Tuesday, December 20, 2005

Has Speed of Light changed Recently?

You have to remember I am not as well educated as the rest of the leaque connected at Peter Woit's site. But how could one think anything less, then what perception can contribute, as less then what the educated mind might have thought of? If it did not have the scope enlisted by others in consideration cosmology might have expressed, then we might have reduced the value of reducitonism role in how we perceive the beginning of the cosmos?

So what Does Peter Woit say here? I am glad that the support(choir:) moved to Peter's cause for truth and enlightenment, is clarifying itself, instead of the ole rants that we had been witnessed too, in the past.

Understanding the clear disticnctions make's it much easier now, instead of what opportunities might have been past by? Of course I understood that he is quite happy with the life given, makes it all the more reason that the value of opinion will have direction(not hidden causes). Contributions by the the opinions generated, held to a educative process that we all would like to be part of.

Peter Woit:
In general, what I really care about and am willing to invest time in trying to carefully understand, are new physical ideas that explain something about particle theory, or new mathematical ideas that might somehow be useful in better understanding particle theory.


Strings /M theory moved to cosmological thinking because of where it had been?

Life, the cosmos and everything:
Lee Smolin stressed that it is only justifiable if one has a theory that independently predicts the existence of these universes, and that such a theory, to be scientific, must be falsifiable. He argued that most of the universes should have properties like our own and that this need not be equivalent to requiring the existence of observers.

Smolin's own approach invoked a form of natural selection. He argued that the formation of black holes might generate new universes in which the constants are slightly mutated. In this way, after many generations, the parameter distribution will peak around those values for which black-hole formation is maximized. This proposal involves very speculative physics, since we have no understanding of how the baby universes are born. However, it has the virtue of being testable since one can calculate how many black holes would form if the parameters were different.


So what are Lee Smolin's thoughts today, and one can see where the interactions might have, raised a claerer perception of what falsifiable is meant in context of today's reasonings. Has this changed from 2003?

Lee Smolin:
My impression, if I can say so, is that many cosmologists undervalue the positive successes of CNS. It EXPLAINS otherwise mysterious features of our universe such as the setting of the parameters to make carbon and oxygen abundent-not because of life but because of their role in cooling GMC’s. It also EXPLAINS the hierarchy problem and the scale of the weak interactions-because these can also be understood to be tuned to extremize black hole production. Further, it EXPLAINS two otherwise improbable features of glaxies: why the IMF for star formation is power law and why disk galaxies maintain a steady rate of massive star formation.


So while we are engaged in the thinking of what can be measured from the big bang till now( Sean Carroll has given us a positon to operate from), but having the Poor man's collider introspective, helps us to consider how we may see the developement of particle interaction, as Pierre Auger experiments have reminded us?

Since the COBE discovery, many ground and balloon-based experiments have shown the ripples peak at the degree scale. What CMB experimentalists do is take a power spectrum of the temperature maps, much as you would if you wanted to measure background noise. The angular wavenumber, called a multipole l, of the power spectrum is related to the inverse of the angular scale (l=100 is approximately 1 degree). Recent experiments, noteably the Boomerang and Maxima experiments, have show that the power spectrum exhibits a sharp peak of exactly the right form to be the ringing or acoustic phenomena long awaited by cosmologists:


Then how would we see such changes and views that might of held the mind to variances in the landscape, as hills and valleys, portrayed in our cosmo? Perception between the Earth and the Sun. What shall we say to these values in other places of the cosmo? Will we see the impression of the spacetime fabric much differently then we do with the fabric as we see it now? Some might not like this analogy, but it is useful, as all toys models are useful?

Had we forgotten Wayne Hu so early here, not to have thought before we let this all slip from our fingers, as some superfluid and how we got there, Whose previous existance we had not speculated(what about Dirac), yet we understand the push to the singularity do we not?

"How do you actually make a collapsing universe bounce back? No one ever had a good idea about that,” Albrecht said. “What these guys realized was that if they got their wish for an ekpyrotic universe, then they could have the universe bounce back."


Such gravitational collapse sets the stage for what was initiated from, yet, we would not entertain cyclical models, that would instigate geometrical propensities along side of physics procedures?

