Showing posts with label Black Holes. Show all posts
Showing posts with label Black Holes. Show all posts

Saturday, September 08, 2007

Cascading Showers from the Cosmos

3) It is claimed that cosmic rays can energy exceeding that of colliders, and they have not caused trouble, suggesting that colliders will not cause trouble either. However, the analogy is not precise. It assumes two things that may not be true. First, cosmic ray center of mass energy exceeding that of colliders has never been measured directly. Measurements that seem to show this are based on showers of secondary particles. Second, the product of a collision between a cosmic ray and an earth particle will always be moving at an appreciable fraction of the speed of light. If it has a small capture radius, it will always pass right through earth like a neutrino. The product of a collider collision can (sometimes) be moving at less than escape velocity from earth. If so, it will fall into earth where it will have forever to accrete other matter. Some calculations show rapid accretion.
See: Risk Evaluation Forum

Using this above as one basis of the argument, it was by these assumptions that I too was convinced things would be okay. There are a lot of things that go with this statement that currently is not expressed given current information in regards to Pierre Auger experiments. That when clearly seen in the light of current research into LHC, does not allow one to take in all that they should be.


Contact


Go back to John Ellis and current research if you must, and thinking in terms of the cosmos. It's infancy, and one does not disregard the "origins and beginnings" of this universe. Are there reasons that are less then desired that would govern any legal defence team based on some "religious affiliation" and driven from this religious context? I hope not.



We would not want some Woitian backlash, as done with string theory, from a intelligent design standpoint, as a recognized motived factor in that legal defense. It is far beyond me that I ask these associative questions, yet, these images come to mind when ever the establishment hosting the world's collective scientists, is confronted by the very issues that seem evasive in regards to safety?

Energies Used in Particle Creation



It would behove any person to take the time to travel to the links I am supplying, to help you absorb as much information as possible.With the full intention that what I am describing does have a distillation process that will become very simple in qualitative design.



Finding the energy range with which we are dealing within our colliders, has awakened the realization of the complexity dimensional attributes would have considering E8.

"I’m a Platonist — a follower of Plato — who believes that one didn’t invent these sorts of things, that one discovers them. In a sense, all these mathematical facts are right there waiting to be discovered."Donald (H. S. M.) Coxeter


The complexity of the blackhole would have allowed the possibilities of describing the source of "all dimensional attributes" knowing that the collapse of the blackhole would bring temperatures to the point of the quark Gluon plasma. What would be happening to allow such complexity?

This basis of thought on my part is, "the equivalence determined" and thought about in terms of Lagrangian considerations. This another topic. But does deal with the understanding of the potential microscopic blackholes that could be produced, determined by the energy levels

Thus RHIC is in a certain sense a string theory testing machine, analyzing the formation and decay of dual black holes, and giving information about the black hole interior.


See:Are Strangelets Natural?

LHC Safety?

I am writing this blog entry because of Walter's comments on the side.

It is very hard for me knowing that there is a train of thought developed through my research. This question of cascading showers, were with the understanding of "energy events" that allowed us to see a "greater plethora of mapping" that would direct us to the very essence of symmetry breaking, based on experimental processes herein this blog described.

"String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap. This increases the number of 'down' neutrinos detected. At the same time, the creation of black holes causes 'up' neutrinos to be caught in the Earth's crust, reducing the number of 'up' neutrinos. The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."


See: How Particles Came to Be

In doing my own research, I tried to follow the thinking of the literature presented on the topic of microscopic blackholes. Now there was to my understanding a theoretical position assumed, from what we understood when dealing with the topic, and the understanding of what Cern was to produce.

Fig. 2. Image showing how an 8 TeV black hole might look in the ATLAS detector (with the caveat that there are still uncertainties in the theoretical calculations).

Now to me the basis of settling the questions of safety, were answered by association of "what was natural" within the domains of these cascading particle showers in terms of these cosmic rays.

If we were after the origins and beginnings to our universe, we were in essence, describing and mapping the beginning times of these particle showers. Also, the dimensional attributes of the interior of the blackhole.

Tuesday, January 02, 2007

The Sun's Before Us

The Cosmic Ray of Creation

We are "shadows" of the Sun's creations.


Sometimes it good to go back to "the beginning" so that one can see the context of what exists in reality, has a much "greater story to tell" then what we of the real world live under.

Those of science, have been focused in their own worlds. We just had to understand why they were so absorbed.

"String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap. This increases the number of 'down' neutrinos detected. At the same time, the creation of black holes causes 'up' neutrinos to be caught in the Earth's crust, reducing the number of 'up' neutrinos. The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."


Who is to know of what is sent to earth, and not understand, that what happens above us, also happens within the LHC?


Jacque Distler:

Travis Stewart reports that the LHC’s ATLAS detector has seen cosmic ray events, an excellent sign that things are working as they should.


One does not have to think, or be insulted by "such stories" that have captured minds in our history. The "ideas of cultures" are pervaded by such religious practises and context, by the fascination of some greater being? Having worked with them long enough?

As a scientist, you know your place in the world. Yet, you dream of such "fantastical stories." About things travelling through the little towns in Europe, as if, seeing the "Overlords of Science." Like some futuristic God making it's way through the town of some primitive era on earth. "Shocked people" looking from windows, as this enormous object in the "war of the worlds," has finally come upon us.

The article traces in non-technical language the historical development of our understanding of nuclear fusion reactions as the source of stellar energy, beginning with the controversy over the age of the sun and earth between Darwin and Kelvin, and including the discovery of radioactivity, the experimental demonstration that four hydrogen nuclei are heavier than a helium nucleus, and the theoretical insights provided by Einstein, Gamow, and Bethe. The concluding sections concern solar neutrino experiments that were designed to test the theory of stellar evolution and which, in the process, apparently revealed new aspects of microscopic physics.


It is important that one understands that such a thing having been studied by our scientists, is still a "noble thing." Where we learn to understand what these things could represent symbolically? Enlightenment possibly? When all the understanding of the "Neutrino overlords" are understood in their place and time.



The winged sun was an ancient (3rd millennium BC) symbol of Horus, later identified with Ra.
A solar deity is a god or goddess who represents the sun, or an aspect of it. People have worshipped the sun and solar deities for all of recorded history; sun worship is also known as heliolatry. Hence, many beliefs and legends have been formed around this worship, most notably the various myths containing the "missing sun" motif from around the world. Although many sources contend that solar deities are generally male, and the brother, father, husband and/or enemy of the lunar deity (usually female), this is not cross-culturally upheld, as sun goddesses are found on every continent. Some mythologists, such as Brian Branston, therefore contend that sun goddesses are more common worldwide than their male counterparts. They also claim that the belief that solar deities are primarily male is linked to the fact that a few better known mythologies (such as those of ancient Greece and Egypt) sometimes break from this rule. The dualism of sun/male/light and moon/female/darkness is found in many (but not all) European traditions that derive from Orphic and Gnostic philosophies, with a notable exception being Germanic mythology, where the Sun is female and the Moon is male.

Sun worship is a possible origin of henotheism and ultimately monotheism. In ancient Egypt's Eighteenth Dynasty, Akhenaten's heretical Atenism used the old Aten solar deity as a symbol of a single god. The neolithic concept of a solar barge, the sun as traversing the sky in a boat, is found in ancient Egypt, with Ra and Horus. Proto-Indo-European religion has a solar chariot, the sun as traversing the sky in a chariot. At Roman Empire, a festival of the birth of the Unconquered Sun (or Dies Natalis Solis Invicti) was celebrated when the duration of daylight first begins to increase after the winter solstice, — the "rebirth" of the sun. In Germanic mythology this is Sol, in Vedic Surya and in Greek Helios and (sometimes) Apollo. Mesopotamian Shamash plays an important role during the Bronze Age, and "my Sun" is eventually used as an address to royalty. Similarly, South American cultures have emphatic Sun worship, see Inti. See also Sol Invictus.

