Friday, September 29, 2006

Historical Approach of the Sand Reckoner

I should pave the way for how the thoughts that are unfolding this morning.


But nothing afflicted Marcellus so much as the death of Archimedes, who was then, as fate would have it, intent upon working out some problem by a diagram, and having fixed his mind alike and his eyes upon the subject of his speculation, he never noticed the incursion of the Romans, nor that the city was taken. In this transport of study and contemplation, a soldier, unexpectedly coming up to him, commanded him to follow to Marcellus; which he declining to do before he had worked out his problem to a demonstration, the soldier, enraged, drew his sword and ran him through. Others write that a Roman soldier, running upon him with a drawn sword, offered to kill him; and that Archimedes, looking back, earnestly besought him to hold his hand a little while, that he might not leave what he was then at work upon inconclusive and imperfect; but the soldier, nothing moved by his entreaty, instantly killed him. Others again relate that, as Archimedes was carrying to Marcellus mathematical instruments, dials, spheres, and angles, by which the magnitude of the sun might be measured to the sight, some soldiers seeing him, and thinking that he carried gold in a vessel, slew him. Certain it is that his death was very afflicting to Marcellus; and that Marcellus ever after regarded him that killed him as a murderer; and that he sought for his kindred and honored them with signal favors.


First off, as Plato I understand "the secret" of the Building of the Pyramids. Why and what it means as a model of comprehension about the building blocks of nature.

So "carefully think in conclusion" about what this post means as you near it's end. For I had much more to say about it philosophically, but that would be stepping ahead to "now." :)

Anyway


Many physical quantities span vast ranges of magnitude. Figures 0.1 and 0.2 use images to indicate the range of lengths and times that are of importance in physics.


A lot of people do not understand that if you look to the cosmo, you do not just look at what is evident from observation, but that your observation is increased, as you enhance your perceptions about the "real depth" of that universe.

IN "LHC Factoids," presented by JoAnne of Cosmic Variance, some of the tantilizing ideas about the complexity of the information is being discussed. To me, this presents an opportune time to gain perspective from the "bottom up" discussed by Frank Wilczek .

If the sand is melted into a lense or a diamond, what view had been established by Frank that you might say his lense "is" distorted? If you read the article you understand the context, but until then, what use any "mountain/pyramid to climb" if you did not understand the complexity of the information?



Archimedes met an untimely death while deep in thought, pondering a figure he had drawn in the sand. He did not see the Roman soldier approach, sword in hand. The mosaic portrays this historical event


About Dimension

John Baez's link this morning in his comment is important for a lot of different angles... ummm... reasons?:)

So when you are pointed towards the valuation of all these "sand particles," it not that you want to look like an "ostrich and bury your head in the sand," but that you want to retain perspective on the complexity of the "sand castles" that mathematicans like to build? So you tend to look for the technique concerning the point, breadth and width of the evolving statemntement of the projective geoemtries?


A space is a collection of entities called points. Both terms are undefined but their relation is important: space is superordinate while point is subordinate. Our everyday notion of a point is that it is a position or location in a space that contains all the possible locations. Since everything doesn't happen in exactly the same place, we live in what can rightly be called a space, but points need not be point-like. Any kind of object can be a point. Other geometric objects, for instance, are totally acceptable (lines, planes, circles, ellipses, conic sections) as are algebraic entities (functions, variables, parameters, coefficients) or physical measurements (time, speed, temperature, index of refraction). Even so-called "real" things can be points in a space: people are points in the space of a nation's population, nations are points in the global political space, and telephones are points in the space of a telecommunications network.



So of course you always start off with Euclidean perspective, and work from there. So, you have "one" grain of sand? One raindrop? One string? Okay, you get my point yet?

The beginning of the Universe?

I want people to realize where the strings fit in. I can't help but stress that such advances to "the cause" of what perception is necessary had to start off in a "avenue" like all things, this road leads to the universe we have today.



Because it starts off in the analogy of "the string" makes this feature no less important then the "sargeant major" of Robert Laughlin's condense matter theorist view.

See:


  • What are those Quantum Microstates-Tuesday, October 18, 2005


  • A Perspective on Powers of Ten?



  • Thursday, September 28, 2006

    Science People Working the Trades?




    Now how often have we seen the ability of good science people brains tested with actually "construction techniques" in the everyday world? Be it, some calculation on how much concrete is to be supplied in the driveway to drain the water to the drain area in the most appropriate way?

    A Sundeck which need some repairs, to have concluded the types of painting to make it last that little longer? You remember who you are.

    Well, as a "lay person" I am not a very good science person, yet, neither am I a very good builder with little tolerance for constructing on the large scale.

