Showing posts with label Complexity. Show all posts
Showing posts with label Complexity. Show all posts

Friday, September 29, 2006

Historical Approach of the Sand Reckoner

I should pave the way for how the thoughts that are unfolding this morning.


But nothing afflicted Marcellus so much as the death of Archimedes, who was then, as fate would have it, intent upon working out some problem by a diagram, and having fixed his mind alike and his eyes upon the subject of his speculation, he never noticed the incursion of the Romans, nor that the city was taken. In this transport of study and contemplation, a soldier, unexpectedly coming up to him, commanded him to follow to Marcellus; which he declining to do before he had worked out his problem to a demonstration, the soldier, enraged, drew his sword and ran him through. Others write that a Roman soldier, running upon him with a drawn sword, offered to kill him; and that Archimedes, looking back, earnestly besought him to hold his hand a little while, that he might not leave what he was then at work upon inconclusive and imperfect; but the soldier, nothing moved by his entreaty, instantly killed him. Others again relate that, as Archimedes was carrying to Marcellus mathematical instruments, dials, spheres, and angles, by which the magnitude of the sun might be measured to the sight, some soldiers seeing him, and thinking that he carried gold in a vessel, slew him. Certain it is that his death was very afflicting to Marcellus; and that Marcellus ever after regarded him that killed him as a murderer; and that he sought for his kindred and honored them with signal favors.


First off, as Plato I understand "the secret" of the Building of the Pyramids. Why and what it means as a model of comprehension about the building blocks of nature.

So "carefully think in conclusion" about what this post means as you near it's end. For I had much more to say about it philosophically, but that would be stepping ahead to "now." :)

Anyway


Many physical quantities span vast ranges of magnitude. Figures 0.1 and 0.2 use images to indicate the range of lengths and times that are of importance in physics.


A lot of people do not understand that if you look to the cosmo, you do not just look at what is evident from observation, but that your observation is increased, as you enhance your perceptions about the "real depth" of that universe.

IN "LHC Factoids," presented by JoAnne of Cosmic Variance, some of the tantilizing ideas about the complexity of the information is being discussed. To me, this presents an opportune time to gain perspective from the "bottom up" discussed by Frank Wilczek .

If the sand is melted into a lense or a diamond, what view had been established by Frank that you might say his lense "is" distorted? If you read the article you understand the context, but until then, what use any "mountain/pyramid to climb" if you did not understand the complexity of the information?



Archimedes met an untimely death while deep in thought, pondering a figure he had drawn in the sand. He did not see the Roman soldier approach, sword in hand. The mosaic portrays this historical event


About Dimension

John Baez's link this morning in his comment is important for a lot of different angles... ummm... reasons?:)

So when you are pointed towards the valuation of all these "sand particles," it not that you want to look like an "ostrich and bury your head in the sand," but that you want to retain perspective on the complexity of the "sand castles" that mathematicans like to build? So you tend to look for the technique concerning the point, breadth and width of the evolving statemntement of the projective geoemtries?


A space is a collection of entities called points. Both terms are undefined but their relation is important: space is superordinate while point is subordinate. Our everyday notion of a point is that it is a position or location in a space that contains all the possible locations. Since everything doesn't happen in exactly the same place, we live in what can rightly be called a space, but points need not be point-like. Any kind of object can be a point. Other geometric objects, for instance, are totally acceptable (lines, planes, circles, ellipses, conic sections) as are algebraic entities (functions, variables, parameters, coefficients) or physical measurements (time, speed, temperature, index of refraction). Even so-called "real" things can be points in a space: people are points in the space of a nation's population, nations are points in the global political space, and telephones are points in the space of a telecommunications network.



So of course you always start off with Euclidean perspective, and work from there. So, you have "one" grain of sand? One raindrop? One string? Okay, you get my point yet?

The beginning of the Universe?

I want people to realize where the strings fit in. I can't help but stress that such advances to "the cause" of what perception is necessary had to start off in a "avenue" like all things, this road leads to the universe we have today.



Because it starts off in the analogy of "the string" makes this feature no less important then the "sargeant major" of Robert Laughlin's condense matter theorist view.

See:


  • What are those Quantum Microstates-Tuesday, October 18, 2005


  • A Perspective on Powers of Ten?



  • Saturday, August 26, 2006

    Beyond Spacetime?

    As well as bringing the accelerator's counter-rotating beams together, LHC insertion magnets also have to separate them after collision. This is the job of dedicated separators, and the US Brookhaven Laboratory is developing superconducting magnets for this purpose. Brookhaven is drawing on its experience of building the Relativistic Heavy Ion Collider (RHIC), which like the LHC is a superconducting machine. Consequently, these magnets will bear a close resemblance to RHIC's main dipoles. Following a prototyping phase, full-scale manufacture has started at Brookhaven and delivery of the first superconducting separator magnets to CERN is foreseen before the end of the year.





    Now some people do not like "alternate views" when looking at Sean's picture. But if you look at it, then look at the picture below, what saneness, sameness, could have affected such thinking?

    Lisa Randall:
    "You think gravity is what you see. We're always just looking at the tail of things."





    So we look for computerized versions to help enlighten. To "see" how the wave front actually embues circumstances and transfers gravitonic perception into other situations.



    Was this possible without understanding the context of the pictures shared? What complexity and variable sallows us to construct such modellings in computers?



    Okay so you know now that lisa Randall's picture was thrown inhere to hopefully help uyou see what I am saying about gravitonic consideration.

    Anything beyond the spacetime we know, exists in dimensional perspectives, and the resulting "condensative feature" of this realization is "3d+1time." The gravitonic perception is "out there?" :)

    Attributes of the Superfluids

    Now it is with some understanding that the "greater energy needed" with which to impart our views on let's say "reductionism" has pointed us in the direction of the early universe.

    So we say "QGP" and might say, "hey, is there such a way to measure such perspectives?" So I am using the graph, to point you in the right direction.



    So we talk about where these beginnings are, and the "idea of blackholes" makes their way into our view because of th reductionistic standpoint we encountered in our philosophical ramblings to include now, "conditions" that were conducive to microstate blackhole creation.

    The energy here is beyond the "collidial aspects" we encounter, yet, we have safely move our perceptions forward to the QGP? We have encounter certain results. You have to Quantum dynamically understand it, in a macro way? See we still talk about the universe, yet froma microscopic perception.

    Let's move on here, as I have.

    If you feel it too uncomfortable and the "expanse of space quantumly not stimulating" it's okay to hold on to the railings like I do, as I walked close to the "edge of the grand canyon."

    So here we are.

    I gave some ideas as to the "attributes of the superfluids" and the history in the opening paragraph, to help perspective deal with where that "extra energy has gone" and how? So you look for new physics "beyond" the current understanding of the standard model.

    So, it was appropriate to include the graviton as a force carrier? Qui! NOn?

    Friday, July 28, 2006

    Emergence: A Point in Spacetime

    We used to think that if we knew one, we knew two, because one and one are two. We are finding out that we must learn a great deal more about 'and'."
    - Sir Arthur Eddington (1882-1944)



    Foundational perspectives are important to me, and are part and parcel of a larger frame of thinking that comes into materiality.



    What basis then leads such thinking, that something could manifest from another place and become the material reality with which we deal? I know this is about "what is in the now," yet such recognition of what is "chaotic and has complexity" now becomes an organizational pattern. What is "chaos theory?"

