Monday, October 02, 2006

Catching Nature in Action


To capture the particles emerging from powerful proton-proton collisions at the LHC, scientists design and build huge, massive detectors. The CMS detector, about 50 feet tall, relies on an array of particle detection subsystems. The tracker (the subsystem at its core) records particle tracks with ultrahigh precision. The intermediate subsystem, the calorime-ter, determines the energy of the particles escaping the collision. The outermost devices identify muons, heavy electron-like particles that can travel long distances.
Graphic: CMS collaboration


LHCf is a different type of experiment, using the LHC's protons as a source that simulates cosmic rays. It will study how colliding protons cause showers of particles, in particular photons. Analysis of these showers will aid in the interpretation and calibration of large-scale cosmic-ray experiments, which can cover thousands of square kilometers of ground


See:

  • The wonders of Quark-Gluon Plasma
  • No comments:

    Post a Comment