So what do we mean when I say that we have pushed the minds eye ever deeper into the world of the Gluonic phases, which we would like so much to validated from such "traversed paths" that such limitations might have then been projected into the cosmo for a better perspective of time? Langangrain valuations alongside of the cosmic string? Which view is better?



When I started to look at the idea of these xtra dimensions, and how these would be manifesting and the experimental attempts at defining such, I recognized Aldeberger with eotvos contributions here, that a few might have understood and seen?

Together now such a perspective might have formed now around perspectve glazes that we might now wonder indeed why such a path taken by Aldeberger might now have been seen in such fine measures?

The Shape of the UNiverse in Omega Values

Having walked through the curvature parameters, in the Friedmann equations while understanding the nature of the universe, I thought would have been very important from the geometrical valuations, that I have been trying to understand. That it might arise in a terminology called quantum geometry, seems a very hard thing to comprehend, yet thinking about CFT measure on the horizon(Bekenstein Bound) is telling us something about the space of the blackhole?

So people have these new ideas about quantum grvaity and some might have choosen monte carlo methods for examination in the regards of quantum gravity perceptive.

Plato:
Now some of you know that early on in this blog John Baez's view about the soccer ball was most appealing one for consideration, but indeed, the sphere as the closet example could all of a sudden become the ideas for triangulations never crossed my mind. Nor that Max Tegmark would tell us, about the nature of these things.


JUst as one might have asked Max Tegmark what the shape of the universe was, he might of quickly discounted John Baez's soccer ball? Yet little did we know, that such a push by Magueijo might have had some influences? How would you measure such inflationary models?


Plato said:
When I looked at Glast, it seemed a fine way in which to incorporate one more end of the "spectrum" to how we see the cosmo? That we had defined it over this range of possibilties? How could we move further from consideration then, and I fall short in how the probabilties of how we might percieve graviton exchange of information in the bulk could reveal more of that spectrum? A resonance curve?


Variable "constants" would also open the door to theories that used to be off limits, such as those which break the laws of conservation of energy. And it would be a boost to versions of string theory in which extra dimensions change the constants of nature at some places in space-time.



One of the ways that has intrigued my inquiring mind, is the way in which I could see how xtra-dimensions might have been allocated to the views of photon interaction? We know the ways in which calorimetric design helps us see how fine the views are encased in the way Onion people work?

I had recognized quite early as I was getting research material together of Smolin's support of Magueijo, had something to do with the way in which he was seeing VSL approaches to indicators of time valuations?

Again, this is quite hard to conclusive drawn understanding, in that such roads lead too, would have instantly said that (speed of light in a vacuum)C never changes? How many good teachers would have chastize their students, to have this held in contrast to todays way we do things when looking at Magueijo?

Magueijo started reading Einstein when he was 11, but he wanted to comprehend the theory using mathematics rather than words. So he read a book by Max Born, which explains relativity in the language of mathematics. He quotes Galileo as having said, "The book of nature is written in the language of mathematics."




Let's look at what is being said from a fifth dimensional perspective, and tell me why this will not change the way we see? Why model comprehension has not sparked this foundational change in the way we look at the cosmos and the spacetrime fabric?

Monday, December 19, 2005

Big Bang Nucleosynthesis



You know it sometimes boogles my mind, why such adventures had not given perspective to the age of the universe? We are talking about created events, that we work to help us see the nature, from a inception time.

Something indeed troubles me as I look out towards this universe, that by giving it's age to 13.7 billions years, that we are taking such events as spoken below in regards to superfluid states, as elements spawned out of that early expression.

The high energy nuclear physics experimental group at Columbia University is conducting research to study the collisions of relativistic heavy nuclei to understand the properties of nuclear matter at extremely high densities (similar to the center of neutron stars) and very high temperatures (much hotter than at the center of the sun). In fact, the temperatures and densities reached in these collisions are similar to those found in the early universe a few microseconds after the Big Bang.


So what is that troubles me so much? Well if you have given the age of the universe, then you have alloted a time sequence to each and every event in the cosmos? There is not one event, that can be older then the age of our universe?

Okay now that this basis is understood, why would I be wrong? Is there not a logic that holds to tell us that each and every event will speak to the time and place of it's origination, within context of the whole universe and but never apart from the initial expression?

That if, for one moment you had seen the a galaxy, who elemental structure given to the signs of the measure of this universe, then it would have been, and related itself, to the very age of our universe and never older?