    From the untold many constituents in the bulk perspective, "Higgin's" has some new found ways in which he can express himself. He see's new ways of travel in the universe?

    What emergent properties would have such conditions and gatherings have on routing new universe from tunnelling found created within cosmological events? Which if reduced too, as QGP states of existance, would produce similar resulting anomalies encountered in superfluid state realities?

    Since he is beyond what we are accustom too of the Standard model, then what value does Higgin's play as he is born to the level with which he now embues all of creation. He is strong on "some points," then others?

    The Unfolding Universe



    There is but one kind of entropy change. Entropy change is due to energy dispersal to, from, or within a system (as a function of temperature.), measured by microstate change: S = kB ln [microstates final / microstates initial ].


    If you look to the arrow of time, and "the event from which it sprang," how did such strings become the basis of thinking along this road to what exists in the universe today? It has been assign "a place" in this segment of the time's growth within this universe, and we have been sent "back in time to the reductionsitic valuation" of what is seen in the colliders, to see what is emergent today. But what did they find at the beginning? What shall we find at "the beginning" of any universe?

    What effect did strings have on this evolution?

    The emergent universe

    The breathtaking quality of emergence lies in its broad applicability, from ants to people, and from electrons to galaxies. We assume that we can sing and dance together because we are intelligent and coordinate our behavior, and so it is surprising to see the coordinated chirping of crickets, and shocking to discover that the same principles apply to mindless things such as water molecules arranging themselves in a crystalline structure to form ice. When you get enough things together, and they interact in just the right way, they suddenly shift to coherent behavior. Emergent principles may govern the smallest units of matter, as in electrons humming together within a superconductor, to the largest, as when entire galaxies clump into regular patterns. Scientists across multiple fields have found that such systems don't require a central ringleader directing the way – their self-organization is inevitable, due to the local interactions of nearest neighbors.

    Emergence represents a revolutionary paradigm shift away from reductionism (the understanding of the world through understanding the component parts. Scientists working within the revolutionary paradigm of emergence study the organizing principles causing collective behavior across many disciplines.

    The EUP is focusing on the following types of emergent systems


    A point in space implies that such emergence into the spacetime co-ordiantes, have some "other dimensional relation" beyond what we are saying of 3+1? So of course I am enthralled by such an emergence and what could come into these spacetime coordinates.

    So the universe in it's unfolding has certain attributes in it's early phases that amount to the conditions Sean Carroll may sees of it? If this is the case, then that valuation of the universe, in it's unfolding is doing what? It's temperature?

    If you "wrap the whole of what this arrow of time is, in a geomtrical sense," then the strings and the time of the universe in "Sean's perspective" is inclusive?

    So how do we say such a crunch is to happen? How does such thinking become part of our reasoning, to say that the universe will collapase on itself, and become something new? Will it ever?

    Tegmark does not take to such "topological expressions of the universe," yet, if you look at the WMAP mapping of the universe what is it you see besides these points of expression, as some nodal and anti-nodal analogy to the cosmological events? Tunnels, through which we can travel? New energy, being distributed back into the universe, in the form of dark energy/matter?

    We report results of the first strangelet search at RHIC. The measurement was done using a triggered data-set that sampled 61 million top 4% most central (head-on) Au+Au collisions at $\sNN= 200 $GeV in the very forward rapidity region at the STAR detector. Upper limits at a level of a few $10^{-6}$ to $10^{-7}$ per central Au+Au collision are set for strangelets with mass ${}^{>}_{\sim}30$ GeV/$c^{2}$.


    If strangelets have been disproved then what "crazy thoughts" shall we now think of, in what constitutes the "new physics?" Tachyon condensation perhaps?

    What is the "false vaccuum" to the "true," when it is geometrically expressed? :)

    Monday, June 05, 2006

    Types of Blogging Software



    Ask yourself this? What is the new kernel to be, if we had for one moment presented the opportunities for the using Riemann hypothesis, and contained the very idea as a philosophy presented within this blog?

    A VIEW OF MATHEMATICS by Alain CONNES
    Each generation builds a mental picture" of their own understanding of this world and constructs more and more penetrating mental tools to explore previously hidden aspects of that reality.


    Would such a "paradigmal change" allow for insightual software development to take a turn for the better if the understanding existed, that one had already left the cave, and saw the aspects of probable outcomes, as more then the primes and it's integrations with physics mentality, along with theoretical development?

    Micro-quantum structures that are exemplfiled, in Monte Carlo methods?

    Are we "FREE" to Express?

    While I have enjoyed the blogging experience of Blogger.com, and the integration of development that had been going on, the questions remain, as to where this information is deposited and how the moderation of "such a tool" is enforced?

    Like many important concepts, Web 2.0 doesn't have a hard boundary, but rather, a gravitational core. You can visualize Web 2.0 as a set of principles and practices that tie together a veritable solar system of sites that demonstrate some or all of those principles, at a varying distance from that core.



    I have a certain ideology about trying to bring together as much information as possible, by asking, if image linking, and phrase connections, do not involve copyright infringements, and allow the versatility of blogging experience, while respecting the owners of images and wording, while connected directly to their source.

    Linux is subversive. Who would have thought even five years ago (1991) that a world-class operating system could coalesce as if by magic out of part-time hacking by several thousand developers scattered all over the planet, connected only by the tenuous strands of the Internet?

    Certainly not I. By the time Linux swam onto my radar screen in early 1993, I had already been involved in Unix and open-source development for ten years. I was one of the first GNU contributors in the mid-1980s. I had released a good deal of open-source software onto the net, developing or co-developing several programs (nethack, Emacs's VC and GUD modes, xlife, and others) that are still in wide use today. I thought I knew how it was done.

    Linux overturned much of what I thought I knew. I had been preaching the Unix gospel of small tools, rapid prototyping and evolutionary programming for years. But I also believed there was a certain critical complexity above which a more centralized, a priori approach was required. I believed that the most important software (operating systems and really large tools like the Emacs programming editor) needed to be built like cathedrals, carefully crafted by individual wizards or small bands of mages working in splendid isolation, with no beta to be released before its time.



    This has been on my mind as I brought together many aspects of the information that is out there. From the respectable information posted by scientists and their personal experiences, to those shared by all, through such blogging experiences. So what was the battle brewing about from those early days and the struggle to develope communities, sharing information, and who are these people today?

    AOL=Netscape? Microsoft? Google? Yahoo?

    How would such blogging experiences allow the movement forward of society, and the thinking brain, this internet has become?

    Are there concerns, that the human being once exposed to the vastness of this information, could bring it together in such a way, as to insight the "new idea" that would forward research and developement? Encourage our minds to percieve in other ways that we are not accustom? I gave an example at the very beginning of this post in regards to the Riemann Hypothesis.


    Witten:
    One thing I can tell you, though, is that most string theorist's suspect that spacetime is a emergent Phenomena in the language of condensed matter physics.


    This is important to ask, because if such an ability is focused through the individuals efforts using such a medium, how could/would it be exploited, that it could be brought to the forefront of the "thinking brain/internet" and find indeed, that such information is useful?

    Meddle then in the internal structure and enforce the rights of deposition as to the respository, and deal with it as you like?