Wednesday, December 27, 2006

The Geometrics Behind the Supernova and it's History



It is not always easy for people to see what lies behind the wonderful beauty of images that we take from the satellite measures of space, and it's dynamical events illustrated in Cassiopeia A. There before you is this majestic image of beauty, as we wonder about it's dynamics.


These Spitzer Space Telescope images, taken one year apart, show the supernova remnant Cassiopeia A (yellow ball) and surrounding clouds of dust (reddish orange). The pictures illustrate that a blast of light from Cassiopeia A is waltzing outward through the dusty skies. This dance, called an "infrared echo," began when the remnant erupted about 50 years ago. Image credit: NASA/JPL-Caltech/Univ. of Ariz.
An enormous light echo etched in the sky by a fitful dead star was spotted by the infrared eyes of NASA's Spitzer Space Telescope.

The surprising finding indicates Cassiopeia A, the remnant of a star that died in a supernova explosion 325 years ago, is not resting peacefully. Instead, this dead star likely shot out at least one burst of energy as recently as 50 years ago.



How is it such information arrives to us, and we would have to consider the impulse's behind such geometrical explanations. Which we are lucky to see in other ways. So, of course we needed to see the impulse as dynamically driven by the geometrical inclinations of that collapse, and all it's information spread outward by the description in images painted.


Credit: Weiqun Zhang and Stan Woosley
This image is from a computer simulation of the beginning of a gamma-ray burst. Here we see the jet 9 seconds after its creation at the center of a Wolf Rayet star by the newly formed, accreting black hole within. The jet is now just erupting through the surface of the Wolf Rayet star, which has a radius comparable to that of the sun. Blue represents regions of low mass concentration, red is denser, and yellow denser still. Note the blue and red striations behind the head of the jet. These are bounded by internal shocks.


If I had approached you early on and suggested that you look at "bubble geometrodynamics" would it have seemed so real that I would have presented a experiment to you, that would help "by analogies" to see what is happening? Might I then be called the one spreading such information that it was not of value to scientists to consider, that I was seeing in ways that I can only now give to you as example? What science has done so far with using the physics with cosmological views?


Image Credit: NASA/JPL-Caltech/STScI/CXC/SAO
This stunning false-color picture shows off the many sides of the supernova remnant Cassiopeia A, which is made up of images taken by three of NASA's Great Observatories, using three different wavebands of light. Infrared data from the Spitzer Space Telescope are colored red; visible data from the Hubble Space Telescope are yellow; and X-ray data from the Chandra X-ray Observatory are green and blue.

Located 10,000 light-years away in the northern constellation Cassiopeia, Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. The neutron star can be seen in the Chandra data as a sharp turquoise dot in the center of the shimmering shell.


In this image above we learn of what manifests in "jet production lines," and such examples are beautiful examples to me of what the geometrics are doing. You needed some way to be able to explain this within context of the universe's incidences "as events." We say this action is one with which we may speak to this "corner of the universe." Yet it is very dynamical in it's expression as we see it multiplied from various perspectives.


The structure of Model J32 as the jet nears the surface 7820 seconds after core collapse.


So by experiment(?) I saw such relations, but what use such analogies if they are laid waste to speculation that what was initiated such ideas had been the inclination of geometrics detailed as underlying the basis of all expression as an example of some non euclidean views of Riemann perspectives leading shapes and dynamics of our universe by comparison within the local actions of stars and galaxies?

Gamma Rays?



So we get this information in one way or another and it was from such geometrical impulse that such examples are spread throughout the universe in ways that were not understood to well.


X-ray image of the gamma-ray burst GRB 060614 taken by the XRT instrument on Swift. The burst glowed in X-ray light for more than a week following the gamma-ray burst. This so-called "afterglow" gave an accurate position of the burst on the sky and enabled the deep optical observations made by ground-based observatories and the Hubble Space Telescope. Credit: NASA/Swift Team
A year ago scientists thought they had figured out the nature of gamma-ray bursts. They signal the birth of black holes and traditionally, fall into one of two categories: long or short. A newly discovered hybrid burst has properties of both known classes of gamma-ray bursts yet possesses features that remain unexplained.

The long bursts are those that last more than two seconds. It is believed that they are ejected by massive stars at the furthest edge of the universe as they collapse to form black holes.


So looking back to this timeline it is important to locate the ideas spread out before us. Have "some place" inclusive in the reality of that distance from the origins of the stars of our earliest times. 13.7 billions years imagine!


Fig. 1: Sketchy supernova classification scheme
A supernova is the most luminous event known. Its luminosity matches those of whole galaxies. The name derives from the works of Walter Baade and Fritz Zwicky who studied supernovae intensively in the early 1930s and used the term supernova therein.
Nowadays supernova is a collective term for different classes of objects, that exhibit a sudden rise in luminosity that drops again on a timescale of weeks.
Those objects are subdivided into two classes, supernovae of type I or II (SNe I and SNe II). The distinguishing feature is the absence or the presence of spectral lines of hydrogen. SNe I show no such lines as SNe II do. The class of SNe I is further subdivided in the classes a, b and c. This time the distinguishing feature are spectral features of helium and silicon. SN Ia show silicon features, SN Ib show helium but no silicon features and SN Ic show both no silicon and no helium spectral features.
The class of SN II is further subdivided in two classes. Those are distinguished by the decline of the lightcurve. Those SN II that show a linear decline are named SN II-L and those that pass through a plateau-phase are referred to as SN II-P.



So given the standard information one would have to postulate something different then what is currently classified?

A new Type III (what ever one shall attribute this to definition, versus Type I, Type IIa?


ssc2006-22b: Brief History of the Universe
Credit: NASA/JPL-Caltech/A. Kashlinsky (GSFC)
This artist's timeline chronicles the history of the universe, from its explosive beginning to its mature, present-day state.

Our universe began in a tremendous explosion known as the Big Bang about 13.7 billion years ago (left side of strip). Observations by NASA's Cosmic Background Explorer and Wilkinson Anisotropy Microwave Probe revealed microwave light from this very early epoch, about 400,000 years after the Big Bang, providing strong evidence that our universe did blast into existence. Results from the Cosmic Background Explorer were honored with the 2006 Nobel Prize for Physics.

A period of darkness ensued, until about a few hundred million years later, when the first objects flooded the universe with light. This first light is believed to have been captured in data from NASA's Spitzer Space Telescope. The light detected by Spitzer would have originated as visible and ultraviolet light, then stretched, or redshifted, to lower-energy infrared wavelengths during its long voyage to reach us across expanding space. The light detected by the Cosmic Background Explorer and the Wilkinson Anisotropy Microwave Probe from our very young universe traveled farther to reach us, and stretched to even lower-energy microwave wavelengths.

Astronomers do not know if the very first objects were either stars or quasars. The first stars, called Population III stars (our star is a Population I star), were much bigger and brighter than any in our nearby universe, with masses about 1,000 times that of our sun. These stars first grouped together into mini-galaxies. By about a few billion years after the Big Bang, the mini-galaxies had merged to form mature galaxies, including spiral galaxies like our own Milky Way. The first quasars ultimately became the centers of powerful galaxies that are more common in the distant universe.