    But I persevered, and challenge myself. Find, that doing it with someone you brought into the world, has been a really enjoyable time. Imagine, a trwenty six year old with out the history building as he has done, leading his poor Father through the time.:)

    The Plan

    So yes, it is always good idea to have a plan for the model which you choose to construct. Ideas, to manifest in real mattered forms. In the following, I seen these things, and should have drawn the plan, but I like to "wing it" in case I need to adjust.

    But hey, that's not very good either. You tend to waste good hard earned money.

    You all know that ole adage, "measure twice, cut once?" I know practise makes perfect.

    Building the aggregate patio

    So anyway I had my own things that needed to be done in accordance with something that we as a family enjoy. While physically we can and do work hard, we find the beauty and peace of sitting under the stars quite tranquil. We like to rest the weary bones in the soothings waters of the Hot Tub.

    So ya, the plan included a Hot Tub and a place to put it. A place "over it" with the Gazebo pictured above, to protect it from the wind, snow, sleet and everything else that nature can throw at you. You see we had one before and being in the open we change lids often which were costly in themself. So this new one, was to be protected to reduce the cost over the long run.

    Also energy concerns were an issue compared to the ole hot tub, which ran electricity as if somebody turned on a tap. Like water conservation, which I had reiterated in my previous posts about our living in the wilds, thes ethings of course are of a concern. New technologies make these things more capable which is another reason we bought a new one.

    Hot Tub Here now the Gazebo?

    As you can see as you click on picture and enlarge it, it also meant putting in new shrubs and plants. Also, you'll notice that there are still "white boards there" with which I had to build the Gazebo over top of the Hot Tub. Not good planning again. Thes ewere used to put baorads acrss as I was then able to work above.



    The roof is to be a clear Suntuff, that has yet to be put up. This will be taking place over the next couple of days.

    SOLAR B and Van Ellen Belts

    SCIENCE GOALS OF SOLAR-B
    To determine the mechanisms responsible for heating the corona in active regions and the quiet Sun.




    There are of course reasons why you want to keep these perspectives together.

    While I have been extolling the virtues of Grace satelitte systems and climate it has been noticed that the developing framework of science here is also important and has been recognized in regards to what we don't see, and what happens in the Sun/Earth relation.


    Univ. of Iowa
    Space physicist James Van Allen, shown here in a University of Iowa photo, was best-known for discovering the radiation belts that now bear his name.


    For me, my "philosphical views" take me to the "basis of all life", and the valuation I have see in how we related things, emotively, mentally, and spiritually with the planet and the lifeforms on it.

    I couldn't help be amazed at the direction of my research over time, and the value the Van Ellen Belts serve as a model, to the human structure as a schema of what goes on in relation to earth's spherical body interactions.

    Shall I dare point out this thought?

    Shall I carry it over to the human being, or the computer screen, that is affected by....? Communciations, that are interrrupt by the value of what the Sun casts off in it's corona?

    Helioseismology

    The science studying wave oscillations in the Sun is called helioseismology. One can view the physical processes involved, in the same way that seismologists learn about the Earth's interior by monitoring waves caused by earthquakes. Temperature, composition, and motions deep in the Sun influence the oscillation periods and yield insights into conditions in the solar interior.


    I keep the "image" in the right index for such a reason.

    The Coming Season of the Aurora Borealis.



    Helioseismology became of interest to me, and the way in which we can percieve this relation. To be able topercieve when the events were to be most illuminating. So yes, I was always enthrall by what I could myself see in space, as I watched going into the fall months as the "aurora borealis danced" in the color displays. To know what was going on in that Sun/Earth relation.

    Last night, under the stars, we looked through my "construction technique of the roof" of the Gazebo, as it divided the night sky of stars into eight sections. We relaxed in the hotub, under a beautiful display of the cosmo.

    Wednesday, September 27, 2006

    Cosmic Rays in Atlas



    Like Piglet describing the Heffalump in Winnie the Pooh by AA Milne, one knows this started out in some fantastical world. More then, the "inkblot" as a comparison leads too/from, a fictional story, and became the fantasy of Alice that had already been mathematically set in motion?

    So, theree are "ground rules" on using the inkblot in comparison to any microstate blackhole


    The flux of cosmic ray muons through the ATLAS cavern can be utilized as a tool to "shake down" the ATLAS detector prior to data taking in 2007.

    Additionally, a thorough understanding of the cosmic ray flux in ATLAS will be of great use in the study of cosmic ray backgrounds to the search for rare new physics processes in ATLAS.