So you see my problem then? That if I saw this universe as a landscape. That given the context, the shape, and value assigned in the Omega values, such geometrical propensities would have enlisted the mind to consider?Tthat the very age of our univese plus the events held in context of the universe, would have lead one to see the values assigned in a much larger global context?

To holes in the very nature of the fabric.

Having seen the nature of Kravtsovs computer simulations, as cosmic strings, then you would have understood that each of the events in the galaxies would have been connected to each other? Never older, then the age of the universe itself?

The Physics Experiment

PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma

Sunday, December 18, 2005

Attributes of Superfluids


Professor Leggett was awarded a share in the 2003 prize for his research at Sussex in the early 1970s on the theory of superfluids.




There is a special class of fluids that are called superfluids. Superfluids have the property that they can flow through narrow channels without viscosity. However, more fundamental than the absence of dissipation is the behavior of superfluids under rotation. In contrast to the example of a glass of water above, the rotation in superfluids is always inhomogeneous (figure). The fluid circulates around quantized vortex lines. The vortex lines are shown as yellow in the figure, and the circulating flow around them is indicated by arrows. There is no vorticity outside of the lines because the velocity near each line is larger than further away. (In mathematical terms curl v = 0, where v(r) is the velocity field.)



Now you have to understand this is all struggle for me. I am trying understand circumstances where such valuations might have been presented as we traverse the subject of blackholes and such. Wormholes in the the space of produciton of a equilibrium between states of cold matter states and effects to superfluids inthos ecolliders What valuation can be drawn towards flat spacetime in these two extremes?

Can we drawn a relation in our perception taken down to such high energy valutions.

Under the auspices of gravitational collapse, if we are lead to circumstances where such a supefluid existed, then what form had we taken to lead our thinking. I have to be careful here. I identified Helium4 in the context of this opening subject, yet I would also draw my thought to production in the colliders?

I have to think on this some.



Plasmas and Bose condensates

A Bose-Einstein condensate (such as superfluid liquid helium) forms for reasons that only can be explained by quantum mechanics. Bose condensates form at low temperature

Plasmas tend to form at high temperature, since electrons then come off atoms leaving charged ions. High temperatures, more states are available to the atoms.

Our Own Quiet Spaces

Given that it is basically creationism with a new brand name not sure I need to.

Now while those who delve into the Kansas this and that, I don't want too, by association seem to be supporting or not, while those who struggle for their own identities, have them force it upon us and take the empowerment of our own choices from us.

I would rather do science(understand these models), yet I have the "freedom and choice" to work within my own quiet space? Because you are a leader in science do you think it right to impose your ideas upon us by the philosophies you had adopted and then go ahead and sanction us to abrand of ID?

It is tuff enough sometimes for those of us who want to delve into the subject of sciences, without agendas being swung at those less educated, and by those well educated, to describe aspects of and around the potentials of our efforts?

Knowing full well the requirements of science and it's methods, this has been well drilled into our heads endlessly, but not shamefully.

The time has come to severe this relationship from the work needed to do by us lay people to get to the "bottom of things." :) What the underlying basis is of reality without invoking God , but at best hoping to understand our involvement in the contiued expression of this reality? So, we are given options and models to work with.

Many of those head science came forward and made their statements about string/M as to "if proven or not", views of the "requirement of the background," that any responsible science leader could now say, "the health and welfare of their profession" is on track as long as the desired results in experimental process are perpetuated.

Please do not try and implement your philosphies on us(decieve us by ID association), and we will not tolerate yours from the uneducated and ill informed. That we will strive as you did for reason and truth to make itself known.

Alas, there is then room in our own "quiet spaces" about those things that do not fall under the requirements of science that if you choose your own personal belief in what is not and what is, that this can be cultivated in the way that you seem and deemed responsible by you?

Saturday, December 17, 2005

Why this Universe?

Sea of Virtual Particles


http://fermat.nap.edu/openbook/0309074061/gifmid/19.gif


Who is to deny that such processes incorporated into our views of today would not have drawn the cosmologist and the deeper intracies of physics, to point to our nature and it's beginnings in our universe . To raise questions about how such families were to arise from that place and time, specified and leading from one science inclination to another?