NASA's Hubble Space Telescope has captured stunning pictures of earlier galaxies, as far back as ten billion light-years away.


Would sort of set up the challenge?

Tuesday, November 28, 2006

Breakthrough Propulsion Physics?


Shuttle Main Engine Test Firing-1981-A remote camera captures a close-up view of a Space Shuttle Main Engine during a test firing at the John C. Stennis Space Center in Hancock County, Mississippi.
Spacecraft propulsion is used to change the velocity of spacecraft and artificial satellites, or in short, to provide delta-v. There are many different methods. Each method has drawbacks and advantages, and spacecraft propulsion is an active area of research. Most spacecraft today are propelled by heating the reaction mass and allowing it to flow out the back of the vehicle. This sort of engine is called a rocket engine.


While the topic here is about how travel is possible, it is the idea that "new physics" can some how propelled forward the mass in space to do the things of travel necessary.

In addition, a variety of hypothetical propulsion techniques have been considered that would require entirely new principles of physics to realize. To date, such methods are highly speculative and include


Within the definitions of the literature it is then possible to deduce what is required? So this saves me the time while speaking to the new physics, of having to explain the rudimentary understandings of how I can leaped forward. No less, the idea of the "thought experiment" that is put in front of us that we create the dialogue necessary, with or without impute, to advance one's thinking.


Credit: NASA CD-98-76634 by Les Bossinas. Artist's depiction of a hypothetical Wormhole Induction Propelled Spacecraft, based loosely on the 1994 "warp drive" paper of Miguel Alcubierre.

Introduction

The term breakthrough propulsion refers to concepts like space drives and faster-than-light travel, the kind of breakthroughs that would make interstellar travel practical.

For a general explanation of the challenges and approaches of interstellar flight, please visit the companion website: Warp Drive: When? The Warp-When site is written for the general public and uses icons of science fiction to help convey such notions. This website, on the other hand, is intended for scientists and engineers.



How is a Blackhole Determined?

PLato:Remember the "closed loop process?"

From the "blackhole horizon" what value would, "to e or not to e" speak too, if "one" was falling into the blackhole and "one" was out? Are they separated? What is our "state of the universe" then?


A black hole is an object so massive that even light cannot escape from it. This requires the idea of a gravitational mass for a photon, which then allows the calculation of an escape energy for an object of that mass. When the escape energy is equal to the photon energy, the implication is that the object is a "black hole".



IN the process of discovering the gravitational variances in space of "gravitational effects" how is it that a spaceship could become sensitive to the variations of that travel and slow down, if it did not have a way in which to calculate these fluctuations?

There’s a place from which nothing escapes, not even light, where time and space literally come to end. It’s at this point, inside this fantastic riddle, that black holes exert their sway over the cosmos … and our imaginations.


There’s a place from which nothing escapes, not even light? So I have to re-educate some people so that they understand the limtiations that have been applied to current thinking, by what is currently out there in terms of what we know about blackholes. So breaking from of those limitation on perspective is very important with what we know now. How we can determine a blackhole.

So here to then is a wider perspective about lagrangain perspective of space that is needed in the understanding of travel in space. Implications of ways and means to determine the needed velocities of the space craft to move forward within context of determinations of gravitational influences.





Special Lagrangian geometry in particular was seen to be related to another String Theory inspired phenomenon, "Mirror Symmetry". Strominger, Yau and Zaslow conjectured that mirror symmetry could be explained by studying moduli spaces arising from special Lagrangian geometry.
Dr. Mark Haskins

So while our imagination is being captured by this "gravitational concentration" in the cosmos what use to discern the nature of the "closed loop process" if we did not consider the "thought experiment" of Susskind as I have spoken to it in the last couple of posts?

Hawking radiation owes its existence to the weirdness of the quantum world, in which pairs of virtual particles pop up out of empty space, annihilate each other and disappear. Around a black hole, virtual particles and anti-particles can be separated by the event horizon. Unable to annihilate, they become real. The properties of each pair are linked, or entangled. What happens to one affects the other, even if one is inside the black hole.


The first order of business here is that we use methods based on the understanding of the "link of entanglement" around what is inside the blackhole as a measure? What that photon is telling us in relation to the gravitational considerations influencing the space craft? IN this way, "calibration technique" allows for variances in the determination of what we see in the perspective of the cosmos as a vital differential understanding of that pathways through space.

IN "weak field understanding" we know the loop process is symmetric? Also, if gravity is combined to electromagnetism, what value the photon for determination if we had not understood this relation to gravitation effects in the cosmos? So this process then is understood in terms of developing the means to travel in space that was before not so easily determined(escape velocities for mass in space), but has now been shattered by moving beyond the paradigms of previous thought processes?

This is the benefit of thinking "thought experiments" to progress any idea. Now what has been written here, is it right or wrong?

The Propulsion System?


AIRES Cosmic Ray Showers



Also no where have I revealed the propulsion system need in order for the space craft to exceed the gravitational variances within the cosmos

Gamma Ray production in particle creation?

The Pierre Auger Observatory in Malargue, Argentina, is a multinational collaboration of physicists trying to detect powerful cosmic rays from outer space. The energy of the particles here is above 1019eV, or over a million times more powerful than the most energetic particles in any human-made accelerator. No-one knows where these rays come from.

Such cosmic rays are very rare, hitting an area the size of a football field once every 10 000 years. This means you need an enormous 'net' to catch these mysterious ultra high energy particles. The Auger project will have, when completed, about 1600 detectors.


Understanding the collision process within context of our own planet, and what information is received from other events within the cosmos allows us "to rebuild" what happens no less then what "LIGO operations" and it's gathering techniques, allows us from the complexity of the information to a thing of beauty?


The H.E.S.S. telescope array represent a multi-year construction effort by an international team of more than 100 scientists and engineers


So how shall we identify such sources if we had not considered the "light house effect?"


Black Hole-Powered Jet of Electrons and Sub-Atomic Particles Streams From Center of Galaxy M87

Monday, October 16, 2006

Monster of the Milky Way

Lubos Motl, it does not have to be "ten billion souls" that we find of just one the same. How many scientists do you know that refer to Plato?

If enough is captured as "part of the original," then why not a view of what was the attempt to descibe "the very complex" of what nature has in store for us discretely?

But maybe, Plato had something more in mind, and not the protection of the "bloodline." :)


Campbell's Soup Can by A. Warhol


You see how this instigates the public to look behind the scenes, while, science was at work. Who understood the "Bekenstein bound" to assert that CFT would have some reason to be "the process" by which thermodynamic and entropic understanding would allow such views of the blackhole?

A "window" perhaps, on what science is doing? Glast's deeper look? So is there then more of the story to tell if any affront to the trouble of Physics is not considered here, while we debate how far our views have been taken?


The Milky Way's light distorted at the event horizon of a black hole.
Deep in the heart of our galaxy lurks a monster of incomprehensible size and ferocity... a black hole. Two competing groups of astronomers -- one led by Andrea Ghez from UCLA, the other by Reinhart Genzel from Germany -- are racing to discern its true nature.

Monster of the Milky Way recounts the chain of discoveries these groups have made about our resident black hole. The program will follow each team in a major campaign to understand powerful pulses of energy rushing out of the monster daily.

The teams are competing to settle one of the hottest debates in all of science... how did supermassive black holes like the Monster of the Milky Way reach such incredible sizes -- from millions to billions of times the mass of our Sun? And how did they influence the evolution of their host galaxies... and worlds like ours?