    Again people like John Ellis lead us to the understanding of what Pierre Auger initiated in understanding this relation of cosmic particles and the issue coming to the forefront, in regards to the microstate blackhole production from these collisions.

    It is only today, that I discover the back ground process that was going on here, while it was bein worked out on Sabines's and Stefan's Backreaction site. I didn't relaize I was a "boucing board" from which the "questions in mind" were being initiated. Repeated comments "there" placed here in the comment sections to advance a position on what I thought.

    The momenta of the charged particles are measured from the curvature of their trajectories in a magnetic field provided by superconducting magnets. The volume and strength of magnetic field needed are not achievable with conventional magnets.


    We use each other as spring boards(nudges) to seeing a little further each time. That is defintiely appropriate to developing a good comprehension of the subject at hand, and creating insight to further information values gained in that research.



    See:

    Stefan and Sabines Backreaction site on Backreaction: Micro Black Holes

    A wonderful resource link to cosmic particles demonstrations

    Also my comment at Backreaction, has some more information in the search for understanding on microstate blackholes as well.

    Gravitational Radiation

    How dry this article in comparison to what we can witness in the cosmo?

    One gets this sense of "curvature implied" that the events connected at locations in the universe could have been felt in other locations? What connects them? The spacetime fabric?:)

    If one was speaking and one was seeing beyond the observation of the events shown here, then what is there to say if one cannot accept "the language" while they hold to only what they see? No speculation, no theories, no future?

    Only, the now?

    With the development of quantum mechanics, it was realized that on this scale the protons must be considered to have wave properties and that there was the possibility of tunneling through the coulomb barrier


    So while this information exist here now, how does this help you look at events, or is this information lost?

    Virial Theorem

    A general theorem from the mathematics of physics becomes a useful part of the picture of gravitational collapse. In the context of gravity it can be applied to a finite collection of particles which interact with each other by gravitational attraction. We can attribute to the collection of particles a total gravitational potential energy and a total kinetic energy. The virial theorem states that

    Average kinetic energy = -1/2 x Average potential energy
    One application of this theorem would be to a known mass of hydrogen gas in a proto-star. If you had a good estimate of the mass of the gas and could measure a sample of particle velocities to determine the kinetic energy, then you could predict the kinetic energy as the gas cloud underwent gravitational collapse. So for a given radius of collapse, you could make a prediction of the temperature of the hydrogen gas in terms of the kinetic energy and could make a prediction about when it would reach the ignition temperature for hydrogen fusion.

    Another potential application is to the question of dark matter. If you examine a system of objects out in space and are able to measure the kinetic energy of the system, then you can imply the gravitational potential energy. If the total mass of all the visible objects is too small to give that amount of gravitational potential energy, then the implication is that there is matter there which you cannot see (dark matter). When this has been done for a variety of types of galaxies, there is strong evidence for dark matter (Baez).


    Still the connection "is" in the "spacetime fabric" and all events have to be detailed according to some "relation of value in the energy distributed of itself," as we gaze upon the beautiful events within that cosmo?

    Gravity-Don't Let it Get You Down

    If a inkblot appears on your desk, would you think it appeared in the shape it did to convince you, that what you are "seeing is real?" To you, it may look like someone trying in their attempts to convince you of what a blackhole is?

    These questions greatly disturbed Richard Feynman. His famous paper on quantizing general relativity, in which he first described his discovery of the "ghost particles" that eventually played a crucial role in understanding modern gauge field theories, begins with a discussion of the smallness of gravitational effects on subatomic scales, after which he concludes,

    There's a certain irrationality to any work on [quantum] gravitation, so it's hard to explain why you do any of it. . . . It is therefore clear that the problem we [are] working on is not the correct problem; the correct problem is: What determines the size of gravitation?


    So the fantasy of implying such things as "ghosts" go to the points of what Feynman wants to say? He then shows you this inkblot. Psychologically are you prepared?

    Piglet describes the Heffalump,. in Winnie the Pooh by AA Milne.

    Monday, September 25, 2006

    Why do physicists want to study particles?

    A few "cosmic rays" pass through our body every second of every day, regardless of where we are.

    They consist of particles created when high energy atomic nuclei (mainly protons) coming from outer space collide with the atoms at the top of the earth's atmosphere. Such particles are not just electrons, protons and neutrons, but also other kinds of particle.

    Near the ground, the cosmic rays include muons, similar to the electrons but more than 200 times heavier. Unlike electrons, which live forever, a muon will live about 2.2 microseconds, and then convert into an electron and two neutrinos (electron-neutrino and muon-neutrino; these are like a very light neutral version of the electron and of the muon).

