Friday, February 17, 2006

Tabula rasa: The Glass Room

For a person like me, I would want to define the origination and source of all possibilites. While it might have been a philosophical journey of John Locke, or further rendition by Stephen Pinker. I have a perspective on this, that I think would seem a little strange.

I mean really, if, each of us is born into this world with such a blank slate, then how is an idea incorporated into such a design of our blank slate. Especially, if there had not been some influence predisposed, to draw ideas into the appropriate environment for consideration?



Science of (17 Febuary 2006 Wikpedia)

In computer science, tabula rasa refers to the development of autonomous agents which are provided with a mechanism to reason and plan toward their goal, but no "built-in" knowledge-base of their environment. They are thus truly a "blank slate".

In reality autonomous agents are provided with an initial data-set or knowledge-base, but this should not be immutable or it will hamper autonomy and heuristic ability. Even if the data-set is empty, it can usually be argued that there is an in-built bias in the reasoning and planning mechanisms. Either intentionally or unintentionally placed there by the human designer, it thus negates the true spirit of tabula rasa.

Generally people now recognise the fact that most of the brain is indeed preprogrammed and organised in order to process sensory input, motor control, emotions and natural responses. These preprogrammed parts of the brain then learn and refine their ability to perform their tasks. The only true clean slate in the brain is the neo-cortex. This part of the brain is involved in thought and decision making and is strongly linked with the amygdala. The amygdala is involved in responses such as fight or flight and emotions and like other parts of the brain is largely "pre-programmed", but has space to learn within its "programming". The amygdala is important in that it has a strong influence over the neo-cortex. There is much debate as to whether the amygdala prevents the neo-cortex from being defined as a clean slate.

Controversially the amygdala is different from person to person. However, it only affects emotions and not intelligence. Another controversial element is in the differing size of the neo-cortex.


So from a science perspective now that we might have located the physical intepretation, I am more concerned with how the creative abilities will have allowed such a D brane intersection interpretation, possible in such a glass room for consideration?

While you had yor balckboards and created the envirnonment( glass room), the room becomes somewhat different, if held to perspectve, where images and information would makes its way into this room, as well as, having tentacles that reach into other laptops discussed in the Future of the Notebook.

Thursday, February 16, 2006

SPACE, THE FINAL FRONTIER


Star Trek V: The Final Frontier (1989)


Some of the older, and not so old, when they hear "this title" above, do they think of Startrek's exploits in space? As we were given "a view" of space travellers going from one end of the universe to another and as they encountered alien civilizations and such.

Well I don't want to take you to this extreme, and suffer "alien discrimmination" in the "new thinking" of society, so I will just move back a bit and begin with Hubble pictures, and what previews these give to us.


L.L. Orionis colliding with the Orion Nebula flow


The Hubble Space Telescope imaged this view in February 1995. The arcing, graceful structure is actually a bow shock about half a light-year across, created from the wind from the star L.L. Orionis colliding with the Orion Nebula flow. For more information on this image, see HubbleSite. Click on the image for a very large version. Credit: NASA, The Hubble Heritage Team (STScI/AURA)


This post is the result of what is held in mind in terms of the way we measure things in space and the perspectives we form around it. I am going to jump forward quite drastically and then backwards, and all over the place to gently try and gain perspective in mind, about how we are seeing these picutres Paul shared here and what was gained in terms of understanding the jet in the pictures that was shown in previously.

So we are given a picture of early history in terms of "the jet" and what is gained in the picture offered us, in how we see. Not only in space perspective and some of the things gathered around it in terms of that space, but ideas, related to how the sparkle of sunshine seems to catch your eye, as it appears quite blindingly to the eye as observation, is realized in a certain way.:)


A Classical Discription of the Quantum World?


Here I was introduced to models on the micro perspective views that held a relationship to cosmological design. This was a new way in which to see geometrical idealization, as I engaged early universe, with General Relativity, as it is played out on the cosmological canvas given to us in our pictureof the universe.

Do you think we can become tainted when our views are microsperspectively organized that the phrase "the Phoenix" is more then the mythical bird born out of mind, but also borne out of the beginnings of this universe? So these people who help us organize our thoughts held my attention.