While I had listed a link to a pdf file on strangelets and the number of people that worked on it, as well as the universities. The point here, is that out there in the public, the creative principle arises in the minds of that public, just as it does in any scientist. If any one individual is capable of extending their understanding and vision of the window of the universe then it is not so unlikely that the next step could have made it's way into their mind.

We are all repositories of the ideas/concepts/theories that can manifest?

The garden indeed may be an complex analysis. Yet, such freedom to gain access, seems unlimited, if, the flows just happen to be sparked in the right way and forthcoming, regarding all that you had learnt.

See:

  • New Non-geometrical Generalization of the Principles of CFT Found?
  • The Right Spin for a Neutrino Superfluid
  • Saturday, October 14, 2006

    "Lead by Physics," Faces the "Trouble With Physics"


    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around the world use RHIC to study what the universe may have looked like in the first few moments after its creation. RHIC drives two intersecting beams of gold ions head-on, in a subatomic collision. What physicists learn from these collisions may help us understand more about why the physical world works the way it does, from the smallest subatomic particles, to the largest stars



    Well I have to deal with first things first here. This article above correlates the one given by Stefan. This is not to contest what you are saying, just to show you the informtaion I myself had gone through to arrive at the conclusions I do.

    Ion-Smashing Yields New Knowledge, But Some Still Question Risk
    By Carolyn Weaver

    Seen from above, the Relativistic Heavy Ion Collider, or RHIC, at New York’s Brookhaven National Laboratory, looks like a racetrack. And it is a kind of race track: two “beam pipes” in a tunnel nearly four kilometers around, in which gold nuclei are accelerated to close to the speed of light, and are crashed into each other at intersecting points along the way. Out of the kinetic energy of those collisions, new matter is created for a brief instant: a shower of quarks and gluons, the smallest particles known – and at seven trillion degrees, hotter than anything now in the universe.



    Brookhaven physicist Peter Steinberg
    “It’s basically a living embodiment of E=mc squared,” says Brookhaven physicist Peter Steinberg. “Einstein’s theory told us a hundred years ago that you can trade off energy for mass, and vice versa. We’re essentially converting the kinetic energy, the energy from the motion of these nuclei, converting it into lots of particles.”

    The four detectors that bestride the collision points are massive machines, with “time projection chambers” that record the collisions and their after-moments. The latest results made big news last year when Brookhaven physicists reported that the quark-gluon plasma was not a gas as expected, but rather a very dense liquid.


    You say strangelets do not exist? And that no connection has been found between string theory, and strangelets. I have to then argue my case so you see it in light of what the reductionistic physics is actually doing, while string theory and it's energy values hover overhead of all these interactions. How th epaticle inclination must also include microstate blackhole creation.

    So bear with me if you can.


    Hi Plato,

    strange matter and strangelets are a very interesting topic, but, unfortunately, there has been no experimental evidence for them so far. They are not really connected to string theory either, besides the fact that it was an early paper of Witten that resuscitated interest in them with nuclear physicists, I think.

    Strangelets have been thought of as possible culprits for RHIC disaster scenarios (besides the ubiquitous black holes ;-), and as responsible for potential cosmic ray particles beyond the GZK cutoff.

    But as far as I know, there has been no experimental verification of any of these ideas (and the world still exists: RHIC has produced no greedy strangelets which would have eaten up the Earth).

    In the case of the potential quark star you cite, RX J185635-375, again, and unfortunately, as far as I remember, it came out that the radius determination was not completely safe. Bottomline was that this star could be well understood as a common neutron star. I am not completely sure, though, about the current status of this object, whether it is thought to be a quark star or not.

    Anyway, it is a good example for an exciting observation which is reported in the press, but which has to be partially revisd later - only that these revisions don't make in the press releases. I guess it would often be quite interesting to have a kind of follow-up reporting, where one could read what is, eventually, the fate of some discovery that has been announced in the press.

    The strange particles I was talking about are not strangelets, but the common hadrons with strangeness, especially the Ξs and the Ωs, with two and three strange quarks, respectively. These are the particles that I had mentioned in my earlier post, and whereof I should finish the second part, finally ;-). You typically find much more of these particles in nucleus-nucleus collisions than in (properly scaled) nucleon-nucleus collisions, which is a strong indication for an intermediate QGP state, where stange-antistrang quark pairs can easily be produced.

    Best, stefan



    One, as we know can make wide sweeping generalization about the physics and why is it that any position taken by any scientist would not have been one that becomes the point of departure for all scientists? An example her ei the rationship to the Heavy Ion collsions an dstringtheory and by this very nature to the strangelets as postulated.

    This article below is to correlate with the article you showed me of 2004, while I had made this ocnlusion myself early in 2006, lets not forget the number of people involved in the "ghost particle, and Pauli" through out the years and what we have seen theoretically of the strangelets as they had been related to the disaster scenario as consequential microstate blackholes created in the RHIC and LHC.

    Is this too drastic a scenario to have you think about what all these “particles in press” are saying about the science, that any one scientist themselves might be following to correct? You say, "just get it right?" Well there are many within the blogs who are writers for those articles? Why do you think they are amongst you?

    I had noticed the grouping and conversations between blogs that had been developing over the last year and half. I continue to see some of the same people. Some, that constantly referred to the reporting that goes on. So I had to address this or forever be banished to the realm of reporting as someone just profiled.

    Strangelet Search at RHIC by STAR Collaboration

    Three models of strangelet production in high-energy heavy-ion collisions have been proposed in the 1980s and 1990s: coalescence [10], thermal statistical production [11], and distillation from a Quark Gluon Plasma (QGP) [12, 13]. The first two models usually predict low strangelet production cross sections at mid-rapidity, as verified by measurements of the related processes of coalescence of nucleons into nuclei [14]. If a QGP is created in heavy ion collisions, it could cool down by distillation (kaon emission) and condense to strange-quark-rich matter in its ground state – a strangelet. However, this requires a net baryon excess and a non-explosive process in the collisions [12, 15]. Neither of these conditions is
    favored at mid-rapidity in ultra-high energy heavy ion collisions, as suggested by results from the Relativistic Heavy Ion Collider (RHIC) at BNL [16]. Recently a new mechanism for strangelet


    I want you to have a good look at the number of names listed in this Pdf file as well the universities involve.

    Clifford of Asymptotia made this point clear about the vast network of scientists even within the string theory network of people and about who knows whom? Can you possibly know everyone, or, like the paper whose citations are referred to more as we refer to any particular scientist? We then come to see the make up and nature as we hold our views to the particular few.

    So before I begin here I wanted to make it clear, that having spent considerable time as hobby and interest about science. It is not without my own motivations that the interest would be the memory of one’s childhood, or the magazine that we looked at, but the reality we are dealing with and what we call the “nature of things.”

    An anomaly that cannot be explained nor shall it be removed because of the lack of evidence. It’s just one of those things that you cannot change in the person’s make up who has seen the world in a different way then normal. So shall he endeavor to accumulate all the things that are wrong to destabilization the view of truth of the world just so he can corrupt all those around him?

    I ask myself the question about "what is natural" because I seen what scientists were doing to each other about the theoretical/concepts/ideas models that they were adopting in their research, that I wanted to make sure that what I had been researching had been as up to date.

    Would one "leave out information that I had assembled" as they deal with me?

    As I have said before while the students have been engaged in the classroom I had been following the physics development as best I could. Spent years watching and learning

    So here's the thing.

    If I did not answer Stefan at Backreaction about the information about strangelets then it might have been left off where Stefan decided too as he continues to show his elementary particle thinking( finish the second part Stefan).