    The information depository costs money, I know? Image transference costs money. Then how shall "the dream of the thinking mind" ask, that if the repositories are the resources held in abeyance, until used as seen fit, then why not/should disrupt the information gathering and make it disjointed, while we/you look at it? Before it reveals it's state secret? An open society, right? People who are free?

    Robert Laughlin:
    Likewise, if the very fabric of the Universe is in a quantum-critical state, then the "stuff" that underlies reality is totally irrelevant-it could be anything, says Laughlin. Even if the string theorists show that strings can give rise to the matter and natural laws we know, they won't have proved that strings are the answer-merely one of the infinite number of possible answers. It could as well be pool balls or Lego bricks or drunk sergeant majors.


    This would mean that the very ideas of the internet explosion and control of it becomes in question, as well as, the provders we use to express ourselves on the internet?

    How will these repositiories change then in technologies that you and I are very quickly connected in ways that the human mind/internet becomes quite capable of seeing, in ways it is not accustom?

    What revolution/paradigmalchange will then happen, that the very experiences we now enjoy, will be defuncedt with all the software solutons to metigate the ability for the individual to do what any of us can do freely, without any ofthe blogging software now demonstrated below?

    Shall we choose carefully, read the requirements of, and what conclusion have you reached?

  • b2evolution

  • bBlog

  • Blogger

  • Bloxsom

  • Blojsom

  • Drupal

  • ExpressionEngine

  • Geeklog

  • Greymatter

  • iUpload

  • LifeType

  • LiveJournal

  • Movable Type

  • MvBlog

  • Nucleus CMS

  • PostNuke

  • Roller Weblogger

  • Serendipity

  • Slash

  • TypePad

  • Typo

  • TYPO3

  • WordPress

  • Xanga


  • If we are looking for the new "idea" where shall it arise from then? It is apparent that the early thinking in cosmology has been changed(to include strings ina time sequence of events evn thoguh they be micro seconds) and so too, the values of measure in "time," recognized as problematic, in terms of it's discrete value, when it is very well understood that continuity of expression can be very smooth(yet is it?)?

    The count of Primes begins in Chaos. If we were to think of the Riemann Hypothesis assigned to a scale as an approximation to the prime distribution function, then how woud any pattern suffice to be an "emergent property" of that chaos?

    Sunday, May 28, 2006

    Moore's Law Endangered?

    Moore's Law(wikipedia 28 May 2006)

    Moore's law is the empirical observation that the complexity of integrated circuits, with respect to minimum component cost, doubles every 24 months[1].


    Clifford, in writing the brief article of interest, he relays another article here for consideration.

    Spotting the quantum tracks of gravity wavesby Zeeya Merali

    Their calculations show that as the gravitational force from a passing wave slightly changes the momentum of the entangled particles, it should knock them out of their pristine spin state. In principle, that effect could be detected, but it is so small that no one has found a way to pick it up, explains Yeo. He and his team suggest that the effect could be amplified using a process called "entanglement swapping", which allows pairs of particles that have never been in contact to become entangled. "Spin and momentum become entangled to a higher degree so that changing one produces an even larger change in the other," says quantum physicist Chris Adami at the Jet Propulsion Laboratory in Pasadena, California.


    While it may have been some time that now passes it is worth the mention again that "spintronics" has this role to play, yet, in gravity probe B, the spherical valuations would only now make sense on a large cosmological plate?

    So by analogy usng Grvaity probe B we gain perspective onthe relevances of change within that gravitational radiation?

    A black hole is an object so massive that even light cannot escape from it. This requires the idea of a gravitational mass for a photon, which then allows the calculation of an escape energy for an object of that mass. When the escape energy is equal to the photon energy, the implication is that the object is a "black hole".


    Yet, is is of some concern that when we travel down to such microstates, that we are able in fact to keep a pure and clean picture of what existed once, and had gone through the changes in "spin orientation and momentum?"

    If the boundariesof the blackhole are indeed collapsing to supersymmetrcial proportions, then what use photon information if it cannot describe for us something that is going on inside?

    #18

    The distinction is important, since the term gravity waves is primarily used in fluid dynamics to describe fluid oscillations that have gravity as their restoring force

    I noticed link did not work and I was looking for confirmation as to your statement. Not that you need it :)

    So just to confirm source, I reiterate it here again. If any a expert, would they like to clean up reference(does it need to be)?

    (Gravitational waves are sometimes called gravity waves, but this term should be reserved for a completely different kind of wave encountered in hydrodynamics.)


    Also, "the effect" while in the throes of gravity waves just to clarify the thinking(ocean waves and such), effects of Hulse and Taylor different, while the entanglement issue speaks to energy release is defined by photons passage of time as is?

    What is the fastest way for it to get here without being influenced. Lagrangian perspective[Edwin F Taylors least Action Principal] and "tunnel transport" and effects of lensing?

    Of course thinking about the nature of the types of high energy level photon(gamma) and what they can traverse through, may be confusing, yet distinctive?

    One of the physical device limitations described by Dr. Packan is that transistor gates, as further miniaturization is pursued, will become so thin that quantum mechanical “tunneling” effects will arise. These quantum effects will create leakage current through the gate when the switch is “off” that is a significant fraction of the channel current when the device is “on”. This could reduce the reliability of the transistors resulting in increased cost and decreased availability of more powerful chips

    Thursday, April 27, 2006

    Comprehending New Physics?

    Scientists May Soon Have Evidence for Exotic Predictions of String Theory issued by Northeaster University

    "String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap. This increases the number of 'down' neutrinos detected. At the same time, the creation of black holes causes 'up' neutrinos to be caught in the Earth's crust, reducing the number of 'up' neutrinos. The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."


    Well, having tried to understand what this might entail, I have engaged from a layman perspective, my interest in string theory, to see if I could indeed to get to the "heart of the matter." :)

    Moving to higher energies, the expected fluxes of neutrinos become smaller, that even a cubic kilometer detector is not able to detect them. Larger volumes can be achieved by replacing optical sensors by acoustic detection. The reason is that acoustic waves can propagate over larger distances than light and allow wide spacing of detectors, and therefore larger detector volumes.



    So having understood the high energy interactions above us, what said that the lower energies would have not been followed to some "end?" What "new physics" would have said that what was produced in the sun, and what energy particles emitted into the space, would thusly be recognized in the collidial events. Would have been traced to evidence, as some theorectical conclusion might have evailed of itself?



    INtuitive recourse and back.

    What that might mean is a philosophical endeavor of mine own, although not well schooled, had existed somewhere deep in the oblivion of the soul encased here. The schooling that has gone on in thesense of out reach programs show by the articles listed by cosmic varaince, respectvely of the two organizations, are very important to me.

    What made them f cosmic variance not think I had been doing this kind of stuff on my own years before and in my attempts now, encouraging society to take hold of it's destiny responsibly, and not let it be overtaken by captialistic visionaries, that were out to line their own pocket, then share their philosophies with us while we wroked life and it's responsiblities?

    While gone for a bit on my own personal views about Intuition and the kind, it is time to get back to work. Understand where people are going with the theoretical model developed, called "String/M Theory, and try access what valuable insights had been developed "forward" in respect of what those extra dimensions might mean in study "now."

    An "arrow of time" thing, that has confused me greatly, even though entropically I understood the resulting universe had become very complex, while at one time, in maybe some supersymmtrical realization, it was much simpler?

    Gellman siad it very well earlier on in this blog, by his introduction of what constitued complexity, and this was well within some measurable idealization.