Shall we be really critical of the way the eye then sees, and what observations of the universe has allowed us deeper inspection of those early events? These are to be considered, without holding a certain position, as we use model and assumptions gained from insight. Would we discard these models as they push our mnds beyond th ebundaries of the edge, while we understood now that the universe never arose from nothing. It couldn't. Accept it?:)

So in way, perspective had been pushed to inquire about what can be gained, if we progress these views in a very scientific way. It is the least we can do, if not, we are but assigned some ID'er classification, and suffer, the wrath of mythisms, that we had been purpetrating on a society, without understanding the repercussion?

Suffered under the point system of John Baez's crackpotism?:)

It is something that happens, as maturity and age of reason begins to manifest. We have questions about things we do not understand. We can still hold on to our dreams, our artistic inflections and sounds inhernet, with the creative side of us in bloom. We all struggle, yet there is truth to what the intuitive said developed in us, and the "correlation of cognition" as we progress through this science.



Cognition and purity of thought would be assigned the universal language of mathematics, yet the mathematical mind had been projected into the way it might seen nature, and discribed it for us.

Concept development, arises from it, and is interwoven into our views of reality. Our conversations of the day, the eyes that bring pictures forward. Current day 's progress of the insight as "pictured measure." Hubble in all it's glory. How so the universe, as it is today around us?

No it is a gradual thing that we understand as we look at this subject, that it is based on reasoning, that occupies research, and enlightenment, over time. That we would want "not" to mislead in any way. Clear Mind.

Having this in developing perspective, all one has to do is think of the "early universe" introduction we had gained in association, to know, that blackhole creation in colliders, high energy particles in cosmological collsions, and the concerns now developing, had developed from consequences. John Ellis, or Peter Steinberg introduced us to Pierre Auger and the experiments involved respectively.

So More on the Final Frontier

So I began with a term that seems quite relevant to perspective of the public as we were witness to space travel , that we now take that term and use it to push further perspective.



COSMOLOGY AS SEEN FROM VENICE - Lawrence M. Krauss (2001)

Probably the most important characteristic of the space in which we live is that it is expanding. The expansion rate, given by the Hubble Constant, sets the overall scale for most other observables in cosmology. Thus it is of vital importance to pin down its value if we hope to seriously constrain other cosmological parameters.

Wednesday, February 15, 2006

Big Bang:One Man's Change of Heart

Thanks Paul

One definitely needs some perspective around this and how such information is given. I refer here for consideration, about perspective, and how it can be exploited for further consideration on what is emitted, and what manifests in weak gravitational field measure, as neutrino effects(quantum gravity).

Microperspective and methods of examination, raise the issue fo cerenkov radiation and what it tells us about such interactive phases?

Here in refractive consideration, ICECUBE, paints a different picture of what began somewhere else in cosmological high energy collisions. "Neutrinos and strangelets" are part of the developing scenario with which the universe has consequences, if held to the initial conditons of our universe. You had to know where to look for these.

Plato:
"Nothing" in stated form was and always is "nothing" which would have not allowed any further discussion. "Zero" in our conversation is a much different kind of thinking. I understood that as well. "Zero" would have been the equivalent to "i" in the Dirac's matrices?



Physics at this high energy scale describes the universe as it existed during the first moments of the Big Bang. These high energy scales are completely beyond the range which can be created in the particle accelerators we currently have (or will have in the foreseeable future.) Most of the physical theories that we use to understand the universe that we live in also break down at the Planck scale. However, string theory shows unique promise in being able to describe the physics of the Planck scale and the Big Bang.


I wanted to add this post, and to centralize some references that were found that helped form my perspective on "nothing." What! I guess I'm done?:)

Seriously, this had to be confronted, and who better then from our layman perspectve, then the admission of a leaders in science, who can change theirs mind after some thinking?

Cosmological Constant SeeSaw in Quantum CosmologyMichael McGuigan

Lubos shares his perspective on linked section of titled paper above.

One interpretation of the coupling of Wheeler-DeWitt functions is that it originates from topology changing effects. Topology change seems to be inevitable in quantum gravity. To treat topology change properly is a very complicated calculation using today’s mathematical tools.


I wanted to add these links here for consideration, as well what link given by Paul for consideration in regards to Penrose, the figure of the man's change of heart that ighlight's this post. In Phase transitions the comments have been quite enlightening.

Before the Big Bang BBC News, with Stephen Sackur
Sir Roger Penrose has developed a new theory on what happened before the Big Bang.

These pages were created by Jack "Turtle" Wong, Spring 1999

  • First of all, how do we think the universe began?