    Continued reference to strangelets might everyone think the conclusion as written I the way Stefan has shown it? Would information I had been developing have been less than the standard of what scientists hold as standard. How could anyone know it all? Hold the badge over the trial of LHC or RHIC and say I had broken the law with my insolence and corruptible behavior?:) Non! Qui?

    So here again is the conundrum I had placed in front of me as I looked and interacted with the various blogs who have commented on Lee Smolin’s book, “The trouble With Physics.”

    But first let me then deal with Stefan at Backreaction.

    Lubos Motl:
    Well, I think that even if someone believes that theoretical physics can't be trusted - and many people clearly do - there exists a less scientific argument why the accelerator won't lead to such a catastrophe: the Earth is bombed by a lot of very high-energy cosmic rays and the center-of-mass energy of the collisions is comparable to the LHC energies. So far, these collisions haven't destroyed the Earth, so it is reasonable that some additional collisions we create won't be able to do so either.


    While I had these similar thoughts it was not wothpt some basis the Blogett would have pointe dyou to think about strnagelets and then in my own assumptions, the comic particle collsions from what Ellis had taught us to think about. Yes, it was the natural collider in space for sure, and it's "energy values" well beyond what is availiable at LHC.

    So yes "Microstate creation of blackholes in space"

    In strangelets do not exist, I had come to the same conclusion Stefan did about what is "theoretically challenged" might have engaged the thinking mind as to the relationship to what the neutrino may have been in that exercise of the QGP, compared to this one on strangelets.

    So I gathered information to help me see the direction the physics was going. Least it escaped the mantra that I had been hearing exemplified in my dealings as best I can.

    “Lead by the Physics.” Now I face, "the trouble with Physics."

    See:

  • Strangelets Do Not Exist?
  • The Fate of our Planet?
  • Are Strangelets Natural?-Saturday, September 30, 2006
  • Thursday, October 12, 2006

    George Gabriel Stokes

    Sir George Gabriel Stokes, 1st Baronet (13 August 1819–1 February 1903) was an Irish mathematician and physicist, who at Cambridge made important contributions to fluid dynamics (including the Navier-Stokes equations), optics, and mathematical physics (including Stokes' theorem). He was secretary, then president of the Royal Society.

    I mean this discourse on the nature of viscosity is leading in the sense that what has been currently going in terms of RHIC "is the physics" and understanding that came about by the pursuate of elementary considerations.

    Physicists Andrew Strominger and Cumrin Vafa, showed that this exact entropy formula can be derived microscopically (including the factor of 1/4) by counting the degeneracy of quantum states of configurations of strings and D-branes which correspond to black holes in string theory. This is compelling evidence that D-branes can provide a short distance weak coupling description of certain black holes! For example, the class of black holes studied by Strominger and Vafa are described by 5-branes, 1-branes and open strings traveling down the 1-brane all wrapped on a 5-dimensional torus, which gives an effective one dimensional object -- a black hole.


    This is part of the understanding that with those who try to diminish the substance of this avenue of research have missed in their wide sweeping generalizations, less then adequate of string theory. You do not dismiss Strominger lightly as part of that generalization.



    So in regard to multiplicities, should we dismiss the substance of the viscosity nature here while those who are less then kind about the avenue of research regarding the model string theory, find that people like Lee Smolin have decided to work with people like Clifford to deal with these physic's issues. Although he is not changing his tune in regards to the substance of this theoretical/concept/idea model, he does appreciate the science behind it.

    For those who up hold the laws, and I mean the badge of the peace officer here at Backreaction. It is nice that we understand this history as it is being explained. Shall we succumb to the mechanical modes of being and we disavow "creativity" according to the limits of the law, or must we push ahead in the "greater courts" of theoretics and challenges to these laws.

    Again I am reminded of Einstein's quote here.

    ...the creative principle resides in mathematics. In a certain sense therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed.Albert Einstein


    Some would have you believe that you have acted irresponsibly in regards to model apprehsnsion about nature? Don't let them fool you or coierce you into thinking that you have disvorced yoruself from reality. If "pure thought" resides in the essence of these "mathematical forms," then where do these ensue from?


    See:

  • Navier-Stokes equations
  • Saturday, October 07, 2006

    From Modelling to Experimentation?


    Moving to higher energies, the expected fluxes of neutrinos become smaller, that even a cubic kilometer detector is not able to detect them. Larger volumes can be achieved by replacing optical sensors by acoustic detection. The reason is that acoustic waves can propagate over larger distances than light and allow wide spacing of detectors, and therefore larger detector volumes.


    From Modelling to new thoughts on experimental processes and approach to the physics involved, it is important that one understands how this approach is considered. Not to loose sight of the relationship to high energy consideration and it's particle shower effect from such interactions.

    Without some comprehension of RHIC valuation in production uses what was to be gained from cosmic particle collisions? What future in LHC inclusion of microstate with out some association to particle entities as a result of those collisions?

    Reductionist processes leads to comprehension values that if let unnurtured, would not have allowed such model comprehension to exceed current limitation of thinking?

    "String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap. This increases the number of 'down' neutrinos detected. At the same time, the creation of black holes causes 'up' neutrinos to be caught in the Earth's crust, reducing the number of 'up' neutrinos. The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."

    Monday, October 02, 2006

    CP Violation

    The value of non-Euclidean geometry lies in its ability to liberate us from preconceived ideas in preparation for the time when exploration of physical laws might demand some geometry other than the Euclidean. Bernhard Riemann




    ON a macroscale the blackhole is a understanding of when we investigate curvature parameters with regards to the nature of our universe in spacetime. We understand this right?

    What are the "entropic valuations" being recognized as we look to a earlier time of when the QGP existed and then such manifestaion in the "matters states" have exemplified such characteristics as?


    Both space and spacetime can either be curved or flat.


    I am going to give you a quick summation of what GR is. It is about "Gravity." Now if you hold that in mind you should not loose any time with what I am telling you.

    Now, how is it that we can see the dynamcial nature of the universe, yet, we would not consider the effect of the presence of microstate blackholes in regards to such gatherings in the space, of what we call "spacetime?" What would "such gatherings" show of itself?


    A circle of radius r has a curvature of size 1/r. Therefore, small circles have large curvature and large circles have small curvature. The curvature of a line is 0. In general, an object with zero curvature is "flat."


    Think about the "circle" and it's 2D view of what the blackhole is doing in 3D +time in context of many blackholes. I always refer to "one" so you can see the comparative view that I am having little success in transferring to you, in what I am seeing.

    The curvature parameters are closely associated to the thermodynamic realizations. This is importnat not only on a cosmological level, but on a microstate as well.

    Lubos explains that here.

    Lubos:
    There are lots of other examples what you can do to increase the number of black holes. Change the couplings so that the stars burn their fuel faster, and they will collapse into black hole faster. Reduce the gap between the Planck scale and the QCD scale, and nuclear collisions will be more likely to end up as black holes.

    It is quite obvious that the change of virtually any parameter of the Standard Model (plus inflation) in the right direction (one of the two directions) will result in an increase of the number of black holes. How can you doubt such a trivial thing?


    So there is something about the nature of our universe and the balance that it seeks to maintain of itself? Here we are, looking at events within the cosmo and "secular views of it's manfiestation" different then other locations within the universe. Yet not apart from it, or not indifferent to it's nature to be part of a larger picture?