    About My personal Beliefs

    Sure I could cover it all with the mystic of my personal views and may mislead, having surmized somethings about it. This could be thought as disasterous, when not providing the complete picture that had taken me to the things that I think about.

    Truly after studing for a lot of years, although not creditialed, I would like to say too, that society and the developement of the social construct is very important to me as well. What is left "out there" for consideration, should be academically correct.

    So I stay very close to the front of, and thinking of scientists who work their respective fields.

    This is not to say that I had not developed my own respective views, as if raised religiously, that I would abandon my own beliefs about what God might mean to me.

    Just that I continue to act responsibly, as a humanist, and undertanding well the social construct of religion, as my own biographical sketch is well defined in this area, I too became a free thinker. Would like to move ahead as best the human being can be, as I learn to understand our roles in society, our responsibilites in regards to "education and truth to reason" as best as possible.

    Thursday, March 23, 2006

    Remembrance

    You must understand that the areas with which I had been dealing are highly rigourous. Imagine the purity with which these subjects deal. Now pale in comparison are the controls and experimental validation processes, I see in psychological information and experimentaion. Relying on subject associative mapping relevances in the brain, would this lead to a conclusive model assumption in the neural correlate to consciousness?

    Memory echoes in brain's sensory terrain by Bruce Bower
    Images of brain show areas that become most active during perception of pictures (a and c, in green) and sounds (e, in yellow). Small arrows point to sites of greatest activity during recall of pictures (b and d) and sounds (f).
    Wheeler, Petersen, Buckner/Washington Univ


    So vast indeed the thinking mind and it's capabilities, that one might not see the interlinking/backtrackig of the brain in it's neuronical flavours, as to the time and day of each event?



    Yet analysis is there as you look through the information, as to the basis of what might have instigated a "modulation" of the senses. Holographical, in nature possibly? If these faculties are impaired and death ensued, would it seem so unlikely that physical functions, would have had to been elevated in some way? Especially if relgated to that memory. What value "images" in mind?


    A synesthetic 'Master of Memory' (Mark Ellis) makes a fateful choice after dancing with a stranger (Stephanie Morgenstern), in the unusual wartime romance Remembrance.


    Image by Joy von Tiedemann and Mark Morgenstern
    Toronto, 1942. ALFRED GRAVES has the curse of perfect memory. It’s born of a rare condition, synesthesia, that fuses his five senses. He can’t see something without also tasting it, hearing its colour, feeling its scent — it’s overwhelming. He protects himself by living cautiously, touring his one-man memory show. One night, AURORA LUFT is in the audience. They share a drink, a dance … then she confesses she was sent to recruit him to a top-secret spy training camp near Whitby, Ontario. Privately, and against orders, she warns him not to come: “It’s not your kind of work.” But it’s too late. Alfred feels changed. Ready for anything. He signs up.


    To me this exercise is a exploration of the abilites of what "might have happened." The ideas of ingenuity and production of mind, to establish new perceptions beyond the current uses of math/physics we are currently encountering.

    I have no ready answers, just the continue interest and understanding of what new can be brought to the areas heading the forefront of science. What accomplishments, model assumption might do for forming new areas, which to us is with this creativity impulse.

    Speak, Memory
    Vladimir Nabokov (1899-1977); novelist, poet, scholar, translator, and lepidopterist (he enjoyed chasing and collecting butterflies). A cosmopolitan Russian-born émigré whose linguistic facility, erudite style, and eloquent prose helped to establish him as one of the most brilliant and respected literary figures of the 20th century. Nabokov's best-known novel, Lolita (1955), shocked many people but its humor and literary style were praised by critics. Nabokov produced literature and scholarship of beauty, complexity, and inventiveness in both Russian and English. Nabokov himself used to say "My head speaks English, my heart speaks Russian and my ear speaks French". *Synaesthesia: Vladimir Nabobov was a synesthete, as was also his mother, his wife, and his son Dimitri.


    BBC Interviewhis view of other writers and the difference between genius and talent 3 min 13

    While one of the aspect of this disease(shall I call it that?) is a memory for things, as the movie up top shows. There is some opinion about artistic validation and synesthesia in regards the actually relation.

    Further I thought it appropriate to divest oneself of some saintly and spiritual inclination, if one thought this might have been of appeal in my mind. It is. Then I must dissuade such thinking from something more rigorous.

    So Sensory INfusion and contrive inherent as to the dsease, was one thing to look at, in relation to creativity, and abilities in science and writing, to move perception forward.

    Synesthesia and Artistic Experimentation by Crétien van Campen

    ABSTRACT:
    Richard Cytowic has argued that synesthetic experimentation by modern artists was based on deliberate contrivances of sensory fusion and not on involuntary experiences of cross-modal association. He has placed artistic experiments with sensory fusion outside the domain of synesthesia research. Artistic experiments, though historically interesting, are considered irrelevant for the study of synesthesia. Contrary to this view I argue that at least Scriabin's and Kandinsky's artistic experiments were based on involuntary experiences of synesthesia. They were investigating perceptual and emotional mechanisms of involuntary synesthetic experiences that meet Cytowic's criteria of synesthesia. Artistic experiments are not only historically interesting, but may also contribute to present synesthesia research.


    See:

  • American Synesthesia Association

  • Modulating Phases States: Neural Correlate to Consciousness
  • Monday, February 27, 2006

    Phase Transitions?

    G -> H -> ... -> SU(3) x SU(2) x U(1) -> SU(3) x U(1)

    Here, each arrow represents a symmetry breaking phase transition where matter changes form and the groups - G, H, SU(3), etc. - represent the different types of matter, specifically the symmetries that the matter exhibits and they are associated with the different fundamental forces of nature


    With a distance measure in mind, the idea of a tree is to identify where something began, and ended? So you say that this interactive phase began and ended how?

    So if one wants to keep it simplifed one would have had to identified the earlier known time, where conditions were permitted, which arose to entropic valuation, from that singular time? So lets call this beginning, "Plancktime"?



    How things change, by simple rotations? It is always good to have "an image" in mind as you look at this topic presented with the perspective on puppies, instead of whether cats are alive or dead.

    Schrödinger's cat is a famous illustration of the principle in quantum theory of superposition, proposed by Erwin Schrödinger in 1935. Schrödinger's cat serves to demonstrate the apparent conflict between what quantum theory tells us is true about the nature and behavior of matter on the microscopic level and what we observe to be true about the nature and behavior of matter on the macroscopic level.


    While I had started out from a macroperspective, the idea is to put forward how we see around us right now? While I had isolated "the event" and "phase rotations" to a macroscopic valuation, the idea is to understand that this process holds true to the one at the quantum level as well. How so?

    The complexity, arises from the resulting evidence we have about objects in space, yet, there is a real understanding about "how things came to be" at this time in the cosmo, and the relating value seen in the temperature now. Yet it is possible to create, the time back when the singuarity was not in the way we though it to be as some pea, but as a condition we might have applied to "zero being a superfluid state. Where are these conditions relevant?

    Particle Indentification



    So before I move on I wanted to relay some understanding about the intrinistic valuation of fundamental particles, and thought it better to draw attention to them while coming back to the issues of entanglement, as they arose from that simplier time.

    Spooky action at a distance again?

