Showing posts with label Cosmic Strings. Show all posts
Showing posts with label Cosmic Strings. Show all posts

Sunday, January 29, 2006

Being Informed On things One might of Missed

Some links and slides given by Dr. Nick Evan. Clifford of Cosmic Variance relayed this information in a titled post called, "Return to the Fold"

Every model assumption has to involve the understanding of all "science processes." "If" any of these processes are missed, then the assumptions that we move from, to those speculations beyond models and further idealizations, will suffer under the idealization of correct thinking and hence, spread misconceptions.

This is not my ideal, so then indeed such an idea of working in the blogosphere is not to advance an ideal that I have about life and the learning that it has taken me too, but fully recognizing that to advance under the auspice of right thinking, requires further work and understanding of these science principles.

  • Two articles from Physics World - String Theory Meets QCD & The Gravity of Hadrons.

  • The Search for the Ultimate Theory - on steps towards grand unification.

  • Particles & Strings - an overview of the frontier of particle physics and string theory.

  • Brane World - an introduction to the latest ideas from string theory

  • Quarks & Strings - an introduction to the duality between quarks and string theory

  • Understanding Nothing - the physics of the vacuum.

  • Light Fantastic - talk for a laser show about Relativity, Quantum Mechanics and Particle Physics
  • Thursday, January 05, 2006

    Update on Cosmic Strings

    Hubble: cosmic string verdict by February

    I just wanted to keep this for inspection, and relate Lubos's current statement in this regard, together, for refreshing look at this topic.

    This is of course from 2005/July 11 of 2005, but it serves to have a look a what was being discussed in this way, that we can see how "the history" has unfolded into cosmological dissertations.

    Update on cosmic strings
    Joseph Polchinski
    KITP, UCSB

    Joseph Polchinski, KITP, UCSB: Update on cosmic strings

    Tuesday, December 27, 2005

    Acoustic Hawking Radiation

    What did we learn from studying acoustic black holes? by Renaud Parentani

    The study of acoustic black holes has been undertaken to provide new insights about the role of high frequencies in black hole evaporation. Because of the infinite gravitational redshift from the event horizon, Hawking quanta emerge from configurations which possessed ultra high (trans-Planckian) frequencies. Therefore Hawking radiation cannot be derived within the framework of a low energy effective theory; and in all derivations there are some assumptions concerning Planck scale physics. The analogy with condensed matter physics was thus introduced to see if the asymptotic properties of the Hawking phonons emitted by an acoustic black hole, namely stationarity and thermality, are sensitive to the high frequency physics which stems from the granular character of matter and which is governed by a non-linear dispersion relation. In 1995 Unruh showed that they are not sensitive in this respect, in spite of the fact that phonon propagation near the (acoustic) horizon drastically differs from that of photons. In 2000 the same analogy was used to establish the robustness of the spectrum of primordial density fluctuations in inflationary models. This analogy is currently stimulating research for experimenting Hawking radiation. Finally it could also be a useful guide for going beyond the semi-classical description of black hole evaporation.


    I am held to a state of profound thinking when I thnk about Einstein in a dream I had. Where his satisfaction was raised, as a surpize, as I listen to the very sound of ice in a glass jug as I slowly turned it? From it, a certain recognition by Einstein held him in amazement as this sound seem to satisfy what he was so long search for in his answers. Yes it is a dream, but this set the stage from what I had been doing previous as I was thinking about the Webber bars and the way research was moving along this avenue to detect grvaiational waves. Movements to the giant Ligo inteferometers, to help us in our pursuate.

    I know it is not always easy to understand the thinking here as it is piecemealed, while my minds works to weave a cohesive picture here. So, my apologies.

    There is a special class of fluids that are called superfluids. Superfluids have the property that they can flow through narrow channels without viscosity. However, more fundamental than the absence of dissipation is the behavior of superfluids under rotation. In contrast to the example of a glass of water above, the rotation in superfluids is always inhomogeneous (figure). The fluid circulates around quantized vortex lines. The vortex lines are shown as yellow in the figure, and the circulating flow around them is indicated by arrows. There is no vorticity outside of the lines because the velocity near each line is larger than further away. (In mathematical terms curl v = 0, where v(r) is the velocity field.)


    Early on the very idea of measuring discrete functions in relation to how we might percieve quark and gluonic natures which arose from the gold ion collisions, raises the very idea of how we may look at the analogies sought to help shape perspective from the horizon, to what is emitted? A Virtual Photon released in pair production at the horizon can become?

    While I had come to recognize the differences in thermodynamic principals held in context of the blackhole, the very idea of He4raises some interesting scenario's in relation to sound values, while "extreme curvature" had been lead too as a singularity in the blackhole?? This singuarity thought to besimlar to the hawking no bondary proposal would not sit well with how the very nature of the blackhole actually becomes the superfluid that we hav come to recognize in the collider perspectives. This changes things somewhat. How fortunate is it in relation to how we see the supersymmetry that coudl arise inthe action fo symmetry break that signs could be lea dto the nature of the phton release and stretched under the aupsice of theis grvaiutional field?

    Overlap of "quantum" and "classical" behaviour

    Explanations of Hawking radiation around a black hole often use a description of quantum-mechanical pair production effects occurring on a curved spacetime background. Although this paradigm does not obviously lend itself to a "classical" reinterpretation, research on the black hole membrane paradigm has revealed some overlap between "classical" and "quantum" descriptions.


    Plato:
    What conditions would have allowed such a scene to be developed in supersymmetrical view, that I had wondered, could such a perfect fluid be the example needed? What blackholes hole would allow such a view to be carried down to this level in gold ion collisions, that we might see the results of string theory, as a useful analogy in the discernation of what can now be brought forward for inspection.


    So having recognized the two phases of superfluids that ha dbeen created how woud such analogies move th emind to coisder this other nature of of a helium whose viscosity woud have allowed the sound to travel under the same aupsice held in context of the photon whose naure would havebeen rvealled in redshifting? Would suchj a thing held in context of blue shifting be cancelled out in quark/gluonic phases. that the analogy no longer suits our purpose? While sound i analogy in helium may have revealled the very nature of the superfluid designs we woudl like to see in comparsion to how thephotons are looked at with such short distances? They are cancelled out here?


    Thorne: Black holes and time warps…, chapter 11, "What is reality?"

    The laws of black-hole physics, written in this membrane paradigm, are completely equivalent to the corresponding laws of the curved-spacetime paradigm – as long as one restricts attention to the hole's exterior. Consequently, the two paradigms give precisely the same predictions for the outcomes of all experiments or observations that anyone might make outside a black hole …"


    What is a Phonon/Photon?

    Phonon:
    A particle of sound. The energy E of a phonon is given by the Einstein relation, E = hf. Here f is the frequency of the sound and h is Planck's constant. The momentum p of a photon is given by the de Broglie relation, p = h/λ. Here λ is the wavelength of the sound


    Photon:
    A particle of light. The energy E of a photon is given by the Einstein relation, E = hf. Here f is the frequency of the light and h is Planck's constant. The momentum p of a photon is given by the de Broglie relation, p = h/λ. Here λ is the wavelength of the light.




    As you look at the picture above, the very depths to which vision might have been imparted in recognition of this supefluid, what value would be assign something held in the context of the wave nature to have seen it described as a granulization and then thought of in terms of the langangrian perspective as cosmic strings which cross this universe? Make sure you click on the picutre.

    Granularity of the Fluid?

    Taken from the horizon, how would this fluid look if held in context of William Unruh's previously thought "continous nature" or as a discretium release of Hawking like phonons? It may be "by analogy" help physicists with respect to the nature of gravitational blackholes?

    Tuesday, December 20, 2005

    Has Speed of Light changed Recently?

    You have to remember I am not as well educated as the rest of the leaque connected at Peter Woit's site. But how could one think anything less, then what perception can contribute, as less then what the educated mind might have thought of? If it did not have the scope enlisted by others in consideration cosmology might have expressed, then we might have reduced the value of reducitonism role in how we perceive the beginning of the cosmos?

    So what Does Peter Woit say here? I am glad that the support(choir:) moved to Peter's cause for truth and enlightenment, is clarifying itself, instead of the ole rants that we had been witnessed too, in the past.