    Silicon Vertex Tracker. The SVT is the heart of the BABAR experiment at SLAC—in the photo, physicists are putting the finishing touches on improvements to the detector. (Photo Courtesy of Peter Ginter)
    SLAC's BaBar collaboration has discovered that CP violation—an asymmetry between the behavior of matter and antimatter—exists even in a very rare class of particle decays. This result offers the most sensitive avenue yet for exploring matter-antimatter asymmetries, with implications for the future understanding of physics beyond the Standard Model.

    "BaBar has proven to be a fantastic instrument for exploring the origins of matter-antimatter asymmetries, allowing us to probe with exquisite precision very rare processes related to how the early universe came to be matter dominated," said David MacFarlane, BaBar Spokesperson and Professor at the Stanford Linear Accelerator Center.


    So here we are having been given the example of CP violation above and here?

    How is it that anything could be asymmetrical? :) So you introduce anti-matter and matter?


    (ambigram courtesy John Langdon)
    If we could assemble all the antimatter we've ever made at CERN and annihilate it with matter, we would have enough energy to light a single electric light bulb for a few minutes.


    As a observer Einstein made it clear that the observable universe has ideas attached to it. The "Pretty girl and the hot stove analogy" was compelling to those of us who recognized the values we may attach to life. "The Gravity of the situation?" How narrow our view of the world is when we feel the world is lost?

    But the hope and inspiration is, that the world has a bright future when we undertsand the implications of our views. Our involvement in the "toposense of reality? We are "part and parcel" of it?

    So, should we talk about the components of Heaven and Hell( my philosophical discourse on the nature of consciousness?)? You have to understand the picture and the dynamical nature this universe can say about it's entropic valuation?

    While I may have understood Omega, it didn't come to the nature it is by not including a geomtrical perspective about the nature of that same universe.

    That's my point. It had to arise from a earlier time and the manifestation is the matter states we are defining in correlation to the entropic valuations.

    While you see these as macro-characteristics and the relation to blackhole in 3d+time, the result is, a explanation of matter states in "macrostylistic beauty" we see in the events of the cosmo.

    If such inclinations to drive the energy to a ever smaller defined circle, as it gets smaller "the difference is" not so indiscernable that the events of the "particle showers" created are matter states that arise form the energy that was used.

    You see?:)

    The Ceiling

    The deeper implications of such a thought from perspective is focused upward? Yet such perspective can be made from other positions? So some minds were flexible? Others, were just engineers? ;)

    Understanding other worlds came naturally to him. Perhaps it was an inevitable consequence of being the child of Japanese Americans. His parents, though born in California, spent World War II behind barbed wire, guarded by people with machine guns: incarcerated by their own country as enemy aliens. Afterwards his father worked as a gardener, his mother a maid: two of the few jobs that were available to Japanese Americans. Kaku grew up poor, but one of the family treats was to visit the Japanese Tea Garden in San Francisco's Golden Gate Park. It turned out to be the place of a childhood epiphany. Wondering in the way that only a child does, Kaku looked at the carp swimming in a weedy pond and imagined how they would not be able to conceive of other worlds. "A carp engineer would believe that was all there is; but a carp physicist would see the ripples on the surface and start thinking about unseen dimensions," Kaku told me, laying the first of many lashes on his token engineer.


    The "ceiling" is the perspective of the carp, not the perspective of the "carp physicist."

    See:

  • Liminocentric Structures: Which Circle do you Belong Too?-Sunday, July 10, 2005


  • Ps: Some updates are curvature given for perspective. Think of a string, and any point on that string. What does the energy value of "that point" tell you in regards to the circle? The point on that string. It's just a way of looking at the string and the resonantial value assign along the string's length?

    Saturday, September 30, 2006

    Are Strangelets Natural?

    Thus RHIC is in a certain sense a string theory testing machine, analyzing the formation and decay of dual black holes, and giving information about the black hole interior.



    It is important that you look at the date of this article following, and what has subsequently arisen from "then to now." The title of this post asked a legitimate question and it was answered in response to the disaster scenario's presented to the LHC "recenty?" Check the date on it? Not so recent?

    Discovering this raised the conclusiveness about what was comparative to the cosmic ray collisions. This lead us to believe, the microscopic blackhole creation was safe. Becuase it happened all the time in the space above us. Just as we may see the aurora borealis in our observation in the interaction with the sun, so too, in cosmic particle collisions in ways beyond the standard model.

    So looking back?


    SCIENTISTS ARE OFTEN ACCUSED of trying to play God. But obviously they can't really mimic the feats of the putative Creator of the Universe, and make a universe in the laboratory. Or can they? Before you snort in disbelief, you should know that some serious cosmologists have considered the idea. Indeed, one of them has already had a shot at creating a universe--albeit inside a computer. The idea dates back to the late 1970s, when Andrei Linde, now at Stanford University, and Alan Guth of the Massachusetts Institute of Technology separately came up with the concept of "inflation". According to this idea, an incredibly short, violent burst of expansion occurred around 10-32 seconds after the birth of the Universe. Propelled by concentrated vacuum energy, inflation boosted the size of the Universe from one billionth the width of a proton to the size of a grapefruit. That's what the theorists claim, but showing that inflation really did take place like this is hard... unless, of course, someone can recreate the right conditions in the lab and watch what happens. Linde and his colleagues have already done a dry run on a computer. "Setting up the simulations was hard work, and only on the seventh day did we finish the first series," he reported in Scientific American in 1994, adding in Strangelovian terms: "We looked at the shining screen, and we were happy--we saw that the universe was good!" This isn't enough for Linde: he wants to do it for real. But theory suggests that matter has to be squeezed to densities similar to those in the primordial Universe before such fields appear. No-one has the faintest clue how to create such densities, yet. Linde is sanguine about the dangers involved, if it ever becomes possible. "You can think of our Universe as being like a smooth surface, with one part of it inflating like a balloon. The new universe will be connected to ours by just a tiny passage--what we call a wormhole--the size of a subatomic particle." Quite how we'd know we'd succeeded isn't obvious, but at least there seems little danger of someone tumbling into the new universe by mistake, or anything nasty getting out.


    THis one post includes "lots of link"s from the accumulation of my thinkng as a layman. I had gathered these as they unfolded, to help me understand what was introduced to me some time ago by Paul on the question in regards to the "Disaster Scenario at LHC."

    Now in regards to "new physics" one needed to see what would come out of such collisions that would be produced, so one had to indeed follow that thinking which I did. How far from the truth of it was what was generated in the public eye distant from what was published by the reputable scientists?

    Well you would have to judge for yourself, and "my excuse," well it has been provided for me, so one can say as a layman I am really distant from the current thinking.

    So yes before Cosmic Variance and the disaster scenario, it was in our conversations that "Mooreglade of Superstrintheory.com forum" introduced the article of "A Blackhole Ate My Planet" which lead too "Fate of our Planet"

    So you see, between then and now, I was able to construct accordingly as I was exposed to the information in regards to "both ways" to which Lubos implies in that statement in comment link?

    Okay. Now the stage has been set.

    What has been Lubos been saying?

    That the connection in "B's question" again sets the stage for further thoughts?

    That's just the way of it and who better then student who will make way for further insights, whether it be "Lubos or B?"

    In the past my mistake was made to "mirror" Lubos with Peter Woit, because I needed to see what the others may offer in regards to the positions they adopted. Or, another example would have been Smolin and Susskind, who bounced off each other. Or, Gell-mann or Feynman. Or maybe even Plato and Aristotle shhown in the picturte at the top of this Blog?

    IN the above case with Peter Woit, I did not learn much? The counter arguments as to why strings were failing in the road to experimental validation(sure we were preoccupied with it's validity then), and how this message was being put out there.