    Sure you have to start somewhere, and we know given "state of existance" is held in consideration? So you simplify, and entanglement seems relevant as Dick mentions to make something more complex. I would of quickly jumped to "spintronic idealizations" in his case, as well as understanding, we were moving towards complexity, in computer systemization.

    Let's call it Plectics, by Murray Gellman

    but without any commitment to the notion of "once" as in "simple" or to the notion of "together" as in "complex," the derived word "plectics" can cover both simplicity and complexity.

    It is appropriate that plectics refers to entanglement or the lack thereof, since entanglement is a key feature of the way complexity arises out of simplicity, making our subject worth studying.


    While we had been playing with these ideas many have speculate over time to make this spooky action idelized earlier on by einstein, to a more solid foundational transferance in communication. GHZ entanglement became much more complex over time as experimental testing moved it forward.

    Practical Applications(27 Feb 2006 Wikipedia)

    It is unknown as to whether or not Schrödinger actually owned a cat; it is known that this experiment was proposed as a purely theoretical experiment, and the machine proposed does not exist.

    Saturday, February 25, 2006

    Nature in Analog Models

    Plato:
    "For everyone, as I think, must see that astronomy compels the soul to look upwards and leads us from this world to another."


    Oh! how complete our world view would be, that I have moved quickly to the very question of all summations given. That while "visually" occupying the mind, we had been taken to the standard model's extension. That we moved beyond, to the "introduction of the graviton," as a force carrier? What world is that Plato?

    Structuralists, like Plato we would be, that we seen not as Feynamn did, but as "platonic developers" as to the very alluring question of, "nature's form?" Lost was our view of the "interactions and processes" yet, seen in another way? That there is a discription ,of all of what these particles could be?

    "Analogue Gravity"by Carlos Barceló and Stefano Liberati and Matt Visser

    Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).


    Part of the theoretics I imagine, is trying to incorporate this into analog models for a deeper comprehension of concepts mathematically embued. Part of the deeper intuitive developement, is what attracted me to the questions about "creativity" and what can be immersed in minds of scientists. What they do with their days.

    Murray Gellman:
    On Plectics
    It is appropriate that plectics refers to entanglement or the lack thereof, since entanglement is a key feature of the way complexity arises out of simplicity, making our subject worth studying.


    As I read Feynman's words about what the scientist actually does, the human side of the scientist makes it very clear to me, that they are to be treated with the respect, as he conveyed his thoughts. As we might, treat someone who brings together "different ideas" to move conceptual understanding forward, much like those in the mathematical ways. Better to be ignored, eh?:)

    Vision Can Move in the Small world

    The Planck scale is the scale at which quantum gravity is believed to become important. At this scale the smooth structure of spacetime breaks down into some structure (strings, spin-foam, lattice, who knows?). The Planck length is approximately 10-35 m, which is very, very small. To get an idea of how tiny this is we can compare a Planck length LPl with the size of a proton and the size of Rhode Island. The radius of a proton is larger than the Planck length by roughly the same factor as the size of Rhode Island to the proton.


    Did we ever comprehend how we would take our "vision" down to a world so small that we did not recognize that occupying the physical world of large things, there would be comparsions needed. That the "particles" that Murray Gellman speculated would emerge from some model, and become the constituents of a world created in the wonder of, "all these particles may be part of the some alternate form of the same thing?" This arose in the 1950's.

    So before, Susskind and Nambu, Gellman held a interesting perspective, and from it, a question arose. It became the developing insight of string theory. Some, have abandoned the very question and idealization, having graduated to Brane world, does not mean, the very thoughts and principals embued in this focus to the small world, would have been discarded, just, that it will have gone through "revisions and progress" in conceptual design?

    Analog models of quantum field theory in curved space

    In condensed matter, one can construct systems where the propagation of long wavelength phonons (sound waves) is very similar to the propagation of a scalar field in a curved Lorentzian spacetime. Such systems are called 'analog models'. It is even possible to construct analogies to black holes in this manner, where the phonons that travel past a certain point cannot return. For example, consider a fluid where long wavelength phonons in the fluid propagate with speed cs, which is analogous to the speed of light in these models. Now put this fluid in a pipe and change the shape of the pipe such that the speed v of the fluid is faster than cs in one section and slower in an adjacent section. A phonon can travel "back against the current" only up to a certain point, where the the fluid speed equals cs. After that the fluid flow carries it down the pipe. This point in the pipe therefore mimics a black hole event horizon, from which nothing can escape. Other black hole features such as Hawking radiation are also present in these models. Since these models give an example of a system that has a fundamental structure at very short distances (where the fluid description breaks down), yet has a pseudo-Lorentz invariance at long distances.


    Plato as a Composer

    Can a different kind of thinking encase the brain's ability to "envision the abstract of space" to know that it's harmonic values can be seen as the basis of experience?


    Those who would conduct the orchestra, enlisted sounds, which make a whole compositon? One, from which, if physical sight had been remove, and focused internally, had just witnessed the particle world in shower, would lead one to the climatic vision of, "nature of things." From, "it's source?" What began before this whole musical interlude, much as if, the cosmo will wait for our question as to what was?

    So now the very idea of the poem wording I developed here, "no time standing always new", had me thinking about how such a cyclical processes could have ever made its way into our "completeness of views". An extension, beyond the standard model. It was a logical question and place with which responsibility can be still held, regardless, of those who have spelt out the lineage of science in research in this way(string theory model), as some disrupted process in the way of thinking?

    So how would we map this whole process, while we had been taken down to such reductionistic principals. The continuity resorting to structurally discrete, while pondering this structure( what model shall you insert here, Loop, Twistors, Strings)? There are "no rules and no physics" with which we can "initiate thinking" beyond the standard model? So we see the minds very busy with such introductions, professors hired to work the field of choices. Whether to teach or not? To be devoted to a specific area, or just ponder the most difficult question, as to the natures very structure?

    So now we come to a important question, having recognized the power with which the Word "Plato or Aristotle will now be invoked in your mind. That the "archetypes" had been drawn and related. Any future reference, will be in the way Plato might of felt having held his views on music? Possibly, thought about the nature of the world with structure. Developed the forms, as constituents of the way the world exists now.


    See:

  • Laval Nozzle and Blackholes

  • Accretion Disks

  • Quark Stars
  • Thursday, February 02, 2006

    Time

    You need a "Axion point" to derive symmetry breaking from equilibrium? Hmmmmm..... I'm thinking here.

    The idea is taking the first three minutes and moving it to the first three seconds and that's where strings come in...

    I must warn you though, that the model of superstrngs is facing strong opposition today because is does not have the scienctific proof and validation that any model should have. On this basis alone ,it is being challenged.

    One must remember though, that it has a strong theoretcial structure that will remain incomprehensible to most, to me, that I have only the faintest ideas as to the complexity of the math structures.

    Part of this insight is to take macroscopic views and have them reduced to microperspective views while looking about the every structure of this universe. So they use the LHC/RhIC reference for analogies as to what happens in those very beginnings.

    The overcoming incompatibility relationship between quantum mechanics and relativity has been the goal, and in this theoretcial structure, this has been accomplished.

    Brian Greene

    Time is far more subtle than our everyday experience would lead us to believe. In many ways, time may simply be a psychological construct for organizing the world. It is a device we scientists have found useful, but it may in fact be a dim approximation of something far more complex."