  • The Big Bang theory.

  • Resolving the inadequacies of the big bang theory.

  • The Hawking-Turok Instanton theory: Stephen Hawking's
    ideas.

  • The Hawking-Turok Instanton theory: Neil Turok's ideas.

  • The Hawking-Turok Instanton theory: the result of merging
    two interesting theories.

  • Is the search over?

  • Bibliography / Further Reading


  • See Also:



  • Cycle of Birth, Life, and Death-Origin, Indentity, and Destiny by Gabriele Veneziano

  • Ekpyroptic and cyclical models
  • Monday, February 13, 2006

    Intersection of D Branes

    I'm not going to try and kid you with "this stuff," as it is extremely beyond anything that any of us mere mortal can understand. So, if such a thought would be to simplify, then how would such thinking be attributed to such model building and make it easier for us lay people to comprehend where these people are working in terms of the way they do things.

    What is important is that we can derive some method to this madness:) okay! rather this abstract thinking, to show some kind of similarity in lay people's current thought patterns for easy recognition.

    I'll burn in hell, if I get this wrong, but surely from my "faulty trails (not Tower)" I can be forgiven, until a clearer picture is given to us, that I could revamp all that I said, and leave for you now, the trials and tibulation of a rogue what?:)

    Now you have to think about what I am saying, if you understand indeed, that such a place exists in the picture below, which for us mortals to consider. Think for a minute about the blackhole and where I had been talking in relation to the collider, as well as, the cosmic collisions taking place, with higher energy particles in our own atmosphere.

    Weak field manifestation has particle consideration evident, and we find these here on earth, as neutrinos. Do You see now?

    Physicists Andrew Strominger and Cumrin Vafa, showed that this exact entropy formula can be derived microscopically (including the factor of 1/4) by counting the degeneracy of quantum states of configurations of strings and D-branes which correspond to black holes in string theory. This is compelling evidence that D-branes can provide a short distance weak coupling description of certain black holes! For example, the class of black holes studied by Strominger and Vafa are described by 5-branes, 1-branes and open strings traveling down the 1-brane all wrapped on a 5-dimensional torus, which gives an effective one dimensional object -- a black hole.


    I thought this to be part of the trivial effort with which I had departed to the bulk perspective, without really undertanding how I had got there. Yet I do see in these ways and many things are encompassed within it(gravitonic concentration). I would say, like Clifford telling us about the proper way in which we should move within these mathematical environs, then I would say what a rogue scholar I make, becuase this seems be the bastard child I am whose school is by insight developement, and some of it, wrong of course. But I try.

    Superstrings, black holes and gauge theories


    D-branes are non-perturbative excitations of string theory on which open strings can end. Open strings have gauge fields, so the D-branes define a gauge theory. There is a class of black hole made of D-branes, and these have a quantum gauge theory description. The closed strings define a field theory of gravity.



    PROSPECTS FROM STRINGS AND BRANESA.SEVRIN

    Strings occur in two versions: closed and open strings. Roughly speaking, one has that closed strings carry the gravitational interaction and the open strings carry the gauge interactions. While closed strings can freely propagate in space, the modern point of view is that the end points of open strings are “stuck” on p-dimensional hypersurfaces, where p ∈ {1, 2, · · · , 9}. These hypersurfaces are known as Dp-branes. They are dynamical but they are extremely heavy in the perturbative regime of string theory (their tension or energy per unit of volume is inversely proportional to the string coupling constant): they are solitons. A D0-brane is a point-like object, a D1-brane a string-like object, a D2-brane a membrane, ... Just as a propagating point particle sweeps out a curve – the world-line – in space-time, a Dp-brane sweeps out a p + 1-dimensional volume – the world-volume – in the 10-dimensional space-time. The effective dynamics on the world-volume is then described by a p + 1-dimensional field theory.





    D-branes represent a key theoretical tool in the understanding of strongly coupled superstring theory and M-theory. They have led to many striking discoveries, including the precise microphysics underlying the thermodynamic behaviour of certain black holes, and remarkable holographic dualities between large-N gauge theories and gravity. This book provides a self-contained introduction to the technology of D-branes, presenting the recent developments and ideas in a pedagogical manner. It is suitable for use as a textbook in graduate courses on modern string theory and theoretical particle physics, and will also be an indispensable reference for seasoned practitioners. The introductory material is developed by first starting with the main features of string theory needed to get rapidly to grips with D-branes, uncovering further aspects while actually working with D-branes. Many advanced applications are covered, with discussions of open problems which could form the basis for new avenues of research


    The link below contains over 222 pages, so if you are on Dial-up, you have to think twice about clicking on it. Another of Cosmic Variance's very own.


