing?


So there is something about the nature of our universe and the balance that it seeks to maintain of itself? Here we are, looking at events within the cosmo and "secular views of it's manfiestation" different then other locations within the universe. Yet not apart from it, or not indifferent to it's nature to be part of a larger picture?



Silicon Vertex Tracker. The SVT is the heart of the BABAR experiment at SLAC—in the photo, physicists are putting the finishing touches on improvements to the detector. (Photo Courtesy of Peter Ginter)
SLAC's BaBar collaboration has discovered that CP violation—an asymmetry between the behavior of matter and antimatter—exists even in a very rare class of particle decays. This result offers the most sensitive avenue yet for exploring matter-antimatter asymmetries, with implications for the future understanding of physics beyond the Standard Model.

"BaBar has proven to be a fantastic instrument for exploring the origins of matter-antimatter asymmetries, allowing us to probe with exquisite precision very rare processes related to how the early universe came to be matter dominated," said David MacFarlane, BaBar Spokesperson and Professor at the Stanford Linear Accelerator Center.


So here we are having been given the example of CP violation above and here?

How is it that anything could be asymmetrical? :) So you introduce anti-matter and matter?


(ambigram courtesy John Langdon)
If we could assemble all the antimatter we've ever made at CERN and annihilate it with matter, we would have enough energy to light a single electric light bulb for a few minutes.


As a observer Einstein made it clear that the observable universe has ideas attached to it. The "Pretty girl and the hot stove analogy" was compelling to those of us who recognized the values we may attach to life. "The Gravity of the situation?" How narrow our view of the world is when we feel the world is lost?

But the hope and inspiration is, that the world has a bright future when we undertsand the implications of our views. Our involvement in the "toposense of reality? We are "part and parcel" of it?

So, should we talk about the components of Heaven and Hell( my philosophical discourse on the nature of consciousness?)? You have to understand the picture and the dynamical nature this universe can say about it's entropic valuation?

While I may have understood Omega, it didn't come to the nature it is by not including a geomtrical perspective about the nature of that same universe.

That's my point. It had to arise from a earlier time and the manifestation is the matter states we are defining in correlation to the entropic valuations.

While you see these as macro-characteristics and the relation to blackhole in 3d+time, the result is, a explanation of matter states in "macrostylistic beauty" we see in the events of the cosmo.

If such inclinations to drive the energy to a ever smaller defined circle, as it gets smaller "the difference is" not so indiscernable that the events of the "particle showers" created are matter states that arise form the energy that was used.

You see?:)

The Ceiling

The deeper implications of such a thought from perspective is focused upward? Yet such perspective can be made from other positions? So some minds were flexible? Others, were just engineers? ;)

Understanding other worlds came naturally to him. Perhaps it was an inevitable consequence of being the child of Japanese Americans. His parents, though born in California, spent World War II behind barbed wire, guarded by people with machine guns: incarcerated by their own country as enemy aliens. Afterwards his father worked as a gardener, his mother a maid: two of the few jobs that were available to Japanese Americans. Kaku grew up poor, but one of the family treats was to visit the Japanese Tea Garden in San Francisco's Golden Gate Park. It turned out to be the place of a childhood epiphany. Wondering in the way that only a child does, Kaku looked at the carp swimming in a weedy pond and imagined how they would not be able to conceive of other worlds. "A carp engineer would believe that was all there is; but a carp physicist would see the ripples on the surface and start thinking about unseen dimensions," Kaku told me, laying the first of many lashes on his token engineer.


The "ceiling" is the perspective of the carp, not the perspective of the "carp physicist."

See:

  • Liminocentric Structures: Which Circle do you Belong Too?-Sunday, July 10, 2005


  • Ps: Some updates are curvature given for perspective. Think of a string, and any point on that string. What does the energy value of "that point" tell you in regards to the circle? The point on that string. It's just a way of looking at the string and the resonantial value assign along the string's length?