The Universe is governed by cycles of matter and energy, an intricate series of physical processes in which the chemical elements are formed and destroyed, and passed back and forth between stars and diffuse clouds. It is illuminated with the soft glow of nascent and quiescent stars, fierce irradiation from the most massive stars, and intense flashes of powerful photons and other high energy particles from collapsed objects. Even as the Universe relentlessly expands, gravity pulls pockets of its dark matter and other constituents together, and the energy of their collapse and the resulting nucleosynthesis later work to fling them apart once again.



This all fell under the arrow of time, yet would it not recognize, that such exchanges between the cycles of energy and matter to take place in that process? That such exchanges would define the natures of galaxies in there beginnings and ends, as a geometrical consistancies born out of the beginnings of this universe? How so? Could such links be made to indicate, that this universe so unique, as to arise from the first inceptions as phase transitions? Some first principle?

Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century (2003)
Board on Physics and Astronomy (BPA)

Two essential conceptual features of the Standard Model theory have fundamentally transformed the understanding of nature. Already in QED the idea arose that empty space may not be as simple a concept as it had seemed. The Standard Model weak interaction theory takes this idea a step further. In formulating that theory, it became evident that the equations did

Friday, December 16, 2005

Grue and Bleen

Brian Greene:
In the late 1960s a young Italian physicist, named Gabriele Veneziano, was searching for a set of equations that would explain the strong nuclear force, the extremely powerful glue that holds the nucleus of every atom together binding protons to neutrons. As the story goes, he happened on a dusty book on the history of mathematics, and in it he found a 200-year old equation, first written down by a Swiss mathematician, Leonhard Euler. Veneziano was amazed to discover that Euler's equations, long thought to be nothing more than a mathematical curiosity, seemed to describe the strong force.

He quickly published a paper and was famous ever after for this "accidental" discovery.


If one did not seek to find a "harmonial balance" where is this, then what potential could have ever been derived from such situations about the possibilties of a negative expression geometriclaly enhanced?

Because the negative attributes have not added up to much in production of anti matter, have we assigned a conclusion to the world of geometerical propensities to not encourge such things a topological maps?

The puzzle to the right(above) was invented by Sam Loyd. The object of the puzzle is to re-arrange the tiles so that they are in numerical order.

The puzzle forms a model of how the positron moves in Dirac's theory. The numbered tiles represent the negative-energy electrons. The hole is the positron. When a negative-energy electron falls into the hole, the hole appears to have moved to another position.


While it would not have seemed likely, such redrawings of the pictures of Albrecht Dürer, this individual might not have caught my attention. I seen the revision of the painting redone, and what was caught in it. You had to really look, to get this sense.

Human Evolution has no Limits?

Topological What a search function might reveal when you type in.

I see no possibilties in the "filth" dimension, but I do in the fifth. :)

How could it be possible for the human capabilties within the context of geoemtrical design, to not "see" that it could have incorporated select words to describe those processes and may of compared it total human discrete function and sending such events into space, aromatically?

Is it a better process to lay claim to such physical abilites and prowness in our assessment of topolgical functions without ever wondering the extent of logic forming, that would exend our understanding from such filth? Or was it creatively inspired to bring vision to a suppposed journey, content in the fifth??

Wednesday, December 14, 2005

Second of Five Lagrangian Equilibrium Points

The more I thought about it, the more it made sense that one image we're getting, is quite different(lensing) from the image that is behind the brane? The idea of brane collision from steinhardt and turok perspective, created this space bewteen the branes, while the image behind this(the other image) is receding?

I am not sure exactly.


Dark matter in the high-redshift cluster CL 0152-1357. Gravitational lensing analysis with the Advanced Camera for Surveys (ACS) reveals the complicated dark matter distribution (purple) in unprecedented detail when the Universe was at half its present age. The yellowish galaxies are the visible cluster member galaxies forming a filamentary structure, possibly in the process of merging.
(Jee et al. 2005, Astrophysical Journal)


Not many can see in this abstract way, or have considered how a photon might have travelled? Sure they have understood satellites and the travel through space, but have they consider this in context of CSL lensing? Sean put up a link yesterday that had me seeing how such a travel over distance might have had some photonic strange journies in context of such lensings.



The second of five Lagrangian equilbrium points, approximately 1.5 million kilometers beyond Earth, where the gravitational forces of Earth and Sun balance to keep a satellite at a nearly fixed position relative to Earth.