    Understanding the clear disticnctions make's it much easier now, instead of what opportunities might have been past by? Of course I understood that he is quite happy with the life given, makes it all the more reason that the value of opinion will have direction(not hidden causes). Contributions by the the opinions generated, held to a educative process that we all would like to be part of.

    Peter Woit:
    In general, what I really care about and am willing to invest time in trying to carefully understand, are new physical ideas that explain something about particle theory, or new mathematical ideas that might somehow be useful in better understanding particle theory.


    Strings /M theory moved to cosmological thinking because of where it had been?

    Life, the cosmos and everything:
    Lee Smolin stressed that it is only justifiable if one has a theory that independently predicts the existence of these universes, and that such a theory, to be scientific, must be falsifiable. He argued that most of the universes should have properties like our own and that this need not be equivalent to requiring the existence of observers.

    Smolin's own approach invoked a form of natural selection. He argued that the formation of black holes might generate new universes in which the constants are slightly mutated. In this way, after many generations, the parameter distribution will peak around those values for which black-hole formation is maximized. This proposal involves very speculative physics, since we have no understanding of how the baby universes are born. However, it has the virtue of being testable since one can calculate how many black holes would form if the parameters were different.


    So what are Lee Smolin's thoughts today, and one can see where the interactions might have, raised a claerer perception of what falsifiable is meant in context of today's reasonings. Has this changed from 2003?

    Lee Smolin:
    My impression, if I can say so, is that many cosmologists undervalue the positive successes of CNS. It EXPLAINS otherwise mysterious features of our universe such as the setting of the parameters to make carbon and oxygen abundent-not because of life but because of their role in cooling GMC’s. It also EXPLAINS the hierarchy problem and the scale of the weak interactions-because these can also be understood to be tuned to extremize black hole production. Further, it EXPLAINS two otherwise improbable features of glaxies: why the IMF for star formation is power law and why disk galaxies maintain a steady rate of massive star formation.


    So while we are engaged in the thinking of what can be measured from the big bang till now( Sean Carroll has given us a positon to operate from), but having the Poor man's collider introspective, helps us to consider how we may see the developement of particle interaction, as Pierre Auger experiments have reminded us?

    Since the COBE discovery, many ground and balloon-based experiments have shown the ripples peak at the degree scale. What CMB experimentalists do is take a power spectrum of the temperature maps, much as you would if you wanted to measure background noise. The angular wavenumber, called a multipole l, of the power spectrum is related to the inverse of the angular scale (l=100 is approximately 1 degree). Recent experiments, noteably the Boomerang and Maxima experiments, have show that the power spectrum exhibits a sharp peak of exactly the right form to be the ringing or acoustic phenomena long awaited by cosmologists:


    Then how would we see such changes and views that might of held the mind to variances in the landscape, as hills and valleys, portrayed in our cosmo? Perception between the Earth and the Sun. What shall we say to these values in other places of the cosmo? Will we see the impression of the spacetime fabric much differently then we do with the fabric as we see it now? Some might not like this analogy, but it is useful, as all toys models are useful?

    Had we forgotten Wayne Hu so early here, not to have thought before we let this all slip from our fingers, as some superfluid and how we got there, Whose previous existance we had not speculated(what about Dirac), yet we understand the push to the singularity do we not?

    "How do you actually make a collapsing universe bounce back? No one ever had a good idea about that,” Albrecht said. “What these guys realized was that if they got their wish for an ekpyrotic universe, then they could have the universe bounce back."


    Such gravitational collapse sets the stage for what was initiated from, yet, we would not entertain cyclical models, that would instigate geometrical propensities along side of physics procedures?

    So what do we mean when I say that we have pushed the minds eye ever deeper into the world of the Gluonic phases, which we would like so much to validated from such "traversed paths" that such limitations might have then been projected into the cosmo for a better perspective of time? Langangrain valuations alongside of the cosmic string? Which view is better?



    When I started to look at the idea of these xtra dimensions, and how these would be manifesting and the experimental attempts at defining such, I recognized Aldeberger with eotvos contributions here, that a few might have understood and seen?

    Together now such a perspective might have formed now around perspectve glazes that we might now wonder indeed why such a path taken by Aldeberger might now have been seen in such fine measures?

    The Shape of the UNiverse in Omega Values

    Having walked through the curvature parameters, in the Friedmann equations while understanding the nature of the universe, I thought would have been very important from the geometrical valuations, that I have been trying to understand. That it might arise in a terminology called quantum geometry, seems a very hard thing to comprehend, yet thinking about CFT measure on the horizon(Bekenstein Bound) is telling us something about the space of the blackhole?

    So people have these new ideas about quantum grvaity and some might have choosen monte carlo methods for examination in the regards of quantum gravity perceptive.

    Plato:
    Now some of you know that early on in this blog John Baez's view about the soccer ball was most appealing one for consideration, but indeed, the sphere as the closet example could all of a sudden become the ideas for triangulations never crossed my mind. Nor that Max Tegmark would tell us, about the nature of these things.


    JUst as one might have asked Max Tegmark what the shape of the universe was, he might of quickly discounted John Baez's soccer ball? Yet little did we know, that such a push by Magueijo might have had some influences? How would you measure such inflationary models?


    Plato said:
    When I looked at Glast, it seemed a fine way in which to incorporate one more end of the "spectrum" to how we see the cosmo? That we had defined it over this range of possibilties? How could we move further from consideration then, and I fall short in how the probabilties of how we might percieve graviton exchange of information in the bulk could reveal more of that spectrum? A resonance curve?


    Variable "constants" would also open the door to theories that used to be off limits, such as those which break the laws of conservation of energy. And it would be a boost to versions of string theory in which extra dimensions change the constants of nature at some places in space-time.



    One of the ways that has intrigued my inquiring mind, is the way in which I could see how xtra-dimensions might have been allocated to the views of photon interaction? We know the ways in which calorimetric design helps us see how fine the views are encased in the way Onion people work?

    I had recognized quite early as I was getting research material together of Smolin's support of Magueijo, had something to do with the way in which he was seeing VSL approaches to indicators of time valuations?

    Again, this is quite hard to conclusive drawn understanding, in that such roads lead too, would have instantly said that (speed of light in a vacuum)C never changes? How many good teachers would have chastize their students, to have this held in contrast to todays way we do things when looking at Magueijo?

    Magueijo started reading Einstein when he was 11, but he wanted to comprehend the theory using mathematics rather than words. So he read a book by Max Born, which explains relativity in the language of mathematics. He quotes Galileo as having said, "The book of nature is written in the language of mathematics."




    Let's look at what is being said from a fifth dimensional perspective, and tell me why this will not change the way we see? Why model comprehension has not sparked this foundational change in the way we look at the cosmos and the spacetrime fabric?

    Monday, December 19, 2005

    Big Bang Nucleosynthesis



    You know it sometimes boogles my mind, why such adventures had not given perspective to the age of the universe? We are talking about created events, that we work to help us see the nature, from a inception time.

    Something indeed troubles me as I look out towards this universe, that by giving it's age to 13.7 billions years, that we are taking such events as spoken below in regards to superfluid states, as elements spawned out of that early expression.

    The high energy nuclear physics experimental group at Columbia University is conducting research to study the collisions of relativistic heavy nuclei to understand the properties of nuclear matter at extremely high densities (similar to the center of neutron stars) and very high temperatures (much hotter than at the center of the sun). In fact, the temperatures and densities reached in these collisions are similar to those found in the early universe a few microseconds after the Big Bang.


    So what is that troubles me so much? Well if you have given the age of the universe, then you have alloted a time sequence to each and every event in the cosmos? There is not one event, that can be older then the age of our universe?

    Okay now that this basis is understood, why would I be wrong? Is there not a logic that holds to tell us that each and every event will speak to the time and place of it's origination, within context of the whole universe and but never apart from the initial expression?

    That if, for one moment you had seen the a galaxy, who elemental structure given to the signs of the measure of this universe, then it would have been, and related itself, to the very age of our universe and never older?

    So you see my problem then? That if I saw this universe as a landscape. That given the context, the shape, and value assigned in the Omega values, such geometrical propensities would have enlisted the mind to consider?Tthat the very age of our univese plus the events held in context of the universe, would have lead one to see the values assigned in a much larger global context?

    To holes in the very nature of the fabric.