    Catching Nature in Action


    To capture the particles emerging from powerful proton-proton collisions at the LHC, scientists design and build huge, massive detectors. The CMS detector, about 50 feet tall, relies on an array of particle detection subsystems. The tracker (the subsystem at its core) records particle tracks with ultrahigh precision. The intermediate subsystem, the calorime-ter, determines the energy of the particles escaping the collision. The outermost devices identify muons, heavy electron-like particles that can travel long distances.
    Graphic: CMS collaboration


    LHCf is a different type of experiment, using the LHC's protons as a source that simulates cosmic rays. It will study how colliding protons cause showers of particles, in particular photons. Analysis of these showers will aid in the interpretation and calibration of large-scale cosmic-ray experiments, which can cover thousands of square kilometers of ground


    See:

  • The wonders of Quark-Gluon Plasma
  • Wednesday, September 27, 2006

    Cosmic Rays in Atlas



    Like Piglet describing the Heffalump in Winnie the Pooh by AA Milne, one knows this started out in some fantastical world. More then, the "inkblot" as a comparison leads too/from, a fictional story, and became the fantasy of Alice that had already been mathematically set in motion?

    So, theree are "ground rules" on using the inkblot in comparison to any microstate blackhole


    The flux of cosmic ray muons through the ATLAS cavern can be utilized as a tool to "shake down" the ATLAS detector prior to data taking in 2007.

    Additionally, a thorough understanding of the cosmic ray flux in ATLAS will be of great use in the study of cosmic ray backgrounds to the search for rare new physics processes in ATLAS.



    Again people like John Ellis lead us to the understanding of what Pierre Auger initiated in understanding this relation of cosmic particles and the issue coming to the forefront, in regards to the microstate blackhole production from these collisions.

    It is only today, that I discover the back ground process that was going on here, while it was bein worked out on Sabines's and Stefan's Backreaction site. I didn't relaize I was a "boucing board" from which the "questions in mind" were being initiated. Repeated comments "there" placed here in the comment sections to advance a position on what I thought.

    The momenta of the charged particles are measured from the curvature of their trajectories in a magnetic field provided by superconducting magnets. The volume and strength of magnetic field needed are not achievable with conventional magnets.


    We use each other as spring boards(nudges) to seeing a little further each time. That is defintiely appropriate to developing a good comprehension of the subject at hand, and creating insight to further information values gained in that research.



    See:

    Stefan and Sabines Backreaction site on Backreaction: Micro Black Holes

    A wonderful resource link to cosmic particles demonstrations

    Also my comment at Backreaction, has some more information in the search for understanding on microstate blackholes as well.

    Monday, September 25, 2006

    Why do physicists want to study particles?

    A few "cosmic rays" pass through our body every second of every day, regardless of where we are.

    They consist of particles created when high energy atomic nuclei (mainly protons) coming from outer space collide with the atoms at the top of the earth's atmosphere. Such particles are not just electrons, protons and neutrons, but also other kinds of particle.

    Near the ground, the cosmic rays include muons, similar to the electrons but more than 200 times heavier. Unlike electrons, which live forever, a muon will live about 2.2 microseconds, and then convert into an electron and two neutrinos (electron-neutrino and muon-neutrino; these are like a very light neutral version of the electron and of the muon).

    The muons themselves emerge mainly from the decays of other short-lived particles. Some of these particles, called pions, are made from up and down quarks. However, others (kaons) contain a third type of quark, called the strange quark.

    Cosmic matter is then made up of more components than the atoms. In addition to the electron, electron-neutrino, up quark and down quark, we have the muon, the muon-neutrino and the strange quark.


    Do Blackholes Radiate

    The possibility that non-radiating "mini" black holes exist should be taken seriously; such holes could be part of the dark matter in the Universe. Attempts to place observational limits on the number of "mini" black holes (independent of the assumption that they radiate) would be most welcome.

    Friday, September 22, 2006

    What is Natural?