    The muons themselves emerge mainly from the decays of other short-lived particles. Some of these particles, called pions, are made from up and down quarks. However, others (kaons) contain a third type of quark, called the strange quark.

    Cosmic matter is then made up of more components than the atoms. In addition to the electron, electron-neutrino, up quark and down quark, we have the muon, the muon-neutrino and the strange quark.


    Do Blackholes Radiate

    The possibility that non-radiating "mini" black holes exist should be taken seriously; such holes could be part of the dark matter in the Universe. Attempts to place observational limits on the number of "mini" black holes (independent of the assumption that they radiate) would be most welcome.

    Saturday, September 23, 2006

    Hydrogen, and the Law of Octaves



    Alex Vilenkin - Many Worlds in One article by Mark of Cosmic Variance drew my interest again after reading with a new perspective gained from understandng some implications about the "anthropic principle."

    Sometimes I even still hold to the idea it is better not to touch this topic because of the greeness with which insight has now taken over. This greeness resides against the reason with which such logic is necessary in regards ot the debate between Susskind and Smolin.

    I do not want to be blinded by the razzle dazzle either of men leading this debate, so as to the layman's pursuite of understanding, I hope to show what I am seeing?

    While I have not read the book either I am still "drawn to the debate" about what the "anthropic reasoning" is talking about at a fundamental level? Scared yes, and on wobbly legs so I continue.

    So as a layman I am curious too ,about views here and what the basis could lead too, in terms of what our universe had become?

    If "carbon" wasn't present at the beginning, then how would you explain our universe?

    Because the triple-alpha process is unlikely, it requires a long period of time to produce carbon. One consequence of this is that no carbon was produced in the Big Bang because within minutes after the Big Bang, the temperature fell below that necessary for nuclear fusion.

    Ordinarily, the probability of the triple alpha process would be extremely small. However, the beryllium-8 ground state has almost exactly the energy of two alpha particles. In the second step, 8Be + 4He has almost exactly the energy of an excited state of 12C. These resonances greatly increase the probability that an incoming alpha particle will combine with beryllium-8 to form carbon. The existence of this resonance was predicted by Fred Hoyle before its actual observation based on its necessity for carbon to be formed.


    I too hate the idea of the "law of crackpostism," yet research back to mendeleev table in regards to Newland, raised interesting ideas about the future of testbility?

    A "harmonical disseration" about the ways we will in the fuure be able to map the elements in "photonic imagery" devised to work within carbon processes?

    What were the ground rules for this universe?

    He is best known for discovering the element plutonium, with Edwin McMillan. He led the team that devised the chemical process for extraction of plutonium.

    Seaborg served as chairman of the Atomic Energy Commission from 1961 until 1971.

    He and McMillan shared the 1951 Nobel Prize in Chemistry for research into transuranic elements.


    Having a framework here in which to establish the elemental nature of our universe, how is it that such principals inherent in "string theory" should not direct our attention to what is a viable indicator of what will fill the spaces between, as Mendeleev was able to do in prediction?

    While one has been introduce to the "allotopes of Coxeter," it is not without some thought that "planck length," along with the understanding of what "geometrical inhernetness?" qunatum geometry, would also spew forth from the very basis of the beginning of that big bang?

    So while I have shown the allotrope here, and dimensional perspective developed, what degrees of freedom say that the space would allow all constants of nature to be described here, and allowed such geometrical principals to form in the bucky ball of carbon, carbon nanotubes?

    It was not wihtout directing our attention to the immediacy of that big bang in the microsecond of "planck time" that we are at a loss then?


    The last major changes to the periodic table was done in the middle of the 20th Century. Glenn Seaborg is given the credit for it. Starting with his discovery of plutonium in 1940, he discovered all the transuranic elements from 94 to 102. He reconfigured the periodic table by placing the actinide series below the lanthanide series. In 1951, Seaborg was awarded the Noble prize in chemistry for his work. Element 106 has been named seaborgium (Sg) in his honor.


    See:

  • CNO and the Law of Octaves

  • Allotropes and the Ray of Creation
  • Friday, September 22, 2006

    What is Natural?


    Fig. 2. Image showing how an 8 TeV black hole might look in the ATLAS detector (with the caveat that there are still uncertainties in the theoretical calculations).


    The question I would pose to those who do not have the dynamical nature of the universe in mind, are you happy with what you are seeing? Is it enough that your measure will be in the value of Steven Weinberg's first three minutes?

    Becuase I have taken you down to the microseconds, we can now see of this uiverse, do you think it so unlikely that the very methods for blackhole dyamics would not have include thermodynamic realizations held in context of the issue brought forward by the introduction by Paul of the Conformal Field theory and the issues relate to Penrose?