    Having seen the nature of Kravtsovs computer simulations, as cosmic strings, then you would have understood that each of the events in the galaxies would have been connected to each other? Never older, then the age of the universe itself?

    The Physics Experiment

    PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma

    Thursday, December 08, 2005

    Satellites Can Glide But Bee's Can't?



    I just wanted to clarify my statements in regards to the association I made In Bumble Bee Rotations.

    If you understood the "easiest route/shortest distance" in which to travel, how can a satellite be propelled along pathways, with the least resistance? You had to be able to see properly, and in a abstract sense?



    If you understood "tubes" as possible routes, then how would such energies be revealled as such cosmic strings crossed the universe? In the early cosmological design one would understand Andrey's computerized model settings as the earlier face of supersymmetrical valuations. This had to arise from the planck epoch?

    If you held such views in relation to the principals inherent in the lessons provided by Wayne Hu below, then you get some idea of what happens when the simplification takes hold of one's mind, and one sees the landscape not as some fictional entry to pet peeves and name calling.

    I have assigned simplification by providing data to show how ideas of those xtra dimensions would have permitted the photons pathways easy traversables, while CSL patterns can be established?

    You choose how and which side you want to focus on in looking at those langrange points? Easiest routes to langrange point considerations. While you consider this, think about the lensing that occurs.

    The figure to the right
    {above here} shows the equivalent of a Feynman diagram in a string theory. String theorists hope that since this reaction is no longer confined to a single point it may be possible to unify all four fundamental interactions.


    Neural Correlate Speculation

    Neural correlates in my speculations, but once the patterns had been established, it made sense to me that lumiousity would have highlighted the rasiets pathways of expression. As if enlightenment would have taken hold, fromthe first elements of the universe in expression would have been seen as these CSL cosmic strings? Just a thought in passing:)

    Monday, October 31, 2005

    Main Stream Breakthrough on Cosmic Variance

    linked in title of article of same name, by Sean Carroll

    A Randall/Sundrum view of the cosmos

    The trick in this picture supplied by Sean is to look at the ideas of gravitonic concentrations, as these would be leading to the range from weak field manifestation to high energy strong concentrations. Such a variance is the over riding validation to me of how all this comes together.

    From a historical perspective wasn't Steinhart and Turok already dealing with this perspective in his demonstration of colliding branes?

    There are certain assumptions made here as well, and this is the question that probably haunts me most, that if the universe was cyclical in it's nature(so it doesn't need to be explained in M theory?), then there had to be "something always existing" from which to have this enduring cycle of birth and death ever connected? Where did your brane come from? Where did your bulk come from?

    Now Steinhardt and Turok say that - according to 'M-theory' - the universe need not pass through a singularity between a big crunch and a big bang. Supported by most cosmologists, M-theory says that space-time has eleven dimensions, of which we perceive four: three in space and one in time. Our four-dimensional 'brane' - short for membrane - is moving among the remaining dimensions or branes, which are hidden at very small or very large length scales.




    This might contradict the idea of "microstate blackholes" as ever being useful in our determinations of the source of expression, from the "idea" of brane theory collisions?

    If one was to think outside the box, the outside of the box would have to be included in the inside? :) Greene gives a fitting statement for this although he does not do it in relation to the box, but in direct relation to "the circle".

    I give this a philosophical term in relation, as a "Liminocentric structure", yet it seems fitting to have a inductive/deductive features in this "toposense" as relevant. You know, the universe in the "mind of human kind and human kind in the universe."

    Thursday, October 27, 2005

    Strings and No_Sense?

    Well for me, if theorists have mathematically created a vision of things, how is it possible not to have generalized their views on what they had learnt about the theories they talk about?

    "Shut up and Calculate" would definitely appeal to a lot math minded there at the forefront of Cosmic Variance. But really, how are you going to distance yourself from such generalizations? It seeps out of your pores :)

    So, no_sense could capture it? Now, Now, if this were the case then such analogies would not have been shared by the more briiliant. Non? Thank you, Michio Kaku.

    As to "first principle," what are these building blocks called that make up the reality we so cherish. Robert Laughlin has something to say about this, and I am sure condense matter physicists would also say, it don't matter, if you use bricks or sergeant majors.

    You arrive at some "point of view" where all agree that the Physicist's walking across the room, will have in tow, their students? Okay a bad comparison, but all branches form a wonderful view of the insurgency theorists attack, using a method to recognition of that "emergent property" will speak too, and so kindly of.

    So we are to the point of the model? Bring it on, Clifford. Do you really want me to sumarize this point?

    I can but it would take time and I would have to explain why high energy valutions had run into limitations. Now if it had been a experiemental setup that one could incorporate in space, and we do, don't get me wrong here. John Ellis helped to make this clear in our recognition of the Pierre Auger experiments and Steinberg's recognition of microstate blackholes that would quickly dissipate.

    But in a tighter control recognition of particle reductionism, a " extra enormous energy valution" is inherently needed? NOn? They progressively/reductionistically move to this point, through the trial and errors, of their ways.

    Ah heck! Clifford, I got ahead of myself here. So I'll think I'll stop, so you can fill us in from a more expert opinion.

    Saturday, October 22, 2005

    Strings: The First Three Seconds

    I didn't want to invoke God here, but in any "flash" is there not some pattern that mathematically needed to describe the way everything began? A word, or sound?

    An equation means nothing to me unless it expresses a thought of God.Srinivasa Ramanujan



    Before the Beginning
    Interview with Sir Martin Rees, Part 2


    Helen Matsos (HM):
    Last year the big "science event" was measuring the cosmic microwave background and dating the big bang to 13.8 billion years ago, within an 8 to 10 percent margin of error. Can you give us some idea of the boundaries of the big bang -- what was it like in the first seconds, and how far will the universe expand in the future?


    So indeed the universe become entrophically considered, as the evidence starts to make itself known in all it's forms, yet there is a space. Now by itself, such expression of the universe would have one event, but imagine down on earth our moments, can cause such repercussions ahead in time?

    AM:
    You played yourself--twice--in the movie, "Frequency". The movie is about a father communicating from 1969 with his son in the present on a ham radio, due to an unusual atmospheric aurora that bounces radio signals across time, not just space. You played Brian Greene being interviewed by Dick Cavett as both a younger and older man. Any reflections on either the interesting premise of the movie, or the adventures of being on the big screen?


    So how we categorize such encounters with the child in our hopes of encouraging it's future, or our very presence and example lead. As a sign post, of what any society could become in the eye of good moral men and women? So one can move quietly no doubt and remain unseen, while the work can be a gentle reminder, of how we can affect "each" in time. Words like "etc" that could take on greater meaning, to have the hand slight a deletion. Remember how sensitive we can be to music? In Plato's academy I had made this point clear. I make clear what dissonance can do:)It can definitiely ruffle the field. Straight up and straight forward, a comment should do for those that would like to learn.

    Brian Greene
    Time is far more subtle than our everyday experience would lead us to believe. In many ways, time may simply be a psychological construct for organizing the world. It is a device we scientists have found useful, but it may in fact be a dim approximation of something far more complex."


    WEll here is a better view on the relation to the The Powers of Ten

    I talked briefly on the "chance encounter" of a child with a scientist, and the alluring role of powers of ten takes on. As if, it can "reverberate" in the probabilities of a future time.

    Who is responsible for this creative surge?:)Creative endeavors, are always fueled by another?

    IN such a cultural context, how is it that we could not see underlying reality is a musical inclination taken form in what any future could become. So, by the very value of the resonance contained, a feature of any moment?

    Tuesday, October 11, 2005

    Some Distant Bounding Surface



    I mean when I referred to fifth dimensional views you know that the computer screen includes not only it's functionability in relation to science, but adds that bit of extended flavour to model construction we call imaging right?


    a) Compactifying a 3-D universe with two space dimensions and one time dimension. This is a simplification of the 5-D space­time considered by Theodor Kaluza and Oskar Klein. (b) The Lorentz symmetry of the large dimension is broken by the compactification and all that remains is 2-D space plus the U(1) symmetry represented by the arrow. (c) On large scales we see only a 2-D universe (one space plus one time dimension) with the "internal" U(1) symmetry of electromagnetism.


    Remember Brian Greene's is from 2001. What might have change since then with Brian Greene and his views about about that distant bounding surface. Of course to many of us it is a brane world recognition.