    Fig. 2. Image showing how an 8 TeV black hole might look in the ATLAS detector (with the caveat that there are still uncertainties in the theoretical calculations).


    The question I would pose to those who do not have the dynamical nature of the universe in mind, are you happy with what you are seeing? Is it enough that your measure will be in the value of Steven Weinberg's first three minutes?

    Becuase I have taken you down to the microseconds, we can now see of this uiverse, do you think it so unlikely that the very methods for blackhole dyamics would not have include thermodynamic realizations held in context of the issue brought forward by the introduction by Paul of the Conformal Field theory and the issues relate to Penrose?

    Of course I jump ahead, based on the current knowledge base I have been able to put together by reading, sharing ideas and learning. So "you see," and "I see" what?

    Gamma ray detection is just the beginning of the lesson behind deeper perceptions of our universe and it is in this way that you are taken to view the universe on a much more dynamical level.

    But wait, I don't talk lightly of Planck scale and the measure of the square box.

    Nature (also called the material world, the material universe, the natural world, and the natural universe) is all matter and energy, especially in its essential form. Nature is the subject of scientific study. In scale, "nature" includes everything from the universal to the subatomic. This includes all things animal, plant, and mineral; all natural resources and events (hurricanes, tornadoes, earthquakes)....en.wikipedia.org/wiki/Nature


    On to the Validity of the LHC

    I encounter a concept the other day that took me back some. If we intercede and experiment to find the fundamental working associated with "dynamcial thinking" then how could one actually do this, while holding a "cosmological view" to all that we are exposed too in the space, around earth, and beyond?

    So of course, while we are being treated to the vast views given to us by Hubble and all the satellites, how much more could we have been satisfied to say, "look at what we have accomplished?"

    That is enough for the cosmologist is it not?


    In physics, natural units are physical units of measurement defined in terms of universal physical constants in such a manner that some chosen physical constants take on the numerical value of one when expressed in terms of a particular set of natural units. Natural units are intended to elegantly simplify particular algebraic expressions appearing in physical law or to normalize some chosen physical quantities that are properties of universal elementary particles and that may be reasonably believed to be constant. However, what may be believed and forced to be constant in one system of natural units can very well be allowed or even assumed to vary in another natural unit system. Natural units are natural because the origin of their definition comes only from properties of nature and not from any human construct. Planck units are often, without qualification, called "natural units" but are only one system of natural units among other systems. Planck units might be considered unique in that the set of units are not based on properties of any prototype, object, or particle but are based only on properties of free space.


    So as strange as it may seem "this concept" held in mind argues the validity of the LHC as a process that is "natural" as it is used to delve into the energies that allow us to see this "cascade of nature as particle manifestations. In this way, we have to support our views on what?

    So, we develope instruments to help us look to the very beginnings of creation? We talk about blackholes and we ask, "are these real?"

    Microstate Blackholes

    What gave us the ability to entertain such concepts that we again ask ourselves, "are these real?" All we had known is that Blackholes exist in nature? So the point I am making is that if you follow the natural costants, what use the microstate in, or as a valuation of what is real in cosmological association?

    If, as some suspect, the Universe contains invisible, extra dimensions, then cosmic rays that hit the atmosphere will produce tiny black holes. These black holes should be numerous enough for the observatory to detect, say Jonathan Feng and Alfred Shapere of the Massachusetts Institute of Technology in Cambridge, Massachusetts.


    Fortunately while we were being occupied by the news of LHC and all the workers found busy there constructing, there were others who were very busy too. They were helping us see in ways that we were not accustom as well, in regards too, the cosmic particle collisions. Now what use this information if we had thought this avenue not fruitful and necessary?


    Nevertheless, astroparticle and collider experiments should provide useful input to the theoretical work in this area. Indeed, the signatures are expected to be spectacular, with very high multiplicity events and a large fraction of the beam energy converted into transverse energy, mostly in the form of quarks/gluons (jets) and leptons, with a production rate at the LHC rising as high as 1 Hz. An example of what a typical black-hole event would look like in the ATLAS detector is shown in figure 2.