    Einstein in his bold statements about a pretty girl helped to direct our attention to the fleeting moments. It was last years tribute to Einstein and Beyond that helped many in dfferent perspectves and of time bring us back to what this man did for us.

    Kaluza and Klein helped to push this perspective further. Some debate this model as well, yet I do not know many who have advnaced our thinking from the geometrical inclinations as Einstein did for us when he attributed time to the spacetime realization of what Gravity does for us.

    The spacetime fabric became something more then the very impression that mass would reveal of itself. Energy, had a relationship in this, and yet, we are drawn to the very implication of where two diffwerent points could have ever told us that spacetime is flat. Where is this? I have given three cases where this is possible, and I have given theoretical valuation to what strings have done for us, in our microscopic view of this universe.

    You had to follow strings through the theoretcical developement assigned, in or colliders. What was the result of microstate blackhole production? HE4 or lagrange points between the earth, moon and sun?



    You had to know what theoretical associations had been marrried to scientific progress. If you have somebody who denounces and rejects the model how would you have ever thought to unite flat space, with reality models?

    This is the interesting thing about choosing models, is that experimental processes are not as devoid as those whose main goal was to affront string theory, was to announce this renunciation without ever understanding it's implications.



    Setting up such a wall(Peter Woit) was a disservice to those who wanted to explore this theoretical structure. It's implications, as to the first three seconds of our universe. Steven Weinberg laid it out for us in the first three minutes, why not a more introspective view in the consequences of this universe borne to what it is?

    Saturday, January 21, 2006

    Drawing a Venn diagram: Entanglement Issues

    Plectics, by Murray Gellman
    It is appropriate that plectics refers to entanglement or the lack thereof, since entanglement is a key feature of the way complexity arises out of simplicity, making our subject worth studying.




    The person above was kind enough to send information held in context of picture link for consideration, to help out with comprehension. I mean certain things hold us to consequences, that while I might have been thinking of Einsteins example of a pretty girl and a hot stove, this thinking did not pass my attention when one held the photon to certain enviromental influences as we gave these things thought processes. I context of "gravity as the square," is appropriate I think, about what combinations are realistic.



    At the very heading of this post there is a link directly attached for consideration in context of all these possibilties. Some things come to mind in terms of Feynman's toy models, as strict interactive phase that we would like to keep track of. So what one might have done to say, hey, if we are given a possibility of scenarios about Entanglement issues, how shall we solve these interactive phases, as we try to build a multiphase integrative model held in context that perfect human being.

    Entanglement applies to two or more particles even if one of them is used as input to the two slit experiment, it is not applicable to single particle experiments.


    YOu know it is not that simple, but there are always grand designs on what we think something is nifty in society, as we progress our models of the future. As to how we will create the perfect models for apprehension about our universe, and how we interact with it.

    Pictorial represenations can be very useful in presenting information or assisting reasoning. Venn diagram is an example. Venn diagrams are used to represent classes of objects, and they can also assist us in reasoning about the relations between these classes. They are named after the English mathematician John Venn (1834 - 1923), who was a fellow at Cambridge University.


    While it is true that I am being fascinated by mathematical processes, and how they are used in our visionary quest for understanding, one would have to be a computer to remember all the interactive phases that could have manifested from a situation held in context of a "societal problem." One we might have encountered in our lifetimes.

    It's statistical outcome that held to such micromanagement processes, would have been lost on all our minds, if we did not think some science process could have been touted with all these combinations.



    Each time I am presented with this thinking, the elementals of the model for apprehension, it always seemed easier to me to just have a look and see what "buddhist principles" are telling us about how we have a hold of our world in all it's realisms. The choices we make, and how we are to conduct ourselves "becoming." Einstein used that term well I think.

    So why such association and "combinations", that we have move the thinking here to what was gained in our emotive and abstract thinkings, as productive human beings? To see what a new foundational logic is being developed around our lives. Did we did not readily see the significance of the technologies involved. One had to dig a little deeper I think.

    So here is a preview of what entanglement issue has been shown to help orientate views on this issue. Some diagram perhaps, to show the developing scenarios around such entanglement issues?



    Quite early these indications about the possibilties of entangled states, raised all kinds of questions in my mind. Thinking of Hooft and others, about the issues of classical quantum processes, over top of these wide and incomprehensible statistical possibilties, seems held under the auspice of our reality model. That "square", given earthbound recognizitons, happily according to the basic pricniples, have so far held our views in gravitational model assumptions. IN essence, we have boxed the views on entanglement. As we have boxed Andrey Kravstov computerized model of the orignations of this universe in a supersymmetrical view of origination. What could have arisen from such situations. Probable outcomes?

    Whether such a "quantum computer" can realistically be built with a value of L that is large enough to be of practical use is a topic of much debate. However, the mere possibility has led to an explosive renaissance of interest in the host of curious and classically counterintuitive properties associated with entangled states. Other phenomena that rely on nonlocal entanglement, such as quantum teleportation and various forms of quantum cryptography, have also been demonstrated in the laboratory

    Wednesday, December 28, 2005

    Presence and Entanglement

    The equivalence principle(29 DEcember 2005 Wiki)
    The accuracy of the gamma-ray measurements was typically 1%. The blueshift of a falling photon can be found by assuming it has an equivalent mass based on its frequency E = hf (where h is Planck's constant) along with E = mc2, a result of special relativity. Such simple derivations ignore the fact that in general relativity the experiment compares clock rates, rather than than energies. In other words, the "higher energy" of the photon after it falls can be equivalently ascribed to the slower running of clocks deeper in the gravitational potential well. To fully validate general relativity, it is important to also show that the rate of arrival of the photons is greater than the rate at which they are emitted



    From a layman perspective, I am seeing that the nature of the gravitational field in a circumstance where such "strengths and weaknesses" would have been viable property to our way of seeing?

    Lensing by showing us, that such avenues would have found the valution of the photon travelling the quickest route?

    So, by changing the face of what we had always agreed upon( encapsulating Gr perspective bulit upon Maxwells creations and the geometries), as the way of energy and matter relation, such presence, would have then said, as a force carrier, that in these two cases, I will always be the way you would interpret my being in gravitational context?? You assume the model

    So "always" in the "presence" of a gravitational field?

    Fifth force(29 Dec 2005 Wiki)

    A few physicists think that Einstein's theory of gravity will have to be modified, not at small scales, but at large distances, or, equivalently, small accelerations. They point out that dark matter, dark energy and even the Pioneer anomaly are unexplained by the Standard Model of particle physics and suggest that some modification of gravity, possibly arising from Modified Newtonian Dynamics or the holographic principle. This is fundamentally different from conventional ideas of a fifth force, as it grows stronger relative to gravity at longer distances. Most physicists, however, think that dark matter and dark energy are not ad hoc, but are supported by a large number of complementary observations and described by a very simple model.



    Now, I am having a bit of a problem with the idea of "high energy" being "redshifted" because of the nature of the blackholes gravitational force? IN this case such a presence wouldhave by nature and strength of curvatures would have forced high enegy states to immediately curve backwards. If such blueshigfting is free to penetrate the fastest routes then such signs woudl have gave indication, yet the immediate horizon vicinity, plays havoc on these ideas?

    The only way one could ascertain such a state of redshifting, is if "high energy" was evident in proximaty of the blackhole?

    Would this be true or false?