    If we did not recognize what advancements might have been accomlished with mathematics and the fifth dimensional views on our computer screens? Could we ever really talk about such idealizations, without understanding that there are ways to look at this, and reductional valuations taken from fifth dimensional views down to 2? Our computer screen. Of course Brian Greene has included the thickness of the bounded surface, so, time had to be inclusive here would it not?:)

    The Edge

    Physics and everything we know in the world around us may really be tied to processes whose fundamental existence is not here around us, but rather exists in some distant bounding surface like some thin hologram, which by virtue of illuminating it in the right way can reproduce what looks like a 3-dimensional world. Perhaps our three dimensional world is really just a holographic illumination of laws that exist on some thin bounding slice, like that thin little piece of plastic, that thin hologram. It's an amazing idea, and I think is likely to be where physics goes in the next few years or in the next decade, at least when one's talking about quantum gravity or quantum string theory.

    So how can such a thing as Brian calls a Bounded surface and relate it's thinness to a vast capability? Also in the cosmic perspective, to have brane collisions illustrated by Steinhardt, become much more then our views held to the surface mathematically inclined. To be revealled, in stringy dynamics, at the basis of our viewing?

    Such creation slotted into the time frames of this beginning, is stil questioning the valuation of what existed before stringy ideas manifest, so what pray tell, could have ever been "the sun" in behind, that illuminates "shadows" on the wall?

    The Randall-Sundrum braneworld model is characterized by ordinary matter being confined to a hypersurface embedded in a higher-dimensional manifold through which gravitational signals may propagate


    Physics strings us along by Margaret Wertheim of LAtimes.com

    In the latest, hottest Big Science tome — the delightfully titled "Warped Passages" — Harvard physicist Lisa Randall describes the idea that the universe we see around us is but one tiny part of a vast reality that may include an infinite number of other universes. Randall is an expert on both cosmology and that arcane branch of particle physics known as string theory. By marrying the two fields, she and her colleagues have formulated a picture in which our universe may be seen as a soap-film-like membrane (a "braneworld") sitting inside a much larger space: the bulk. According to general relativity, the universe we live in has four dimensions: three of space and one of time. Randall's work extends this framework and posits the existence of a fifth dimension. The fifth dimension is the bulk, and within its immeasurably expanded space, there is no reason to assume that ours is the only cosmos.


    So there are amazing leaps here then to new world recognitions of ideologies that formed from where?

    John Ma Pierre:
    What is remarkable is that much of the recent progress in understanding non-perturbative aspects of string theory and supersymmetric gauge theories has been made in parallel, using each to gain knowledge and insights about the other. There are various reasons for this intimate connection between supersymmetric gauge theories and string theory. One is that supersymmetric gauge theories arise as low energy effective descriptions of compactified string theories in limits where gravity decouples. Another reason is that superstring theories can be formulated in backgrounds that contain D-branes, and supersymmetric gauge theories serve as effective world volume theories for these D-branes. In addition to these direct examples, it is sometimes the case that intuition about non-perturbative physics that is gained in one area can be directly applied to the other. An example of this is the guiding principle that singularities in the quantum moduli space of a low energy effective theory signal the appearance of new massless states. This was seen to be a generic phenomena in supersymmetric gauge theories and was subsequently applied to the resolution of conifold singularities by massless black holes in string theory.


    Wow! More then five!:) Okay reference was made by Sean on a one liner about magic and his meeting in a bar. Where a sister as the science teacher explains this statement. Well it has been gathered up for consumption in other areas, so of course we have to explain this as now this conversation is leading other talks to consider more issues about what began as a mystery has no place in the developement of science.

    I am a little dismayed by this, because anomlistic features without explanation would seem as such, while it is true, that it can be expalined afterwards, once we understood how something from the 21st century dropped into our laps for consideration:) We know what this means right? It had to be coisstent and logicall so repeatability can hav eother hands , for verification. How did you expalin it and lead them hwere one had not gone before?

    That sounded like Startrek for a minute there:)

    Wednesday, August 17, 2005

    Unexpected High energies of Cosmic Rays

    Plato said:
    I am thinking about Lee Smolin’s history here in terms of discrete measures ( I am developing a perspective here in relation that will be complied later) How this effected the the way Lee may have viewed the background. I don’t want to speak for Lee Smolin, but I would like to make it simple.:)

    Can this difference be as simple as, “a determination between “being discrete, and implying continuity“?

    Where strings implying only tree features, while the approach to glast, as a “new view” supported by "Doubly Special Relativity", that Rovelli and Lee produced? This basis and history is what I am compiling.


    One can ask any question and have it loaded, with lots of information. But just trying to bring something to simple clarity, even in conceptual framesworks is not always easy, if you don' ask the question?

    Greisen-Zatsepin-Kuzmin limit

    The Greisen-Zatsepin-Kuzmin limit (GZK limit) is a theoretical upper limit on the energy of cosmic rays from distant sources.

    This limit was computed in 1966 by Kenneth Greisen, Vadem Kuzmin and Georgi Zatsepin, based on interactions predicted between the cosmic ray and the photons of the cosmic microwave background radiation. They predicted that cosmic rays with energies over the threshold energy of 5×1019 eV would interact with CMB photons to produce pions. This would continue until their energy fell below the pion production threshold. Therefore, extragalactic cosmic rays with energies greater than this threshold energy should never be observed on Earth.

    Unsolved problems in physics: Why is it that some cosmic rays appear to possess energies that are theoretically too high, given that there are no possible near Earth sources, and that rays from distant sources should have been absorbed by the cosmic microwave background radiation?A number of observations have been made by the AGASA experiment that appear to show cosmic rays from distant sources with energies above this limit (whimsically dubbed Oh-My-God particles). The observed existence of these particles is the so-called GZK paradox or cosmic ray paradox.



    Anyway, this was brought up and the questioned asked, because I did understand something that even if it was based on theoretical definitions might have been ones that were different from another, and brought the scorn of high energy physicists to wonder, where such principles had been raised in terms of quantum gravity?

    So lookng at Lee's position and it becomes clear when one does the research on cosmological scenarios, that no wonder you want the string theorist on side, in this debate.

    John Ellis is a fine educator when it come to laying the simple view to avenues related to both High energy physics and the relation in Pierre Auger determination.

    Imagine microstate blackholes, and I wonder what "this trigger is" that would make life so much easier if we could determine the background,versus non background debate in terms of these experimental positions?



    So strings and Loop quantum are face to face here in our informational predictions, about outcomes of the background versus the non-background, and getting to the source of this debate, from a physics interpretation and a expeirmental one, has always been the quest I think, and one supported by Lee Smolin.

    So what rationality might have issue from the basis of that theoretcial position, and like I said before, it seems what pubic relations the top scientists have with the public, is to lay the foundation at the front door in a simple a way as possible from the blogosphere. What other way is so simple and direct tot he public that such distance could now been narrow to someone like Clifford in Cosmic INvariance, speaking to this very subject. Any the link below this sets the tune, and here th econtinuation of th equestion I had there that has not been repsonded too, becuase of the layman underdevleoped view of where top theoretorcians reside.

    I'll give it a stab anyway. There seems to be a certain romance I have with the subject, that does not require money from any avenue, and such grants, far from the layman's view that doing this for fun, has been most rewarding becuase it brought me to see in different ways in the bulk, that others in simple life care not, and walk their way.

    Plato said:
    Seeking clarity in relation to experimental propositions of Glast 2006 and how it shall support one’s position over another? Will it?

    High energy relevance had to meet each other in a way that cosmologically had something to do with high energy perceptions in relation to the trigger? Link on name.

    The “beginning”, as first principles? Robert Laughlin saids no to “first principles”?:)


    Since it is hard to put a link within a link, I thought I better put link on name here as well.

    I really hate quoting myself, but alas the move is to continue regardless, so onto, "Gubser and structure information."

    Lubos Motl said:
    Steve Gubser (from Princeton) has just gave an interesting talk at the joint seminar in which he tried to convince us that structure formation (the process in which the early clumps of matter and the first galaxies were born) is a very interesting topic in cosmology, even for string theorists, in which some signs of new physics may be found if one tries to reproduce the observations.


    How indeed would one see gluonic perception at this level bringing us ever closer to views on the window of the universe, and such leaidng indicators has to bring some noton to what started in the beginning? Non?