    If mini black holes can be produced in high-energy particle interactions, they may first be observed in high-energy cosmic-ray neutrino interactions in the atmosphere. Jonathan Feng of the University of California at Irvine and MIT, and Alfred Shapere of the University of Kentucky have calculated that the Auger cosmic-ray observatory, which will combine a 6000 km2 extended air-shower array backed up by fluorescence detectors trained on the sky, could record tens to hundreds of showers from black holes before the LHC turns on in 2007.


    Lest the knowledge doesn't serve us then what will be the quest of LHC? What new route to be taken? And it is in this design of measure that we will see something more direct to the basis of what these energy valuations serve?

    CLIC is based on a novel technology in which an intense low-energy electron beam is used to generate an electromagnetic wave that is used to push a lower-intensity beam to much higher energies in a relatively small distance. It seems to be the only realistic chance of colliding electrons and positrons at multi-TeV energies so, if it works, it will allay (at least for a while) some of David Gross's concerns about the prospects for future big physics projects-John Ellis

    Tuesday, September 19, 2006

    Allotropes and the Ray of Creation

    Just thinking here about "life" in general and dreaming.

    As well, this takes us back to the article from Backreaction. This post was generated in response to Q's comment and my subsequent statements that I supplied in turn.

    Take "full note of Fermion" discription here, as well as, theoretical understanding implied.



    Just to note now that the widget on right called Dialogue of Ideas(Dialogos of Eide)supplies the ability to "rightclick" on name and then copy/paste to box ability. This enhances location and response, that you may have further to any topic.

    In this regard, Paul's thoughts on the "Reimann Hypothesis" enters here and the undertsanding that this gave to computerized processes the ability to see ULam as the developemental attitude/geometry of the Carbon, which takes on new allotropic forms.



    This illustration depicts eight of the allotropes (different molecular configurations) that pure carbon can take:

    a) Diamond
    b) Graphite
    c) Lonsdaleite
    d) Buckminsterfullerene (C60)
    e) C540
    f) C70
    g) Amorphous carbon
    h) single-walled carbon nanotube


    Review of experiments

    Graphite exhibits elastic behaviour and even improves its mechanical strength up to the temperature of about 2500 K. Measured changes in ultrasonic velocity in graphite after high temperature creep shows marked plasticity at temperatures above 2200 K [16]. From the standpoint of thermodynamics, melting is a phase transition of the first kind, with an abrupt enthalpy change constituting the heat of melting. Therefore, any experimental proof of melting is associated with direct recording of the temperature dependence of enthalpy in the neighbourhood of a melting point. Pulsed heating of carbon materials was studied experimentally by transient electrical resistance and arc discharge techniques, in millisecond and microsecond time regime (see, e.g., [17, 18]), and by pulsed laser heating, in microsecond, nanosecond and picosecond time regime (see, e.g., [11, 19, 20]). Both kind of experiments recorded significant changes in the material properties (density, electrical and thermal conductivity, reflectivity, etc. ) within the range 4000-5000 K, interpreted as a phase change to a liquid state. The results of graphite irradiation by lasers suggest [11] that there is at least a small range of temperatures for which liquid carbon can exist at pressure as low as 0.01 GPa. The phase boundaries between graphite and liquid were investigated experimentally and defined fairly well.


    Ray of Creation

    Concept image of a future integrated terabit silicon optical transmitter containing 25 hybrid silicon lasers, each emitting at a different wavelength, coupled into 25 silicon modulators, all multiplexed together into one output fiber.

