PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma.
The Bird's eye view is really interesting once you consider the frame with which early detection system would speak to early universe formation. To me, this is a direct perspective of the spectrum's hidden aspect, from the origins of this universe to what we have around us now. From such a reductionistic valuation, how else would we be taken to such lengths of realization?
Can we see photons (particles of light) radiating directly from a Quark-Gluon Plasma? PHENIX has a preliminary measurement that confirms the presence of these direct photons. Data taken in 2004 should improve this measurement.
Fig. 2. Image showing how an 8 TeV black hole might look in the ATLAS detector (with the caveat that there are still uncertainties in the theoretical calculations).
Quark-Gluon Plasma and such early universe detection systems would make it very difficult to move the mind to consider the deepr implications of Compton scattering versus graviton scattering with the idea that such early indications from the source, would have revealled stoing gravitational tendencies from recognition of the supesymmetrical valuation of that early universe?
Nevertheless, astroparticle and collider experiments should provide useful input to the theoretical work in this area. Indeed, the signatures are expected to be spectacular, with very high multiplicity events and a large fraction of the beam energy converted into transverse energy, mostly in the form of quarks/gluons (jets) and leptons, with a production rate at the LHC rising as high as 1 Hz. An example of what a typical black-hole event would look like in the ATLAS detector is shown in figure 2.
If mini black holes can be produced in high-energy particle interactions, they may first be observed in high-energy cosmic-ray neutrino interactions in the atmosphere. Jonathan Feng of the University of California at Irvine and MIT, and Alfred Shapere of the University of Kentucky have calculated that the Auger cosmic-ray observatory, which will combine a 6000 km2 extended air-shower array backed up by fluorescence detectors trained on the sky, could record tens to hundreds of showers from black holes before the LHC turns on in 2007.
Maybe John Ellis can orientate our thinking here a bit in this regard.
John Ellis:
CLIC is based on a novel technology in which an intense low-energy electron beam is used to generate an electromagnetic wave that is used to push a lower-intensity beam to much higher energies in a relatively small distance. It seems to be the only realistic chance of colliding electrons and positrons at multi-TeV energies so, if it works, it will allay (at least for a while) some of David Gross's concerns about the prospects for future big physics projects.
Hirotaka Sugawara, former director of Japan’s KEK laboratory, also an ITRP member, described the science opportunities that a linear collider could provide.
"High energy physics has a long history of using proton and electron machines in a complementary way," Sugarawa said. "With concurrent operation, here is a remarkable opportunity to maximize the science from both a linear collider and the Large Hadron Collider. Exciting physics at the linear collider would start with the detailed study of the Higgs particle. But this would be just the beginning. We anticipate that some of the tantalizing superparticles will be within the range of discovery, opening the door to an understanding of one of the great mysteries of the universe—dark matter. We may also be able to probe extra space-time dimensions, which have so far eluded us."
No comments:
Post a Comment