    Monday, August 15, 2005

    Explanation on the Landscape


    Photograph by Clifford Johnson


    While on Cosmic Invariance, Clifford brings a much needed attempt at explanation on how we view the landscape. I'll have to spend sometime going over this becuase it is a critical position and difference between two facets of thinking within the scientific community. Susskind and Lee Smolin have lead this discussion repeatedly before, and I find this continued effort, a nice way to continue to peer into.

    Some response helps too, and indicates our attention to the reasons why such positions are adopted. I find this very important in understanding why these respective positions, are taken and what possibly might issue from the stated position.

    Lee Smolin on Aug 15th, 2005 at 9:01 am :
    Method A: ASSUME 1) that there is a real non-perturbative theory behind all the approximate calculations and 2) that it is relevant for nature. Then interpret various results, having to do with dualities, the landscape etc given these assumptions.

    Method B: Look for evidence that the two assumptions of method A are true.

    One evaluates results very differently, depending on whether one uses method A or method B. There is nothing wrong with using Method A from time to time, so long as the assumptions are made explicit, and the risks that are thereby taken on explicitly acknowledged. One can learn things that will turn out be true about the theory, if 1) is true, or about nature, if 2) is true. But one cannot do science only or even mostly by Method A, no matter how promising an idea may seem. What I find disturbing in your essay, and in many conversations with string theorists is that they reason by Method A but they do not state explicitly their assumptions. This puts me often in the uncomfortable situation, when discussing with a string theorist, of having to add, “but there is one more possibility, the theory might be wrong.”


    So Jacque Distler adds his views and I heard he walked out on the conference? So am I to take it that this very topic tries his impatience, that he might have seen bias raise it's ugly head, or that holding a position like Peter Woit's put them the odd man out? I think Lee is doing a fine Job of trying to keep cohesion amongst the scientists that we do not have to worry, about such antics, as they eventually come around to accept the debate?:)

    Jacques Distler on Aug 15th, 2005 at 10:52 am
    Lee was, most recently, at Strings 2005, and he does hang out with his stringy colleagues at Perimeter.

    I don’t know whether that counts for you, but it does for me.


    The Layman's view

    As stated before in how Clifford presents his perspective I immediately noticed a corresponding image in my mind in terms of hypherysics.



    Now you have to forgive my laymen perspective because when they start talking about the landscape, I tend to see this completed image in my mind, much as I have relayed it here(Are Scientists Currently Censoring Debate on Global Warming). Although it seeks to detail the environment as a relative view on such perspective as landscape, I thought I would see how Cliiford's view and the resulting talks might have been understood from my own perspective.

    Unfortunately I do not have the guidance other then what I can intuitive garner in my continue development, so I hope I do other justice and do not degrade this topic in any way.


    The ground state of a three-dimensional box of dimension L can be obtained by setting n=1 for all three dimensions, giving an energy three times the ground state energy of the one-dimensional box. The ground state for the three-dimensional box would be


    So when one looks at these images of the landscape what is being said here, I tried to garner a overall perspective as I did in the "censoring debate on Global warming".



    I give a direct link to the picture that had been presented early on in my research, because I tended to see this split very early on as a positional one worth taking note. But somewhere along the line my thinking changed as I saw the vast differences and capabilities of the bulk possibilities in terms of graviton scattering and condensing feature.

    So transferring this thinking to global differences help me to continue to see how Clifford or string theory approach to landscape development might be seen. I rest easy that there are those better qualified, but this has not limited what I have now been able to see. As others will see in the landscape interpretation.

    Wednesday, August 10, 2005

    STRINGS '05 PUBLIC LECTURES



    Peter Woit:
    Dijkgraaf’s talk was completely standard string evangelism, and except for a couple slides mentioning D-branes and black holes, could easily have been given, completely unchanged, twenty years ago.


    Sometimes if you do not do this assessment for the general public, and make correct the way in which a Peter Woit, Robbert Dijkgraaf or even a Lubos Motl might have views on things, then to introduce on religious grounds the ownership of perspective, one might move to defend themself as being free of "faith based organizations?" One would have been classically stereotyped, because of the position they hold? You'd all be backing away from each other?

    But that's not the point I think. It's sort of like Lee Smolin synopsis, on the way "Three Roads," now leads to where one had moved since then. You see, one has to do this checking all the time, just so that the position held in context is necessary for further developmental strategies to future perspective. This is what Lee Smolin does that I like.

    The harmony that is required might be okay to diverge into positions distinctive, but the larger populace would, and might see such dialogue as discerinig of the struggle that lays before all.

    Such talks would be signatory of such synoptic ends, that to move forward, new harmonicial standards might be now further discussed, as they were in Solvay with friction?:)


    Cosmic Landscape:
    String Theory and the Illusion of Intelligent Design



    No wonder Susskind, moved to consider himself free of some intelligent design model that might have been imposed by the sean's carroll and others, who would seek to tie an aspect of theoretcial developement to some "faith based idealization of research" and developement. I have listen to it long and hard about the way in which there is some master plan to have some movement take over the common sense of the scientific trades?

    So you decide and listen reader. For you, it may be something new. I can assure you you will not be taken over by some unseen force, where an exorcism is needed to bring you back to common sense.



    Strings, Black Holes, and the End of Space and Time
    Robbert Dijkgraaf (Amsterdam)
    Strings05 Public Lecture

    Tuesday, July 26, 2005

    Kilometric Radiation?



    So we use physics in ways to change the way we see? Here are some examles from the Cassini Project and Wikipedia.

  • Cassini Plasma Spectrometer (CAPS)
    The Cassini Plasma Spectrometer (CAPS) is a direct sensing instrument that measures the energy and electrical charge of particles such as electrons and protons that the instrument encounters. CAPS will measure the molecules originating from Saturn's ionosphere and also determine the configuration of Saturn's magnetic field. CAPS will also investigate plasma in these areas as well as the solar wind within Saturn's magnetosphere.[1]


  • Cosmic Dust Analyzer (CDA)

    The Cosmic Dust Analyzer (CDA) is a direct sensing instrument that measures the size, speed, and direction of tiny dust grains near Saturn. Some of these particles are orbiting Saturn, while others may come from other solar systems. The Cosmic Dust Analyzer onboard the Cassini orbiter is ultimately designed to help discover more about these mysterious particles, and significantly add to the knowledge of the materials in other celestial bodies and potentially more about the origins of the universe.[2]


  • Composite Infrared Spectrometer (CIRS)

    The Composite Infrared Spectrometer (CIRS) is a remote sensing instrument that measures the infrared light coming from an object (such as an atmosphere or moon surface) to learn more about its temperature and what it's made of. Throughout the Cassini-Huygens mission, CIRS will measure infrared emissions from atmospheres, rings and surfaces in the vast Saturn system to determine their composition, temperatures and thermal properties. It will map the atmosphere of Saturn in three dimensions to determine temperature and pressure profiles with altitude, gas composition, and the distribution of aerosols and clouds. This instrument will also measure thermal characteristics and the composition of satellite surfaces and rings.[3]


  • Ion and Neutral Mass Spectrometer (INMS)

    The Ion and Neutral Mass Spectrometer (INMS) is a direct sensing instrument that analyzes charged particles (like protons and heavier ions) and neutral particles (like atoms) near Titan and Saturn to learn more about their atmospheres. INMS is intended also to measure the positive ion and neutral environments of Saturn's icy satellites and rings.[4]


  • Imaging Science Subsystem (ISS)

    The Imaging Science Subsystem (ISS) is a remote sensing instrument that captures images in visible light, and some in infrared and ultraviolet light. The ISS has a camera that can take a broad, wide-angle picture and a camera that can record small areas in fine detail. Scientists anticipate that Cassini scientists will be able to use ISS to return hundreds of thousands of images of Saturn and its rings and moons. ISS includes two cameras; a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). Each uses a sensitive charge-coupled device (CCD) as its detector. Each CCD consists of a 1,024 square array of pixels, 12 μm on a side. The camera's system allows for many data collection modes, including on-chip data compression. Both cameras are fitted with spectral filters that rotate on a wheel—to view different bands within the electromagnetic spectrum ranging from 0.2 to 1.1 μm.[5]


  • Dual Technique Magnetometer (MAG)