    It is the "archetectual building" that goes on that we may discern the inherent nature of our pursuites? "Ray of creation," is explicit here, in terms of how such building will go on with photonic formation technologies. While imnde th weight of ole structure the sarches hold up an extreme beauty of the churches design? Gravity weight's down with it's burden?:)


    Courtesy Edgar Fahs Smith Memorial Collection, Department of Special Collections, University of Pennsylvania Library


    Mendeleev's world come true, as we think about the "Rainbow of possibilites" in our spectrum, as well as develope the "basis of perception" that grew from "thematic realizations" from our brightest minds?? Carbon based societies, or further geometrics that remain elusive to us??

    So what about the geometrics of all this processing? Our pursuites to Gluonic perceptions where such high energy photons will deliver us informative stylizations to the early events in the cosmo? Angle of perpeptions exist, and what does it say about the photon?

    Carbon forms the backbone of biology for all life on Earth. Complex molecules are made up of carbon bonded with other elements, especially oxygen, hydrogen and nitrogen. It is these elements that living organisms need, among others, and carbon is able to bond with all of these because of its four valence electrons. Since no life has been observed that is not carbon-based, it is sometimes assumed in astrobiology that life elsewhere in the universe will also be carbon-based. This assumption is referred to by critics as carbon chauvinism, as it may be possible for life to form that is not based on carbon, even though it has never been observed.


    "Carbon" at the very beginning of the birthing process? Maybe, just in this universe of ours?:)While, moving to the "photonic base" we delve into the spiritual implications of the "observer's choice" of materiality as a "mass enhancement" of our reasoning?

    Carbon was not created during the Big Bang due to the fact that it needs a triple collision of alpha particles (helium nuclei) to be produced. The universe initially expanded and cooled too fast for that to be possible. It is produced, however, in the interior of stars in the horizontal branch, where stars transform a helium core into carbon by means of the triple-alpha process. It was also created in a multi-atomic state


    So some will not like the "tunes we play," "the concepts" or the "model enhancements" that are less then "the Theory" that Hooft tells us about in his comments in Lee Smolin's book.

    So, we are left with the artistically inclined and those whose "thematic" realizations require them to explain to us this anomalistical nature that apparently is waiting out there for us. It is that we just have to discover/remember it?

    But until then, we are supposed to be doing science? Ahem! Apparently, we had be doing naught?:)

    I then dream.....:)

    Saturday, August 26, 2006

    Beyond Spacetime?

    As well as bringing the accelerator's counter-rotating beams together, LHC insertion magnets also have to separate them after collision. This is the job of dedicated separators, and the US Brookhaven Laboratory is developing superconducting magnets for this purpose. Brookhaven is drawing on its experience of building the Relativistic Heavy Ion Collider (RHIC), which like the LHC is a superconducting machine. Consequently, these magnets will bear a close resemblance to RHIC's main dipoles. Following a prototyping phase, full-scale manufacture has started at Brookhaven and delivery of the first superconducting separator magnets to CERN is foreseen before the end of the year.





    Now some people do not like "alternate views" when looking at Sean's picture. But if you look at it, then look at the picture below, what saneness, sameness, could have affected such thinking?

    Lisa Randall:
    "You think gravity is what you see. We're always just looking at the tail of things."





    So we look for computerized versions to help enlighten. To "see" how the wave front actually embues circumstances and transfers gravitonic perception into other situations.



    Was this possible without understanding the context of the pictures shared? What complexity and variable sallows us to construct such modellings in computers?



    Okay so you know now that lisa Randall's picture was thrown inhere to hopefully help uyou see what I am saying about gravitonic consideration.

    Anything beyond the spacetime we know, exists in dimensional perspectives, and the resulting "condensative feature" of this realization is "3d+1time." The gravitonic perception is "out there?" :)

    Attributes of the Superfluids

    Now it is with some understanding that the "greater energy needed" with which to impart our views on let's say "reductionism" has pointed us in the direction of the early universe.

    So we say "QGP" and might say, "hey, is there such a way to measure such perspectives?" So I am using the graph, to point you in the right direction.



    So we talk about where these beginnings are, and the "idea of blackholes" makes their way into our view because of th reductionistic standpoint we encountered in our philosophical ramblings to include now, "conditions" that were conducive to microstate blackhole creation.