    Entanglement

    Hypercharge (29 Dec 2005 Wiki)
    In particle physics, the hypercharge (represented by Y) is the sum of the baryon number B and the flavor charges: strangeness S, charm C, bottomness and topness T, although the last one can be omitted given the extremely short life of the top quark (it decays to other quarks before strong-interacting with other quarks).





    Plectics, by Murray Gellman

    It is appropriate that plectics refers to entanglement or the lack thereof, since entanglement is a key feature of the way complexity arises out of simplicity, making our subject worth studying.


    So by simlifying these ideas of entanglement, we find a model building from the orientation supplied by Murray Gellman, where expeirmentatin and hisortical pursuate have created a legitamate question about what Penrose might ask of a New quantum world view?




    Secondly, entanglement issues were progressive, and historically this helps clear up the issues of spooky?


    While dissident took us fastidiously to Hooft, I could also interject with Penrose?

    But in doing so, such progressions from "simplifed states of plectics" would have taken us through a whole host of idealization in terms's of "dimensional significance," had we adopted Hooft's holographical vision?

    If by Hooft's very beginnings, we had thought deeply about the progresions he had taken us too, then how would such developements have looked, if we were the prisoners, and the light behind us, pointed to the shadows on thew wall?

    Tuesday, December 13, 2005

    String Theory Displays Golden Ratio Tendency?

    Srinivas Ramanujan (1887-1920):
    Ramanujan was a mathematician so great his name transcends jealousies, the one superlatively great mathematician whom India has produced in the last hundred years. "His leaps of intuition confound mathematicians even today, seven decades after his death. ..the brilliant, self-taught Indian mathematician whose work contains some of the most beautiful ideas in the history of science. His legacy has endured. His twenty-one major mathematical papers are still being plumbed for their secrets, and many of his ideas are used today in cosmology and computer science. His theorems are being applied in areas - polymer chemistry, computers, cancer research - scarcely imaginable during his lifetime. His mathematical insights yet leave mathematicians baffled that anyone could divine them in the first place.'

    Namagiri, the consort of the lion god Narasimha. Ramanujan believed that he existed to serve as Namagiri´s champion - Hindu Goddess of creativity. In real life Ramanujan told people that Namagiri visited him in his dreams and wrote equations on his tongue.



    Artist's impression of the setup.

    The disks represent the bosonic condensate density and the blue balls in the vortex core represent the fermionic density. The black line is a guide to the eye to see the wiggling of the vortex line that corresponds to a so-called Kelvin mode, which provides the bosonic part of the superstring (image and text:


    http://arxiv.org/abs/cond-mat/0505055

    Plato:
    When I was a kid, I liked to take buttons and place a thread through them. Watching Mom, while I prep the button, she got ready to sew. I would take both ends of the thread and pull it tightly. I liked the way the button could spin/thread depending on how hard I pull the thread


    I was thinking about this toy model developed for strng theory comprehension and all of a sudden the attempts by Lubos of Solving the Riemann Hypothesis came into view?

    Now some of you know that such consistancies built up from the very idea of "Liminocentric structures" are always pleasing to me. Because of the energy valuations I might have associated to the "circles within circles" as ideas manifest( their degrees of manifest).



    A KK tower about 1r radius valuation seen in the varing shapes of tubes? At what stage were these and what could I tell about the idea as it merged from that deep source and probabilstic value of where we all draw from.




    That soothing watery world( our dream world ) of ideas that could manifest for us into nature, taken as an consequence relayed, from the continued circles of action? We are better predictors then we think? We did not know where this idea could manifest from, and what energy relations could have given such suttle thoughts repercussions in the very world they could have manifested into?

    The relation and perplexing problem I had with identify how such a structure intrigued by Sklar would make it difficult to identify which circle is describing which stage of whee we are at with the innner/outer, was raised when it came to the developing the understanding and differences on how rubber bands placed over a apple, might have a different connotation, when moved over a donut?

    Continuity of this action as a color vaiation would have made me then think of Mendeleev in his table of constituents, as I looked at the relation in the world of such discrete things.



    Imagine the complexity of music that could be most pleasing, could also be very destructive in the "fields of thought"? I had espoused this in Plato's academy? All of this contained in the light sensation in a little music disc?

    What stories indeed have we converted to light, in our apprehensions? Philosophically, I could be committed for my heresy, for all the things I might have assigned to "Heavens ephemeral qualities." Verging on the crackpotism, I know.:)

    See:

  • Fool's Gold

  • Big Horn Medicne Wheel
  • Monday, December 12, 2005

    Decoherence

    How to understand this quantum-to-classical transition linking two incompatible descriptions of reality is still a matter of debate among the various interpretations of quantum theory. In any case, one can probe the borderline between the classical and the quantum realm by performing interference experiments with particles of increasing complexity.


    Of course I am cocnerned about the determinations of the paticle natures seen in a particular light. These constituent s are part an dparcel of a much larger view from increase entrophy( I always get these things a**backwards), and cooling temperatures?

    Decoherence is relevant (or is claimed to be relevant) to a variety of questions ranging from the measurement problem to the arrow of time, and in particular to the question of whether and how the ‘classical world’ may emerge from quantum mechanics. This entry mainly deals with the role of decoherence in relation to the main problems and approaches in the foundations of quantum mechanics.


    Of course I am paying attention and listening. :)Of course I want to find my way back to the classical world from where probabilistic valuations reigned. I was acting as a "gathering point" in my quest for a "philosophical design" (not to be confused with ID?). :) Okay, I understand this is not acceptable.


    The difference between quantum and classical behaviour is exemplified by the famous “double-slit experiment”, in which photons are fired at a barrier containing two slits, and then allowed to fall on a screen opposite the barrier. Classical particles would pass through (at most) one slit at a time, but photons can pass through both simultaneously. The two waves associated with the photon passing through the two different slits fall in and out of phase with each other at different points on the screen — the phase of these waves being related to the total distance the photon travels from source to screen — so they interfere either constructively or destructively, producing a pattern of light and dark bands.




    What motivated such cosmlogical design, as a crunching inevitable to have found the limitations of the energy having found itself turning back? So we do not see this right now and we speculate. this did ont take away from the isolated examples of unfoldment as a cyclcical process between energy and matter did it??

    Oh for heaven's sake, where will my ramblings take me next? :)

    Lubos Motl:
    I would not promote overly technical lecture notes, especially not about things covered in many books. But the interpretation of quantum mechanics in general and decoherence in particular - a subject that belongs both to physics as well as advanced philosophy - is usually not given a sufficient amount of space in the textbooks


    Those are strong words [shut up and calculate] for a layman to consider, when he is groping to trying to find his way.

    Lecture 23 was pointed out by Lubos Motl in his article for consideration. More was considered from the list contained here.

    If such energies were to be amongst the recognition of the quantum world, had we really been that separated from cosmological recognition of what constitued that beginning? Am I suppose to dismiss Weinberg in his first three minutes, for what might have been recognized in the first three seconds?? Remeber I am in the fifth dimension, where temeprature and entropic findings would have found a furthe rvalue to the discussion of what went this way and what that way. The entangling process is very profound.

    So in looking back, we do not know where such a thing could begin? I think I understand that from what , although, if such proceses were recognized in the cyclcial nature of the cosmos why would we not entertain the rejuvenation of geometrical propensities to models inherent already in the universe? See the universe as a much "larger process" much different then the scope through which we might have treated each galaxy in it's rotations? Everett? Hmmm....