    The Dual Technique Magnetometer (MAG) is a direct sensing instrument that measures the strength and direction of the magnetic field around Saturn. The magnetic fields are generated partly by the intensely hot molten core at Saturn's center. Measuring the magnetic field is one of the ways to probe the core, even though it is far too hot and deep to actually visit. MAG's goals are to develop a three-dimensional model of Saturn's magnetosphere, as well as determine the magnetic state of Titan and its atmosphere, and the icy satellites and their role in the magnetosphere of Saturn.[6]


  • Magnetospheric Imaging Instrument (MIMI)

    The Magnetospheric Imaging Instrument (MIMI) is both a direct and remote sensing instrument that produces images and other data about the particles trapped in Saturn's huge magnetic field, or magnetosphere. This information will be used to study the overall configuration and dynamics of the magnetosphere and its interactions with the solar wind, Saturn's atmosphere, Titan, rings, and icy satellites.[7]


  • Radio Detection and Ranging Instrument (RADAR)

    The Radio Detection and Ranging Instrument (RADAR) is a remote active and remote passive sensing instrument that will produce maps of Titan's surface and measures the height of surface objects (like mountains and canyons) by bouncing radio signals off of Titan's surface and timing their return. Radio waves can penetrate the thick veil of haze surrounding Titan. In addition to bouncing radio waves, the RADAR instrument will listen for radio waves that Saturn or its moons may be producing.[8]


  • Radio and Plasma Wave Science instrument (RPWS)

    The Radio and Plasma Wave Science instrument (RPWS) is a direct and remote sensing instrument that receives and measures the radio signals coming from Saturn, including the radio waves given off by the interaction of the solar wind with Saturn and Titan. The major functions of the RPWS are to measure the electric and magnetic wave fields in the interplanetary medium and planetary magnetospheres. The instrument will also determine the electron density and temperature near Titan and in some regions of Saturn's magnetosphere. RPWS studies the configuration of Saturn's magnetic field and its relationship to Saturn Kilometric Radiation (SKR), as well as monitoring and mapping Saturn's ionosphere, plasma, and lightning from Saturn's (and possibly Titan's) atmosphere.[9]


  • Radio Science Subsystem (RSS)

    The Radio Science Subsystem (RSS) is a remote sensing instrument that uses radio antennas on Earth to observe the way radio signals from the spacecraft change as they are sent through objects, such as Titan's atmosphere or Saturn's rings, or even behind the sun. The RSS also studies the compositions, pressures and temperatures of atmospheres and ionospheres, radial structure and particle size distribution within rings, body and system masses and gravitational waves. The instrument uses the spacecraft X-band communication link as well as S-band downlink and Ka-band uplink and downlink.[10]


  • Ultraviolet Imaging Spectrograph (UVIS)

    The Ultraviolet Imaging Spectrograph (UVIS) is a remote sensing instrument that captures images of the ultraviolet light reflected off an object, such as the clouds of Saturn and/or its rings, to learn more about their structure and composition. Designed to measure ultraviolet light over wavelengths from 55.8 to 190 nm, this instrument is also a valuable tool to help determine the composition, distribution, aerosol particle content and temperatures of their atmospheres. This sensitive instrument is different from other types of spectrometers because it can take both spectral and spatial readings. It is particularly adept at determining the composition of gases. Spatial observations take a wide-by-narrow view, only one pixel tall and 60 pixels across. The spectral dimension is 1,024 pixels per spatial pixel. Additionally, it is capable of taking so many images that it can create movies to show the ways in which this material is moved around by other forces.[11]


  • Visible and Infrared Mapping Spectrometer (VIMS)

    The Visible and Infrared Mapping Spectrometer (VIMS) is a remote sensing instrument that is actually made up of two cameras in one: one is used to measure visible wavelengths, the other infrared. VIMS captures images using visible and infrared light to learn more about the composition of moon surfaces, the rings, and the atmospheres of Saturn and Titan. VIMS also observes the sunlight and starlight that passes through the rings to learn more about ring structure. VIMS is designed to measure reflected and emitted radiation from atmospheres, rings and surfaces over wavelengths from 0.35 to 5.1 mm. It will also help determine the compositions, temperatures and structures of these objects. With VIMS, scientists also plan to perform long-term studies of cloud movement and morphology in the Saturn system, to determine the planet's weather patterns.[12]


  • So how does String/M theory change the way we see?


    The calorimeter design for GLAST produces flashes of light that are used to determine how much energy is in each gamma-ray. A calorimeter ("calorie-meter") is a device that measures the energy (heat: calor) of a particle when it is totally absorbed.


    Smolin added his contribution to the string theory discussion on the new Cosmicvariance.com site that has been created by a group of people that offer perspective. In this case Sean Carroll posted a thread on Two Cheers for String theory, provoked some iteresting responses by minds who are at the forefront of these conversations.

    I responded to this becuase I had been following both avenues Smolin spoke too, so I'll put my comment here as well.

    This topic thread was develope from my reactions based on those who call people who are trying hard to integrate views of the natural world with the physics ideology of the topic of Strings?M theory, these fellows present. If they can not show us these new views as Smolin offers for inspection then what use the models and theories if no onne wants to se these work in the world we undrstand well by seeing around us?

    While some people are looking for consistant means of determinations, others apply "conceptual situations" and bring forth comprehension of a kind. Now to this degree, that "gluonic perception is being adjusted" to see these values. The Smolins and others understood well the limitation of these views? Are there any?


    Radio sounds from the source

    All of the structures we observe in Saturn's radio spectrum are giving us clues about what might be going on in the source of the radio emissions above Saturn's auroras," said Dr. Bill Kurth, deputy principal investigator for the instrument. He is with the University of Iowa, Iowa City. Kurth made the discovery along with Principal Investigator Don Gurnett, a professor at the University. "We believe that the changing frequencies are related to tiny radio sources moving up and down along Saturn's magnetic field lines."


    Has Sound, Changed the way we See?

    Most of us understand the the aurora display do we not, and the resulting interactive play between the sun and the earth? The Auger experiment previously talked about and spoken too, by John Ellis, is a fine example of the diversity of interative features we can hope to see, as we examine the particle nature apart from the LHC rules of energy engagement, above and beyond the limits that have been imposed on us earthlings:)


    The Fly's Eye and the Oh My God Particle


    While the topic is produced for this conversation seems disjointed, the ideology of the string theorist is held to a boundry of thinking in my eyes that such a membrane( here I could link a toy model for comparison), and defined in this bubble context, as rudimentry as it appears in my mind's eye, it follows the developemental processes we see from the eulicidation Einstein offered us by joining Maxwell into the process unfolding in nature and to see the effect of any bulk production as a necessary step beyond the boudaries of this bubble?


    Now in contrast I see the soapy bubble and light refraction dispalyed in such a lovely continuous flow over it's surface, that to me, it does not make sense if such auroric dispalyes are not to give us new ideas about the interactive feature of the sun with earth? Conceptually, thes ideas of hitting metal plates and such present new ideas in how dispersion across that plate could represent other ideas. What are those. Wel that's what I am trying to do is free the mind from th econstraints we had put on it in sucha strick language accompany those that step ahead of us in their own specualtions educationally followed doctrine. What new light and thinking patterns follow these people?

    The auroral ionosphere is a natural emitter of radio waves, and many of these emissions are observable at ground level. Several types of radio emissions have been well documented using a variety of ground-based, stepped-frequency receivers (see reviews by LaBelle [1989] and LaBelle and Weatherwax, [1992]). In particular, auroral roar is a relatively narrowband emission at roughly 2 and 3 times the local electron cyclotron frequency ( ) [Kellogg and Monson, 1979; Kellogg and Monson, 1984; Weatherwax et al., 1993, 1995]. Much effort has been made in characterizing the seasonal, diurnal, and spectral characteristics of auroral roar to aid in determining its generation mechanism [e.g., Weatherwax et al., 1995.




    See also:

    http://www-pw.physics.uiowa.edu/plasma-wave/tutorial/examples.html

    News articles shamelessy borrowed:


  • Space Music

  • The Musical Sounds of Space

  • 'Sun Rings' Shares the Music of
    Space

  • Quartet, Choir Debut NASA's 'Space Music'

  • Out of This World

  • Music of the Stars

  • Music of the Spheres

  • NASA Music Out of This World

  • Sun Rings

  • Turning Sounds From Space Into a Symphony

  • Science and Music Merge for Fall Concert

  • UI Space Physicist's Sounds of Space Inspire Work of Art
  • Sunday, July 24, 2005

    The Black Hole Final State

    Mathematics is not the rigid and rigidity-producing schema that the layman thinks it is; rather, in it we find ourselves at that meeting point of constraint and freedom that is the very essence of human nature.
    - Hermann Weyl

    It was a nice vacation and now being back, I see Lubos is clarifying some issues here for us to consider.