This picture below really set the final stage for me. Thus simplification has been mounted in how we see such tubes formed within the greater context of the universe and here we have a way of seeing that is new? It helps one to view universe travel and paves the way for roads through such space?

Is it so hard to visualize? Is it so hard not to consider how one should make there way through such space?


Weak Lensing Distorts Universe?


IN order to extend the link to the information supplied in previous article presented by Sean Carroll, Fraser Cain here links us to the following conversation.

Feynman's Path Integrals

While this following comment might seem inappropriate to the content of this post, I place it because of what I see in determination of the langangian methods used to help us see how gravitatonal equilibrium points, speak to how such travels would have been initiated in sum over paths used as Feynman's distributes the actions according to set model held i a cosmological sense I am looking at the the picture above here and the path ways shown.



December 15th, 2005 at 2:35 pm
Tony Smith:


As to the time of Feynman soving the QED problem, in 1941 (according to Mehra’s Feynman biography The Beat of a Different Drum (Oxford 1994)) Feynman had the inspiration from Dirac’s paper of using the Lagrangian method, which led to Feynman’s 1942 Ph.D. thesis. As to that thesis, Mehra says “… Feynman mentioned that “the problem of the form that relativistic quantum mechanics, and the Dirac equation, take from this point of view, remains unsolved. …”. So, Feynman’s Shelter Island relativistic QED solution was developed after his 1942 Ph.D. thesis.


I had been looking for this relationship and how Feynman’s toys models came into being? Can this be the beginning as you relate?

Tuesday, December 13, 2005

On Blogging and Experiment

Variation of the Standard Two-Pin-hole "welcher-Weg" Optics Experiment



George R. Welch setting up an optics experiment with graduate student Sophia Ilina


Uncertain Principles :
So, “A Week in the Lab” has come to an end. The experiment itself goes on, of course, but the week of blogging the experiment is at an end.

As physics, it wasn’t terribly successful– the experiment didn’t succeed, after all. As a life-in-science blogging event, I think it worked pretty well. I got to cover a fair range of the experimental physics process, from the basic design stuff, to the nuts-and-bolts assembly, to the prelimanry calibration measurements, to the process of figuring things out from sketchy data, to the frustration of an incomplete experiment. I wouldn’t call it the most successful week of my experimental physics career, but I think I might be happier with how this played out than anything else I’ve done on this blog. I’ll have to look back at it again in a couple of weeks and see if I still feel that way, but at least at this early stage, I like the results.




Plato:
So I thought I would point you to another case. I mean sure there is going to be trials and errors.


I was pointed to the failure of the system of blogging that did not seem up to par with a link given by Sean in regards to experimentation and it's falure? While I see it as a success, presented in the following way.

The Ties that Bind?
John Cramer:)
The Blind Men and The Quantum (1,338k) - The First Hal Clement Memorial Lecture, given at the Boskone 41 Science Fiction Convention, Boston Sheraton Hotel, February 15, 2004. A 50 minute discussion of quantum paradoxes and interpretations, with emphasis on new data (The Afshar Experiment) that appears to falsify the Copenhagen and Many-Worlds Interpretations, but is consistent with the Transactional Interpretation.


It sort of stays in the family.:)

kathryn cramer
The Transactional Interpretation, which involves a forward/back in time handshake, is one of the few (perhaps the only) interpretation(s) left standing after the Afshar test.


Why is it so important? If scientific perspective had been isolated from the vast resources of people spread throughout such probabilistic valuations in science? In consideration, how would chance have it, that someone could comment on the experimentation? Help the experimentor, and discuss it from a theoretical standpoint how such and such should go? Lubos comment section helps greatly here to assess how this might have gone?

Shahriar S. Afshar
Dear Lubos,

"Therefore we have humiliated Bohr, Heisenberg, Dirac, the Copenhagen interpretation, complementarity, the uncertainty principle, quantum mechanics as well as the rest of physics."

From the content of your response, I can only conclude that you have not fully read my preprint:
www.irims.org/quant-ph/030503/


Now that the process has been seen in this context of blogging potential I thought I would add one more for consideration? In terms of what Aldeberger had to say to those on Cosmic Variance in terms of those extra dimensions and the experimental process Evotos is unfolding in this regard.