    The energy here is beyond the "collidial aspects" we encounter, yet, we have safely move our perceptions forward to the QGP? We have encounter certain results. You have to Quantum dynamically understand it, in a macro way? See we still talk about the universe, yet froma microscopic perception.

    Let's move on here, as I have.

    If you feel it too uncomfortable and the "expanse of space quantumly not stimulating" it's okay to hold on to the railings like I do, as I walked close to the "edge of the grand canyon."

    So here we are.

    I gave some ideas as to the "attributes of the superfluids" and the history in the opening paragraph, to help perspective deal with where that "extra energy has gone" and how? So you look for new physics "beyond" the current understanding of the standard model.

    So, it was appropriate to include the graviton as a force carrier? Qui! NOn?

    Thursday, August 17, 2006

    Cyclic Universe Could Explain Cosmological Constant

    Thanks Paul for pointing this article out here some time ago.

    Physicists have proposed several theories to explain why Λ is so small. One of the most popular -- the "anthropic principle" -- states that Λ is randomly set and has very different values in different parts of the universe (figure 1). We happen to live in a rare region, or "bubble", where Λ has the value we observe. This value has allowed stars, planets and therefore life to develop. However, this theory is also unsatisfactory for many scientists because it would be better to be able to calculate Λ from first principles.


    We understand where strings reside in terms of "microseconds" and the "arrow of time?"

    Once we know that there is one de Sitter solution, it is easy to find many more of them by just changing the values of the fluxes. Sujay Ashok and Michael Douglas of Rutgers University have recently estimated the number of different solutions to be at least 10100, which indicates an extremely rich landscape with many mountains, valleys, oceans and even volcanoes. Each minimum-energy point represents a different universe, and the height of that point is the value of the cosmological constant for that universe. Viewing the solution this way, the probability that one of these universes has a cosmological constant that is as small as is indicated by current experiments is actually non-zero.





    Hmmmm..... remember Higgins?

    Thursday, July 27, 2006

    Alice and the Cosmic Ballet, Now Meet Higgins

    As Alice learned, it's not always clear what's a looking glass, and what's a window to another world. Mirrors and windows are often interchangeable: we look out into the world, and see ourselves reflected back. We look at a reflection, and believe it's showing us a world beyond. We internalize the mirror image and project the one inside. Objects, actions and ideas can become so confused with their reflections that it's impossible to untangle them. What's phantom and what's real? Is there even a relevant difference?





    I am always taken back to Thomas Young's experiments and where the photon has travelled, while we see the resulting evidence of it's travel on the screen.

    Welcome to the mirror world, in which every particle in the known universe could have a counterpart. This cosmos would hold mirror planets, mirror stars, and even mirror life.


    Have they found more dramatic ways in which to see these travels? Most certainly? Were these methods steep in metaphysical ways in which the mind saw fit to think that indeed there were other worlds?

    Developed by Feynman to decribe the interactions in quantum electrodynamics (QED), the diagrams have found use in describing a variety of particle interactions. They are spacetime diagrams, ct vs x. The time axis points upward and the space axis to the right. (Particle physicists often reverse that orientation.) Particles are represented by lines with arrows to denote the direction of their travel, with antiparticles having their arrows reversed. Virtual particles are represented by wavy or broken lines and have no arrows. All electromagnetic interactions can be described with combinations of primitive diagrams like this one


    Before, we were tantalized with fictional stores about "other worlds" and the fiction of Lewis Carroll. INsanely driven, by such fictions, there were concerted efforts to experimentally challenge what the little photon was doing. Thus forward, the little photon became known as Alice in experiment?

    Fast forward now, and with all this new experimental knowledge of science that we are now governed by the principles of what happens at the time of such creations, that the "spectrum" becomes the basis for what happens at any beginning? The journey "through" identifying "particulars of materials," as we now know their signatures.