    Be sure that more senior people agree with me that it is trivial to falsify that conjecture, including Susskind, Vilenkin, Banks, and others who have looked into it.


    So where are we today in regard to strings? Lubo's reference to Banks, Vilenkin, and Susskind already asking these questions is a significant pointer to what has already transpired, and what days, weeks, years, have passed before we see this statement today?

    You see how this is done?

    Wednesday, September 27, 2006

    Cosmic Rays in Atlas



    Like Piglet describing the Heffalump in Winnie the Pooh by AA Milne, one knows this started out in some fantastical world. More then, the "inkblot" as a comparison leads too/from, a fictional story, and became the fantasy of Alice that had already been mathematically set in motion?

    So, theree are "ground rules" on using the inkblot in comparison to any microstate blackhole


    The flux of cosmic ray muons through the ATLAS cavern can be utilized as a tool to "shake down" the ATLAS detector prior to data taking in 2007.

    Additionally, a thorough understanding of the cosmic ray flux in ATLAS will be of great use in the study of cosmic ray backgrounds to the search for rare new physics processes in ATLAS.



    Again people like John Ellis lead us to the understanding of what Pierre Auger initiated in understanding this relation of cosmic particles and the issue coming to the forefront, in regards to the microstate blackhole production from these collisions.

    It is only today, that I discover the back ground process that was going on here, while it was bein worked out on Sabines's and Stefan's Backreaction site. I didn't relaize I was a "boucing board" from which the "questions in mind" were being initiated. Repeated comments "there" placed here in the comment sections to advance a position on what I thought.

    The momenta of the charged particles are measured from the curvature of their trajectories in a magnetic field provided by superconducting magnets. The volume and strength of magnetic field needed are not achievable with conventional magnets.


    We use each other as spring boards(nudges) to seeing a little further each time. That is defintiely appropriate to developing a good comprehension of the subject at hand, and creating insight to further information values gained in that research.



    See:

    Stefan and Sabines Backreaction site on Backreaction: Micro Black Holes

    A wonderful resource link to cosmic particles demonstrations

    Also my comment at Backreaction, has some more information in the search for understanding on microstate blackholes as well.

    Monday, September 25, 2006

    Why do physicists want to study particles?

    A few "cosmic rays" pass through our body every second of every day, regardless of where we are.

    They consist of particles created when high energy atomic nuclei (mainly protons) coming from outer space collide with the atoms at the top of the earth's atmosphere. Such particles are not just electrons, protons and neutrons, but also other kinds of particle.

    Near the ground, the cosmic rays include muons, similar to the electrons but more than 200 times heavier. Unlike electrons, which live forever, a muon will live about 2.2 microseconds, and then convert into an electron and two neutrinos (electron-neutrino and muon-neutrino; these are like a very light neutral version of the electron and of the muon).

    The muons themselves emerge mainly from the decays of other short-lived particles. Some of these particles, called pions, are made from up and down quarks. However, others (kaons) contain a third type of quark, called the strange quark.

    Cosmic matter is then made up of more components than the atoms. In addition to the electron, electron-neutrino, up quark and down quark, we have the muon, the muon-neutrino and the strange quark.


    Do Blackholes Radiate

    The possibility that non-radiating "mini" black holes exist should be taken seriously; such holes could be part of the dark matter in the Universe. Attempts to place observational limits on the number of "mini" black holes (independent of the assumption that they radiate) would be most welcome.

    Friday, September 22, 2006

    What is Natural?


    Fig. 2. Image showing how an 8 TeV black hole might look in the ATLAS detector (with the caveat that there are still uncertainties in the theoretical calculations).


    The question I would pose to those who do not have the dynamical nature of the universe in mind, are you happy with what you are seeing? Is it enough that your measure will be in the value of Steven Weinberg's first three minutes?

    Becuase I have taken you down to the microseconds, we can now see of this uiverse, do you think it so unlikely that the very methods for blackhole dyamics would not have include thermodynamic realizations held in context of the issue brought forward by the introduction by Paul of the Conformal Field theory and the issues relate to Penrose?

    Of course I jump ahead, based on the current knowledge base I have been able to put together by reading, sharing ideas and learning. So "you see," and "I see" what?

    Gamma ray detection is just the beginning of the lesson behind deeper perceptions of our universe and it is in this way that you are taken to view the universe on a much more dynamical level.

    But wait, I don't talk lightly of Planck scale and the measure of the square box.

    Nature (also called the material world, the material universe, the natural world, and the natural universe) is all matter and energy, especially in its essential form. Nature is the subject of scientific study. In scale, "nature" includes everything from the universal to the subatomic. This includes all things animal, plant, and mineral; all natural resources and events (hurricanes, tornadoes, earthquakes)....en.wikipedia.org/wiki/Nature


    On to the Validity of the LHC

    I encounter a concept the other day that took me back some. If we intercede and experiment to find the fundamental working associated with "dynamcial thinking" then how could one actually do this, while holding a "cosmological view" to all that we are exposed too in the space, around earth, and beyond?

    So of course, while we are being treated to the vast views given to us by Hubble and all the satellites, how much more could we have been satisfied to say, "look at what we have accomplished?"

    That is enough for the cosmologist is it not?


    In physics, natural units are physical units of measurement defined in terms of universal physical constants in such a manner that some chosen physical constants take on the numerical value of one when expressed in terms of a particular set of natural units. Natural units are intended to elegantly simplify particular algebraic expressions appearing in physical law or to normalize some chosen physical quantities that are properties of universal elementary particles and that may be reasonably believed to be constant. However, what may be believed and forced to be constant in one system of natural units can very well be allowed or even assumed to vary in another natural unit system. Natural units are natural because the origin of their definition comes only from properties of nature and not from any human construct. Planck units are often, without qualification, called "natural units" but are only one system of natural units among other systems. Planck units might be considered unique in that the set of units are not based on properties of any prototype, object, or particle but are based only on properties of free space.


    So as strange as it may seem "this concept" held in mind argues the validity of the LHC as a process that is "natural" as it is used to delve into the energies that allow us to see this "cascade of nature as particle manifestations. In this way, we have to support our views on what?

    So, we develope instruments to help us look to the very beginnings of creation? We talk about blackholes and we ask, "are these real?"

    Microstate Blackholes

    What gave us the ability to entertain such concepts that we again ask ourselves, "are these real?" All we had known is that Blackholes exist in nature? So the point I am making is that if you follow the natural costants, what use the microstate in, or as a valuation of what is real in cosmological association?

    If, as some suspect, the Universe contains invisible, extra dimensions, then cosmic rays that hit the atmosphere will produce tiny black holes. These black holes should be numerous enough for the observatory to detect, say Jonathan Feng and Alfred Shapere of the Massachusetts Institute of Technology in Cambridge, Massachusetts.


    Fortunately while we were being occupied by the news of LHC and all the workers found busy there constructing, there were others who were very busy too. They were helping us see in ways that we were not accustom as well, in regards too, the cosmic particle collisions. Now what use this information if we had thought this avenue not fruitful and necessary?


    Nevertheless, astroparticle and collider experiments should provide useful input to the theoretical work in this area. Indeed, the signatures are expected to be spectacular, with very high multiplicity events and a large fraction of the beam energy converted into transverse energy, mostly in the form of quarks/gluons (jets) and leptons, with a production rate at the LHC rising as high as 1 Hz. An example of what a typical black-hole event would look like in the ATLAS detector is shown in figure 2.