    "Lubos Motl:
    However, Hawking's semiclassical calculation leads to an exactly (piecewise) thermal final state. Such a mixed state in the far future violates unitarity - pure states cannot evolve into mixed states unitarily - and it destroys the initial information about the collapsed objects which is why we call it "information loss puzzle". A tension with quantum mechanics emerges.


    The Gepner point demonstrates greater potential recognition of the brane world understandings and two dimensional views from a five dimenisonal developmentment for those who do not like such abstract adventures P.P. Cook helps to enlighten us on this subject.

    So have I done justice to the developing perspective, that we are now ready to take what what demonstrated, and move it to a greater format for those who will lead us laymen through the world of the abstract mathematics? To help us enjoy what was mathematically unenduring for those not gifted to see the B field manifestaion, is a continuance of what we like to engage at higher dimensional perspectives. And really, it is all about imagery is it not?




    Lee Smolin:
    It was worry about the possibility that string theory would lead to the present situation, which Susskind has so ably described in his recent papers, that led me to invent the Cosmological Natural Selection [CNS] idea and to write my first book. My motive, then as now, is to prevent a split in the community of theoretical physicists in which different groups of smart people believe different things, with no recourse to come to consensus by rational argument from the evidence.


    You must understand the state of thinking and dualistic nature that continues to force minds to engage the process, and this quest for wholeness, between two thoughts that are part and parcel of the same thing? Relativity and Quantum Nature. The larger circle is RElativity, and the smaller, the quantum nature. LQG and STring work from their respective positions.

    So do we select the basis for this model, and find that LQG and Strings are formulated on principals embedded in association with the blackhole topic? This throws light back again on a topic that has been shared more then once by such trends in thinking as Lubos exemplfies for us, and again directs our thoughts towards Lenny Susskind and Lee Smolin, in contrast to each other.

    I see people are teaming up appropriately, such as Cosmic Variance, and this of course has already been lead by Lubos and Peter's contrast to each other. Whether some like to speculate on co-joining for such comparsions on the validity of strings, versus no strings approach, as resolutions, had already been developed while we see this new means to develope, much as Brain Greene and others in ISCAP foundations principals.

    So of course onward and forward, we push the topic and the expertise for the layperson like me, that we see and continue to find, developmental processes appropriately gathering for future thoughts shared? Again too, we see Quantum Diaries has indeed served it's purpose more then once in what John Ellis and other's have shared, have open the doorway to how we see such developmental attitudes expanding in contrast to the larger circle of possibilties.

    See John's latest entree and for me, hitting big objects and particle collisions still open the mind for the natural cosmic interactive processes ongoing in nature around us.

    Anyway back to the title of this post. I have some thinking here to do.

    Gary T. Horowitz1 and Juan Maldacena,2

    The purpose of this note is to provide a possible answer to this question. Rather than the radical modification of quantum mechanics required for pure states to evolve into mixed states, we adopt a more mild modification. We propose that at the black hole singularity one needs to impose a unique final state boundary condition. More precisely, we have a unique final wavefunction for the interior of the black hole. Modifications of quantum mechanics where one imposes final state boundary conditions were considered in [6,7,8,9]. Here we are putting a final state boundary condition on part of the system, the interior of the black hole. This final boundary condition makes sure that no information is “absorbed” by the singularity.


    If indeed we started to think about the point on the brane then what kind of simplification can be drawn so that those less enclined to such abstract thinking could find a greater potential to that dimensionnal thinking?

    (a) Compactifying a 3-D universe with two space dimensions and one time dimension. This is a simplification of the 5-D space­time considered by Theodor Kaluza and Oskar Klein. (b) The Lorentz symmetry of the large dimension is broken by the compactification and all that remains is 2-D space plus the U(1) symmetry represented by the arrow. (c) On large scales we see only a 2-D universe (one space plus one time dimension) with the "internal" U(1) symmetry of electromagnetism.


    Here such thoughts begin to form around the idealization of computer graphics imagery developed and leading in this idealization of this two dimensional screen. We see where the likes of Thomas Banchoff demonstrate where such new roads to the developing insight ot this imagery can be seen in Smolins views of the Bekenstein Bound, that we we now understand a greater potential exists in how we view the screen, and what is being described in the blackhole horizon?



    Let me show this image again, for greater clarity of what I mean.

    Sunday, May 29, 2005

    "Lightening," as Strings, Strike?



    With a "supersymmetrical realization" capable of being disemminated in the brain? What could have manifested from it's beginning? To have nature exemplify this greater potential "for new airs to breath life " into other possibilties of minds constructs "real objects" and "things"?

    Are the brain matters limited in terms of this new math? A perspective on the origination of what this universe was before it settled into "the cosmic bands of creation," we know as matter constituents of a galaxy kind.

    Flower representation (plank epoch and guth's expansnonary universe) as a torodial expression of form? As the basis of this supersymmetrical realization, seen in mathematical enlightenment? Makes it hard ,to see how expansionistc views could have been missed in gaining this toposense?

    Mind Over Matter: Brain Waves Guide a Cursor's PathBy Rick WeissWashington Post Staff WriterMonday, December 13, 2004; Page A08


    Wolpaw's "thinking cap" sports 64 sensors (the polka dots) that detect electroencephalographic (EEG) signals generated by neurons. With a software program analogous to those used in voice-recognition programs, which "learn" people's verbal quirks over time, people can gain control over a cursor's movement in two dimensions by modulating signal intensities in certain regions of the brain, Wolpaw and co-worker Dennis McFarland reported in last week's early online edition of the Proceedings of the National Academy of Sciences.


    Now it's never easy to see how such tomographical initiatives of the brains complex firings, might have a issue with the way we do things? So early work here, and the ideas of cursor control stimulation from human contact rhythmns could exemplfy the greater complexity of control that the minds likes to extend from itself?

    No less the idea that calorimetric views would measure some event in particle reductionistic views, about how things work. As a picture, is taken. Views condensed into greater meaning from a huge outlay of supersymmetrical issues, into this crazy bands that streak across our mind sky?

    Here we have gone to extremes to say, "that the brain has a third arm" and we know how it works and we can use it?

    Monkeys Adapt Robot Arm as Their Own


    Image: Miguel Nicolelis, M.D., Ph.D., professor of neurobiology and co-director of the Center for Neuroengineering, Duke University Medical Center, with robot arm. PHOTO CREDIT: Duke University
    "In our new experiments, the idea is that by using vision and touch, we're actually going to create inside the brains of these animal a vivid perceptual image of what it is to have a third arm," he said.


    The greater complexity of a system would have known that the physiological coordination of views, could have, "photosynthesis processes"? Used chemcial derivatives endocronologically reduce to the euclidean view. While it existed, within this massive torodial view of the human body? Reduced it, to viable means of expression?


    So why is it so difficult to accept the idea "that if a Professor is walking across the room, that many of his students would congregate.:)" Just as they would in any other attempts at defining the nature of this reality?

    Hooft, Witten and now Lauglin himself understands, that we have face to face with a problem? By arguing "stuff", would we have divested ourselves of recognition of this Third Superstring Revolution? Of course not.:)



    BrainInfo Site

    Monday, April 04, 2005

    CERN and Future Experiments



    I needed to come back down to earth for a minute to see where the trend is going with those who shall lead us poor earthlings into the future of experimental research and profound understandings.

    It would be nice to see perspectives by Lubos, PeterWoit the group here(meaning their blogs), as we look in this direction for a moment? Peter might be able to set his Dirac Moduli space views here?:)

    Peter Woit for emphasizing the importance of the Dirac operator on the moduli space of Calabi-Yau four-folds and the importance of string theory to him.