    In its quest for the quark-gluon plasma, a state of matter that is believed to have existed just after the Big Bang, ALICE will use a very accurate tracker system. The major part of this system is the time projection chamber (TPC), wherein the trajectories of electrically charged particles are reconstructed and their identity is determined. The ALICE TPC, a cylinder of 5 metres in diameter and 5 metres in length, is the largest of its kind worldwide. Nearly completed, it now has all read-out chambers installed with the custom electronics complete for the approximately 560000 read-out channels.

    Did you know?

    In a time projection chamber (TPC), an electric field is applied across a large volume of gas. When a charged particle traverses the TPC, it ionizes the gas and the liberated electrons drift in the electrical field to the endplates. The position on the endplate gives two coordinates. The third is given by the time of arrival of the electrons- hence the name of time projection chamber.


    Thus what sense if one can not be taken to the level of supersymmetry where the superfluid provides for a channel/tunnel through which "unaccountable energy is lost" as well as engage the wonder "similarily" as we looked early on at what the photon was doing?

    So there is this relationship to the energy, as we look at "point sources" and what GR encompasses not only from a cosmological standpoint, but from how we see the events wrapped in the wonders of the message Higgins will give us about the nature of such gatherings? So "Higgins" resides on the outside/inside of the balloon?

    We know that the graviton is not held to "such events" as Alice is? We know Higgins travels beyond the standard model, beyond 3+1 in ideas about a Professor crossing the room?

    I would like you to meet "Higgins" the graviton. :)

    The search for supersymmetry, or other physics beyond the Standard Model (SM) is becoming ever more tantalizing. The idea that the SM is theoretically incomplete is an old one. There is now a whole range of innovative and experimentally striking suggestions for this new physics that underlies the SM. A recent conference at CERN, Supersymmetry 2000, surveyed the scene.

    Sunday, July 23, 2006

    The Right Spin for a Neutrino Superfluid

    So how does it pancake?



    Now it is always a interesting proposition that what is leading in perspective, is meet with immediate new information( I think of course here of Risk Assessment and the first topic dealing with the issue of strangelets.)

    So, as to clarify any leading perspective, while doing research, what comes of what has been logically followed?

    So previously these questions were on my mind as well. Information availiable that answers supposed states of existance that are beyond what we currently understood and will soon be in the LHC?

    Right-handed neutrinos, with the intrinsic spin oriented in the direction of motion, have yet to be observed, but if they do exist then they could make neutrino superfluids possible. Joe Kapusta of the University of Minnesota has shown that such an exotic medium could arise because the right-handed particles could exchange Higgs bosons with the well known left-handed neutrinos and pair up to make bosons, which could then form a superfluid.

    Kapusta points out that the condensation temperature would be well below the cosmic background temperature, so it would be quite a feat to make this superfluid. However, Kapusta also notes that a sufficiently advanced civilization might use pulses of neutrino superfluid for long-distance communications.


    You will then note "characteristics" in the superfluid of QGP(also swiss cheese?) that are very similar to He4?

    So let's go back and look at that?



    See:

  • History of Superfluids: New Physics
  • Friday, June 16, 2006

    The Fate of our Planet?

    Clifford at cosmic variance addresses a fundamental question about the need(?) to populate other planets, versus exploring?

    Clifford:
    And it would be nice if we did the exploration primarily out of curiosity and wonder, and not out of fear for our future


    But of course, as with any thread there is a diversion of thought, so I answer this, while still trying to understand what he meant by the timescale?

    A Blackhole ate my Planet?


    It's almost worth following the trail of "Risk Assessment" here. Some might remember James Blodgett?

    In recent years the main focus of fear has been the giant machines used by particle physicists. Could the violent collisions inside such a machine create something nasty? "Every time a new machine has been built at CERN," says physicist Alvaro de Rujula, "the question has been posed and faced."