    To map the "invisible" Universe of dark matter and gas expelled during the birth of galaxies: a large-aperture telescope for imaging and spectroscopy of optical and ultraviolet light.

    To measure the motions of the hottest and coldest gas around black holes: a radio interferometer in space.

    To see the birth of the first black holes and their effect on the formation of galaxies, and to probe the behavior of matter in extreme environments: a very large aperture arc-second X-ray imaging telescope.

    To determine the nature and origin of the most energetic particles in the Universe today: a mission to track them through their collisions with the Earth.


    I have been troubled indeed by the "orbital mapping" I speculated to the cosmological design, seen as "events" in that cosmo. By such happen stance, such relations seem to spark some wonder about the arrangement, to the fundamental library of that same orbital design. I made this mistake before, and I need to correct it now.

    Slow down! "Antimatter?" "Pure energy?" What is this, Star Trek?

    But you can see evidence for antimatter in this early bubble chamber photo. The magnetic field in this chamber makes negative particles curl left and positive particles curl right. Many electron-positron pairs appear as if from nowhere, but are in fact from photons, which don't leave a trail. Positrons (anti-electrons) behave just like the electrons but curl in the opposite way because they have the opposite charge. (One such electron-positron pair is highlighted.)


    The collider ring as a boson, whose overall contention could have been seen in the total energy involved, and the dispensing to those extra dimensional perspectives within the "natural world" of our settings? Have I misunderstood the values of the Pierre Auger experiment to see better, then we had seen before, not to have seen a topological question about how one would interpret the sphere with one hole, as a donut? What values circles then?


    Decoherence represents an extremely fast process for macroscopic objects, since these are interacting with many microscopic objects in their natural environment. The process explains why we tend not to observe quantum behaviour in everyday macroscopic objects since these exist in a bath of air molecules and photons. It also explains why we do see classical fields from the properties of the interaction between matter and radiation.


    Angels/demons seem to make there way into view here? Yet in the world of Dirac might he seen the consequence of possible pathways in the construction of the matrix involved and intoduced the i of questionable directives as results in the arrangement of that same matrix?? Feynman took over for sure in his toy models.

    Then of course I come across this statement previous and I am back to scratching my head. Oh boy!

    You might imagine antimatter as a possible temporary storage medium for energy, much like you store electricity in rechargeable batteries. The process of charging the battery is reversible with relatively small loss. Still, it takes more energy to charge the battery than what you get back out of it. For antimatter the loss factors are so enormous that it will never be practical.

    If we could assemble all the antimatter we've ever made at CERN and annihilate it with matter, we would have enough energy to light a single electric light bulb for a few minutes.


    Hmmmm......more confusion again.:)



    What value from such gravitonic perceptions from the modifications if events such as these above are not held to the dynamical nature of the spacetime fabric itself?

    Wednesday, November 16, 2005

    Paul Dirac and Geometrical Thinking?


    Into the Antiworld was originally staged at CERN inside the underground cavern that houses the Delphi experiment, in which collisions between electrons and their antiparticles - positrons - are studied. That setting must have been awe-inspiring, particularly as the show closed. The audience would have been whisked from the wonder and novelty of Dirac's theory over 70 years ago to the sophisticated particle physics experiments of today that the discovery inspired. At CERN, the curtain behind the stage ripped apart to reveal the Delphi detector the performance ended - but the gigantic photograph of the Delphi experiment that concluded the show at the Bloomsbury worked surprisingly well.


    Oh what fanfare and dance is given these genius's that we find the story ends with where the future begins.

    The Quantum Theory of the Electron



    Paul Dirac


    When one is doing mathematical work, there are essentially two different ways of thinking about the subject: the algebraic way, and the geometric way. With the algebraic way, one is all the time writing down equations and following rules of deduction, and interpreting these equations to get more equations. With the geometric way, one is thinking in terms of pictures; pictures which one imagines in space in some way, and one just tries to get a feeling for the relationships between the quantities occurring in those pictures. Now, a good mathematician has to be a master of both ways of those ways of thinking, but even so, he will have a preference for one or the other; I don't think he can avoid it. In my own case, my own preference is especially for the geometrical way.


    Can one distinguish something that is of nature as the basis of reality, and see this before it is algebraically written? Jacques mention where the intuitive lines ends and where the math begins.

    So from this statement then, it would have been impossible for Dirac to know what the matrices would look before it was algebraically written?

    If there is "no physics" and we are defining things from the horizon or boundary, then what geometry wil be revealing of this nature? Can it be concieved as it was by Dirac?

    I was thinking of Lenny Susskinds picture of the rubber band in his mind after working hard to mathematically understand. Did comprehension come by way of his mathe equations or by geometriclaly viewing?

    THE LANDSCAPE [12.4.03]
    A Talk with Leonard Susskind


    Einstein said he wanted to know what was on God's mind when he made the world. I don't think he was a religious man, but I know what he means.


    Albrecht Dürer and The Magic Square



    So the complexity of geometrical form would have been of value if we had seen the way that it might have taken that vision into the geometrical formations of spin orientated understandings? Isomorphic relations of the orbitals relations in cosmological events?

    Tuesday, October 25, 2005

    Improve Classic Clock Tests



    I think one had to understand what increasing complexity means in our universe? What relation to time would have been of value here while pointing to the quantum levels??

    While there must be some pervasive view overlooking all of our ideals about gravity considerations and bulk perspective, the consistancy of the return too, and resulting complexities in expression, would be very hard to define, if such probabilistic manifestation of matter distinctions were to arise from some "specific rotational values?" We have a image of the developement of our cosmo, so what pray tell would enlist these rotational values to become some other universe and not this one? This "information" had to exist, as it's collapse and consequencal negativity expression manifested?



    At the time such "anti-situations" are raised towards the very idea of findng a means to see such insight into a value issuing from this collapse. What would intiate such "jets" to emerge from a cosmological event or a quantum one??


    This relationship between matter particles and force carriers is called supersymmetry.


    If such a view was consistent within the framework of the "collapsing event" then how would supersymmetrical valuation ever be held to the creation of these "negative values"? It's beginning? So where would the information rest in the bulk. It's condensive features in graviton gatherings indicate such a value would have been triggerred in this collapse.




    Of course we deal with historical perspectives first so we get a good sense here.

    The two clocks depicted in the official logo for the CPT '04 meeting are related by the parity transformation (P). The inversion of black and white represents charge conservation (C), while time reversal (T) is represented by the movement of the hands of the clock in opposite directions.


    Of course this starts out as a philosphical journey but it gets more detailed as time moves on, and we look for such issues in subject Sean writes above? From whence all things come and at whch point would a pendulum point of swing detail the very nature of such oscillating features? So if ones understand flat euclidean plane where no gravity exists, then what value would arise to a dynamcial view of the nature GR sets our minds too?


    The same picture can be generalized to quantum field theory (QFT), the ground state becoming the vacuum state, and the role of the little man being played by ourselves. This means that there may exist symmetries of the laws of nature which are not manifest to us because the physical world in which we live is built on a vacuum state which is not invariant under them. In other words, the physical world of our experience can appear to us very asymmetric, but this does not necessarily mean that this asymmetry belongs to the fundamental laws of nature. SSB offers a key for understanding (and utilizing) this physical possiblity.