    The next step will again be taken in Japan, with the new J-PARC accelerator starting in 2009 to send neutrinos almost 300 km, again to the Super-Kamiokande experiment, to probe the third neutrino mixing angle that has not yet been detected in either atmospheric or solar neutrino experiments. This may also be probed in a new experiment being proposed for the Fermilab NuMI beam. One of the ideas proposed at CERN is to probe this angle with an underwater experiment moored in the Gulf of Taranto off the coast of Italy, viewing neutrinos in a modified version of CERN's current Gran Sasso beam.



    So having quickly gone today I went to look at John Ellis site, and was formally introduced to some of the things that have been happening with him and avenues of experimentation that seem very interesting to me.

    High Energy Physics Group

    The Theory of Cosmic Rays


    Cosmic rays, which have historically provided the first tool to study high-energy phenomena, are playing a new role in modern physics. The origin of high-energy cosmic rays, gamma rays and neutrinos is still an open question in astrophysics. On-going and future experiments will give us new information on astrophysical sources and on high-energy processes.


    It still retains high energy considerations even in face of LHC questions about particle reductionism and the effects of dynamical interrelations as we see this travel in neutrino functions. I wanted to point to further information here in terms of micro-state black-hole detection. I get this soon.


    2004 promises to be an exceptionally exciting year in General Relativity and Gravitation: the LIGO/VIRGO/GEO/TAMA network of detectors has begun generating scientific results, ushering in the era of gravitational wave astronomy. These detectors will search for gravitational wave signals of the collision of black holes, neutron star mergers and other astronomical events previously undetectable. The fundamentally new science of gravitational wave astronomy opens up a new window on the universe. Up until now, astronomy has relied on observations of electromagnetic wave signals (e.g. visible light, radio waves). The detection of gravitational waves offers a completely new perspective on the universe: they will enable us to "hear" the cosmic orchestra as well as to see it! GR17 will provide the scientific community with one of the earliest opportunities to discuss the first scientific results of this era.


    I wanted to add a little more information here to further bolster this idealization that I have found in Brian Greene's statement about turning our views skyward in the hope of seeing strings and cosmological thinking in a new way.

    Flight of the Phenix

    If mini black holes can be produced in high-energy particle interactions, they may first be observed in high-energy cosmic-ray neutrino interactions in the atmosphere. Jonathan Feng of the University of California at Irvine and MIT, and Alfred Shapere of the University of Kentucky have calculated that the Auger cosmic-ray observatory, which will combine a 6000 km2 extended air-shower array backed up by fluorescence detectors trained on the sky, could record tens to hundreds of showers from black holes before the LHC turns on in 2007.

    Wednesday, March 30, 2005

    Raychaudhuri Equation



    Is it sand running through our fingers, or a taffy like substance, in symbolic form?

    The difference, discretium and fluidity of nature, geometrically/topologically driven, are at war with what we might interpret in time? Early on, Salvador Dali understood well this geometrical propensity to the tesserack, that he embued his art with higher religious context(time). But in real life, he was different man?:)

    The issues were not far removed from perspective, that this battle would find itself challenged, in how we would portray the nature of reality? That it had burst forth in science and it's manifestations.

    But come back to earth, and we have to wonder indeed if this fluid is slipping through our fingers as time reveals a more intrinistic view of the reality in the cosmos?



    Sean Carroll said:Friedmann fights back:
    For those of you interested in the attempt by Kolb, Matarrese, Notari, and Riotto to do away with dark energy, some enterprising young cosmologists (not me, I'm too old to move that quickly) have cranked through the equations and come out defending the conventional wisdom. Three papers in particular seem interesting:



    Lubos Motl:Superhorizon fluctuations and accelerating Universe:
    Several physicists and bloggers, e.g. Jacques Distler, Peter Woit and especially Sean Carroll who may be considered a true expert in these questions and who added a very new article after this article of mine was published, recently noticed a paper that claimed that the cosmological constant was not needed. Instead, the accelerating expansion was conjectured to be a consequence of fluctuations of a scalar field (and the associated stress energy tensor) whose wavelength was longer than the Hubble radius i.e. the size of the visible Universe, roughly speaking.



    I agree with Lubos here in regards to what has already been establish to date in the positions. Here with Sean Carroll, Jacques Distler, Peter Woit, and Lubos Motl respectively, that they all agree on the standards set here?

    This would be a clear statement of position, and one that would signal, accepted practice on the expository view of our cosmos? Is it to ambitious?

    Out of this a standard, even if there are divergences of personality; this is wiped away, so that we are introduced to new information as Sean shows us withRaychaudhuri equation? This gives one direction to look at.

    This equation has the special characteristic that it is true without reference to the Einstein equations . That is, it is true for any spacetime. It is an intrinsic property of the volume expansion.

    Now we come back to the intuitive development from this standard presence. Would it be so wrong to ask that four minds to stand together and paper their perspective? Then open it up to geometry/topological views, in relation to how we might develop the imagery of what might have been gathered from the dynamical realization of early universe idealizations?



    In regards to the tactile experience one might want to comprehend is in the way the universe now has unfolded?

    Now there is a most definite need to grasp the issue here in terms of what causality might mean in terms of balckhole/3 brane collapse as a perspective to the dynamics that would be revealled, for photon,/graviton production from the blackhole?

    Using Calorimeter, we see where such advances help us to distinquish early universe information in Glast cosiderations, but how much more suttle has this experience need to be expanded upon, to understand the exchange that takes place in the gravitational collapse?

    John Baez:
    Now, the way Hawking likes to calculate things in this sort of problem is using a "Euclidean path integral". This is a rather controversial approach - hence his grin when he said it's the "only sane way" to do these calculations - but let's not worry about that. Suffice it to say that we replace the time variable "t" in all our calculations by "it", do a bunch of calculations, and then replace "it" by "T" again at the end. This trick is called "Wick rotation". In the middle of this process, we hope all our formulas involving the geometry of 4d spacetime have magically become formulas involving the geometry of 4d space. The answers to physical questions are then expressed as integrals over all geometries of 4d space that satisfy some conditions depending on the problem we're studying. This integral over geometries also includes a sum over topologies.
    That's what Hawking means by this:

    Stephen Hawking:I adopt the Euclidean approach, the only sane way to do quantum gravity non-perturbatively. In this, the time evolution of an initial state is given by a path integral over all positive definite metrics that go between two surfaces that are a distance T apart at infinity. One then Wick rotates the time interval, T, to the Lorentzian. The path integral is taken over metrics of all possible topologies that fit in between the surfaces.


    How would missing energy events isolate the realization that such ventures would have been specific in detailing the envelope capturing all that has evolved in our universe to know that there is this consistancy, that spreads itself through all possibiltyies of Feynman's sum over paths of expression, that still needs to be identified?

    Now you must know that there are consequences when we see this collapse take place that asks us to consider the nature of the temperatures and diameter in reduction?

    That what has been reduced in this energy developing scenarion of the cosmos in action, is a applicable view to geometry/topology that at the same time reveals the idealization of entropic features of supersymmetical views that we learn to see?

    How this experience, as tactile as I approach it, is induced, is at very illusatory experience way back in some speculative past.:)Whooh! What? Careful now, I am analogically speaking here, because I like to see this way. It feels right(not saying it is right) as simple statement quickly summing up many mathematical views in a very short and simple way. That's what I hope anyway.

    When you look at this fluid geometrically/topolgically driven what view has transpired in blackhole production? You want to be able to understand the symmetrical breaking that is taking place? Crystalization processes, would quickly surmize a Laughlin view from a fast cooling temperature, to realize, it is much more slower then this in the cooling(15 bilion year assumption) in a cosmological process?

    So we understand curvature is well aquainted with vast track of cosmological views, but it become much more diffiult at such microscopic thinking. Sort of, all smeared out in a vast supersymmetrical views of previous states of existance, that quickly gather to form maybe, cosmic strings?:)

    John Baez said,
    But you shouldn't imagine the mood as one of breathless anticipation. At least for the physicists present, a better description would be something like "skeptical curiosity". None of them seemed to believe that Hawking could suddenly shed new light on a problem that has been attacked from many angles for several decades. One reason is that Hawking's best work was done almost 30 years ago. A string theorist I know said that thanks to work relating anti-deSitter space and conformal field theory - the so-called "AdS-CFT" hypothesis - string theorists had become convinced that no information is lost by black holes. Thus, Hawking had been feeling strong pressure to fall in line and renounce his previous position, namely that information is lost. A talk announcing this would come as no big surprise.