    If mini black holes can be produced in high-energy particle interactions, they may first be observed in high-energy cosmic-ray neutrino interactions in the atmosphere. Jonathan Feng of the University of California at Irvine and MIT, and Alfred Shapere of the University of Kentucky have calculated that the Auger cosmic-ray observatory, which will combine a 6000 km2 extended air-shower array backed up by fluorescence detectors trained on the sky, could record tens to hundreds of showers from black holes before the LHC turns on in 2007.


    Lest the knowledge doesn't serve us then what will be the quest of LHC? What new route to be taken? And it is in this design of measure that we will see something more direct to the basis of what these energy valuations serve?

    CLIC is based on a novel technology in which an intense low-energy electron beam is used to generate an electromagnetic wave that is used to push a lower-intensity beam to much higher energies in a relatively small distance. It seems to be the only realistic chance of colliding electrons and positrons at multi-TeV energies so, if it works, it will allay (at least for a while) some of David Gross's concerns about the prospects for future big physics projects-John Ellis

    Sunday, September 10, 2006

    Window on the Universe

    Michio Kaku:
    I like to compare it to wandering in the desert, and stumbling over a tiny pebble. When we push away the sand, we find that this "pebble" is actually the tip of a gargantuan pyramid. After years of excavation, we find wondrous hieroglyphics, strange tunnels and secret passageways. Every time we think we are at the bottom stage, we find a stage below it. Finally, we think we are at the very bottom, and can see the doorway.

    One day, some bright, enterprising physicist, perhaps inspired by this article, will complete the theory, open the doorway, and use the power of pure thought to determine if string theory is a theory of everything, anything, or nothing.

    Only time will tell if Einstein was correct when he said, "But the creative principle resides in mathematics. In a certain sense, therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed."




    An Intermediate Polar Binary System. Credit & Copyright: Mark Garlick


    Consider any physical system, made of anything at all- let us call it, The Thing. We require only that The Thing can be enclosed within a finite boundary, which we shall call the Screen(Figure39). We would like to know as much as possible about The Thing. But we cannot touch it directly-we are restrictied to making measurements of it on The Screen. We may send any kind of radiation we like through The Screen, and record what ever changes result The Screen. The Bekenstein bound says that there is a general limit to how many yes/no questions we can answer about The Thing by making observations through The Screen that surrounds it. The number must be less then one quarter the area of The Screen, in Planck units. What if we ask more questions? The principle tells us that either of two things must happen. Either the area of the screen will increase, as a result of doing an experiment that ask questions beyond the limit; or the experiments we do that go beyond the limit will erase or invalidate, the answers to some of the previous questions. At no time can we know more about The thing than the limit, imposed by the area of the Screen.


    Page 171 and 172 0f, Three Roads to Quantum Gravity, by Lee Smolin

    Now you have to understand something here that the views of those who push our perceptions have gone even further then this, in how we look at the universe. I am showing you work that was progressing from understanding and bringing together what was going on then in 2004, to show you indeed that such an progression has taken place.

    I also point out where "Conformal Field Theory" has planted itself, as we look at the images of Bekenstein bound. Such determinations and the roads taken by Strominger point specifically to what we can measure and what we have yet to measure. This did nt relegate any theoretcial view to the "garbage dump" but allowed visionaries to see beyond the SUN/Earth relation in Lagrangian views.

    ISCAP will demonstratively help you "adjust your view" in a cosmological re-adjustment that is necessary. Not only from Glast views that arose from some fantasy, but culminates today in the use of a scientific device(calorimeter) for such measures.

    In Gamma Ray detection and the Early Universe I point the direction in how Glast in it's preparation has given us new views on how we look at the universe.

    Dust torus around a supermassive black hole
    The Astrophysical Journal, in an article titled "Integral IBIS Extragalactic survey: Active Galactic Nuclei Selected at 20-100 keV", by L. Bassani et al., published on 10 January 2006 (vol. 636, pp L65-L68).


    Meanwhile, the NASA team is now planning to extend his search for hidden black holes further out into the universe. "This is just the tip of the iceberg. In a few more months we will have a larger survey completed with the Swift mission. Our goal is to push this kind of observation deeper and deeper into the universe to see black hole activity at early epochs. That’s the next great challenge for X-ray and gamma-ray astronomers," concluded Beckmann.


    Sun Earth Relation

    Part of devloping this vision was to see in ways that the Grace satelitte allowed you to see. In what use "climate functions were happening" within the earth's atmosphere how it was being regarded. Time clock functiosn are necessary views, even within this context and such mapping allowed you to see th eearth as it had never been seen before.



    No longer is it the surprize of the "first man to step out in space" to see such a blue marble and be aw struck by it's beauty. Now we have progressed in the same views that I allude too beyound what glast has done. Glast is your measure for now. Mine, and others, excell beyond this. As I show you why.

    Dr. Mark Haskins:
    On a wider class of complex manifolds - the so-called Calabi-Yau manifolds - there is also a natural notion of special Lagrangian geometry. Since the late 1980s these Calabi-Yau manifolds have played a prominent role in developments in High Energy Physics and String Theory. In the late 1990s it was realized that calibrated geometries play a fundamental role in the physical theory, and calibrated geometries have become synonymous with "Branes" and "Supersymmetry".


    Now how abtract these views that I will show you to think indeed "theoretcial surmize exists for the potential to push perception." Then, I will give you a real image to ponder, as satellites now progress through this superhighway.

    The second of five Lagrangian equilbrium points, approximately 1.5 million kilometers beyond Earth, where the gravitational forces of Earth and Sun balance to keep a satellite at a nearly fixed position relative to Earth.


    In order to understand this sun/earth relation, you needed to see beyond what Glast had to impart to you. Yet, I do not say that it is irrelelavnt such experimental fashion to help us see even further. You understand this now?

    So now, I'll show you what the universe looks like.

    Diagram of the Lagrange Point gravitational forces associated with the Sun-Earth system. WMAP orbits around L2, which is about 1.5 million km from the Earth. Lagrange Points are positions in space where the gravitational forces of a two body system like the Sun and the Earth produce enhanced regions of attraction and repulsion. The forces at L2 tend to keep WMAP aligned on the Sun-Earth axis, but requires course correction to keep the spacecraft from moving toward or away from the Earth.


    Now having this perspective in place, I am telling you what this does for perception, had I not carefully taken you through the roads to discovery. What the scale for gravity does for us in our estimation of what that universe actually looks like, when you put on glasses that change the very ideas of how we see.

    While you may see refracting of the pencil in a glass of water, you may also see that the grvaiational relation is also apparent inhow we look at the universe?

    If you do not think about the force carrier of the gravity then such extension to the standard model will only hold so much for you, while others in vision had been extended far beyond what you are accustom.

    A Better Researcher, Not a Cynic...Yessss?:)

    Sometimes there are wiser words then my own, to show what is "healthy and happy" with the research into quantum gravity? "A cynic" needs to wipe the spit from their chin, while recogizing what is really going on? We want a well balanced approach.

    Approaches to the Quantum Theory of Gravity by the PI Institute

    Two methods evolved in the theory of elementary particles to describe such quantized flux tubes. The one, called the loop method, studies them using the basic laws of electricity and magnetism, combined with quantum theory. The second, called string theory, postulates that the quantized flux tubes may be treated as fundamental in their own right, and the laws of electricity and magnetism derived from them.

    Many theorists believe that these two points of view are actually equivalent—just different ways of studying the same thing from different points of view. The idea that they are the same is called duality, which here, as in other areas, signals that the same object is being studied with different ideas and methods.