    Of course I jump ahead, based on the current knowledge base I have been able to put together by reading, sharing ideas and learning. So "you see," and "I see" what?

    Gamma ray detection is just the beginning of the lesson behind deeper perceptions of our universe and it is in this way that you are taken to view the universe on a much more dynamical level.

    But wait, I don't talk lightly of Planck scale and the measure of the square box.

    Nature (also called the material world, the material universe, the natural world, and the natural universe) is all matter and energy, especially in its essential form. Nature is the subject of scientific study. In scale, "nature" includes everything from the universal to the subatomic. This includes all things animal, plant, and mineral; all natural resources and events (hurricanes, tornadoes, earthquakes)....en.wikipedia.org/wiki/Nature


    On to the Validity of the LHC

    I encounter a concept the other day that took me back some. If we intercede and experiment to find the fundamental working associated with "dynamcial thinking" then how could one actually do this, while holding a "cosmological view" to all that we are exposed too in the space, around earth, and beyond?

    So of course, while we are being treated to the vast views given to us by Hubble and all the satellites, how much more could we have been satisfied to say, "look at what we have accomplished?"

    That is enough for the cosmologist is it not?


    In physics, natural units are physical units of measurement defined in terms of universal physical constants in such a manner that some chosen physical constants take on the numerical value of one when expressed in terms of a particular set of natural units. Natural units are intended to elegantly simplify particular algebraic expressions appearing in physical law or to normalize some chosen physical quantities that are properties of universal elementary particles and that may be reasonably believed to be constant. However, what may be believed and forced to be constant in one system of natural units can very well be allowed or even assumed to vary in another natural unit system. Natural units are natural because the origin of their definition comes only from properties of nature and not from any human construct. Planck units are often, without qualification, called "natural units" but are only one system of natural units among other systems. Planck units might be considered unique in that the set of units are not based on properties of any prototype, object, or particle but are based only on properties of free space.


    So as strange as it may seem "this concept" held in mind argues the validity of the LHC as a process that is "natural" as it is used to delve into the energies that allow us to see this "cascade of nature as particle manifestations. In this way, we have to support our views on what?

    So, we develope instruments to help us look to the very beginnings of creation? We talk about blackholes and we ask, "are these real?"

    Microstate Blackholes

    What gave us the ability to entertain such concepts that we again ask ourselves, "are these real?" All we had known is that Blackholes exist in nature? So the point I am making is that if you follow the natural costants, what use the microstate in, or as a valuation of what is real in cosmological association?

    If, as some suspect, the Universe contains invisible, extra dimensions, then cosmic rays that hit the atmosphere will produce tiny black holes. These black holes should be numerous enough for the observatory to detect, say Jonathan Feng and Alfred Shapere of the Massachusetts Institute of Technology in Cambridge, Massachusetts.


    Fortunately while we were being occupied by the news of LHC and all the workers found busy there constructing, there were others who were very busy too. They were helping us see in ways that we were not accustom as well, in regards too, the cosmic particle collisions. Now what use this information if we had thought this avenue not fruitful and necessary?


    Nevertheless, astroparticle and collider experiments should provide useful input to the theoretical work in this area. Indeed, the signatures are expected to be spectacular, with very high multiplicity events and a large fraction of the beam energy converted into transverse energy, mostly in the form of quarks/gluons (jets) and leptons, with a production rate at the LHC rising as high as 1 Hz. An example of what a typical black-hole event would look like in the ATLAS detector is shown in figure 2.

    If mini black holes can be produced in high-energy particle interactions, they may first be observed in high-energy cosmic-ray neutrino interactions in the atmosphere. Jonathan Feng of the University of California at Irvine and MIT, and Alfred Shapere of the University of Kentucky have calculated that the Auger cosmic-ray observatory, which will combine a 6000 km2 extended air-shower array backed up by fluorescence detectors trained on the sky, could record tens to hundreds of showers from black holes before the LHC turns on in 2007.


    Lest the knowledge doesn't serve us then what will be the quest of LHC? What new route to be taken? And it is in this design of measure that we will see something more direct to the basis of what these energy valuations serve?

    CLIC is based on a novel technology in which an intense low-energy electron beam is used to generate an electromagnetic wave that is used to push a lower-intensity beam to much higher energies in a relatively small distance. It seems to be the only realistic chance of colliding electrons and positrons at multi-TeV energies so, if it works, it will allay (at least for a while) some of David Gross's concerns about the prospects for future big physics projects-John Ellis