    Of course, refering to "cosmic particle collisions",then to have the "issues of strangelets" explained away as well. I mean every journey is fraught with the anxieties of fear. Fear of the unknownas one progresses along the roads to new worlds?



    See:
  • RHIC Animations and Multimedia


  • Strangelet Search at RHIC by STAR Collaboration

    We report results of the first strangelet search at RHIC. The measurement was done using a triggered data-set that sampled 61 million top 4% most central (head-on) Au+Au collisions at $\sNN= 200 $GeV in the very forward rapidity region at the STAR detector. Upper limits at a level of a few $10^{-6}$ to $10^{-7}$ per central Au+Au collision are set for strangelets with mass ${}^{>}_{\sim}30$ GeV/$c^{2}$.

    So where do we stand with the fate of our planet?

    See:

  • Strangelets Do Not Exist?
  • Thursday, June 08, 2006

    Scott Ellsworth Forbush:Opportune Times for Experimentation?

    Forbush Decrease

    Scott E. Forbush discovered the surprising inverse relationship between solar activity and cosmic rays




    There is some confusion still on my part as I wanted to understand the relationship between high energy particle and the conditions for which particle collisions would provide for secondary particle creations.

    See:
  • How Particles Came to be?


  • This thinking would help to establish further information that has been compelling to me about microstate blackhole creation, and what this may imply for the planet on which we live?

    Has anyone given this any thought as they developed the views on Risk Assessment and try to explain away the possibilties with what happens everyday?



    This thinking then help to stimulate not only secondary particle creations and what we see in our own creations in Atlas, but lays out for us, the sequence of events that are tied cosmologically to the very beginnings of this universe?




    Why did we miss this? Are high energy particle collisions dissauded by Solar Max, or do they remain undeterred in their travel? Here some questions then that arise in terms of how we see the physics of the day in consideration of mass infuences(gravitational lensing, massless photon travel), as I am thinking of Kip thornes picture of travel here as well. Hmmm.....

    Cosmic rays - are subatomic particles, which travel at nearly the speed of light through space and produce secondary cosmic ray particles in the atmosphere.



    Wednesday, June 07, 2006

    It's Alive: Cosmic Ray Recordings

    I was doing some visiting around to see what Jacque Distler was doing and of course some blog entries are more dear to the heart, when you have followed the history and found correlative statements that bring the subject home for consideration.

    Jacque Distler:
    Travis Stewart reports that the LHC’s ATLAS detector has seen cosmic ray events, an excellent sign that things are working as they should.




    Seen it's value in other ways immediately. So of course speaking on cosmic rays this entry was inviting and of course leads from one thing to another. Finally then, leading you to the very source of the article in question. It is good that Travis Steward gave the updated source indications of his article, for further reading.

    Atlas enews

    A major milestone for the Inner Detector project has been accomplished in early May as cosmic rays going through both the barrel Semiconductor Tracker (SCT) and Transition Radiation Tracker (TRT) have been successfully recorded in the SR1 building on the ATLAS experimental site at CERN.


    Insinuated Problems within Own Blog?

    Well after doing some work here to figure out, "what was what," I realized I had spelt John Bachall's name wrong (It should be Bahcall) on the entry url search, which did not show up under that search function as Bachall. Da.



    Gosh, I feel like a fool sometimes:)One of those things where the brain is indeed working faster then my fingers on the keys can type.

    It does not mean Lubos Motl, that by spelling names wrong like Gellman(Gell-Mann) or Feynmen(Feynman)that one is any less on aptitude, or that if one reads Smolin, they are part of some "other class of people" that you relate.

    We have to be nice to people, regardless of their religious leanings "atheistic or not? Or, it is possible, those of older age may call you a heathen? :)

    Pierre Auger and John Ellis's work

    So herein lies some more information for the lay person who wants to explore what Pierre Auger and others were doing, while John Bahcall was educating us in the ways of cosmic particle collision events.

    See Also:

  • Why Higher Energies

  • The Blackhole as a Superfluid: It's Viscosity