    D-Brane PrimerClifford V. Johnson
    Following is a collection of lecture notes on D-branes, which may be used by the reader as preparation for applications to modern research applications such as: the AdS/CFT and other gauge theory/geometry correspondences, Matrix Theory and stringy non-commutative geometry, etc. In attempting to be reasonably self-contained, the notes start from classical point-particles and develop the subject logically (but selectively) through classical strings, quantisation, D-branes, supergravity, superstrings, string duality, including many detailed applications. Selected focus topics feature D-branes as probes of both spacetime and gauge geometry, highlighting the role of world-volume curvature and gauge couplings, with some non-Abelian cases. Other advanced topics which are discussed are the (presently) novel tools of research such as fractional branes, the enhancon mechanism, D(ielectric)-branes and the emergence of the fuzzy/non-commutative sphere.

    Sunday, February 12, 2006

    Cosmic Variance's Very Own: Strangelets in 10 or 11

    Cosmic Variance's very own.

    Hewett, Lillie and Rizzo found that if so called micro-black holes, which are smaller than the nucleus of an atom, exist, they can be used to determine the number of extra dimensions. If scientists were to smash two high energy protons together they could theoretically make such a micro-black hole. Such a collision could happen at CERN’s Large Hadron Collider (LHC), which will become operational next year. Once created, the micro-black hole decays quickly and emits over a dozen different kinds of particles such as electrons, neutrinos and photons, which are easy to detect. Using the predicted decay properties of the black hole into neutrinos, Hewett, Lillie and Rizzo solved complex equations to determine if our universe has 10, 11, or more dimensions — perhaps too many dimensions to be explained by critical string theory.


    So what is the experiment that is being produced?

    Using the predicted decay properties of the black hole into neutrinos,

    While I consider the state itself, the thoughts of ICECUBE come to mind. This previous ICECUBE post on this is extremely helpful.

    What is also helpful is to remember what the collision process produces and how we can see this process in relation to cosmic collisions. Not just in the colliders themself. While we might of debated the strange matter below, I enlist the idea of the gravitonc considerations and maybe it is not altogether clear, it is with some satisfaction that such thinking of dimensional attributes are actually given parameters with which to work?

    Strange Matter (12 Feb 2006)

    Some theories suggest that strange matter, unlike neutronium, may be stable outside of the intense pressure that produced it; if this is so, then small substellar pieces of strange stars (sometimes called strangelets) may exist in space in a wide range of sizes all the way down to atomic scales. There is some concern that ordinary matter, upon contacting a strangelet, would be compressed into additional strange matter by its gravity; strangelets would therefore be able to "eat" any ordinary matter they came into contact with, such as planets or stars. This possibility is not considered likely, however.

    Strangelets are thought to have a net positive charge, which is neutralized by the presence of degenerate electrons extending slightly beyond the edge of the strangelet, a kind of electron "atmosphere." If a normal matter atomic nucleus encounters a strangelet, it will approach until it begins penetrating this negatively charged atmosphere. At that point it will start to see the positive electrical potential and be repelled from the strangelet. Sufficiently energetic nuclei, or neutrons (which are unaffected by electrical charges), can reach the strangelet and be absorbed; the up/down/strange quark ratio would then readjust by beta decay.


    See:
    Phases of Matter for Reference

    Exotic physics finds black holes could be most 'perfect,' low-viscosity fluid

    Son and two colleagues used a string theory method called the gauge/gravity duality to determine that a black hole in 10 dimensions -- or the holographic image of a black hole, a quark-gluon plasma, in three spatial dimensions -- behaves as if it has a viscosity near zero, the lowest yet measured.

    It is easy to see the difference in viscosity between a jar of honey or molasses at room temperature and a glass of water. The honey is much thicker and more viscous, and it pours very slowly compared with the water.

    Using string theory as a measuring tool, Son and colleagues Pavlo Kovtun of the University of California, Santa Barbara, and Andrei Starinets of the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, have found that water is 400 times more viscous than black hole fluid having the same number of particles per cubic inch.


    See:

  • Blackhole Creations

  • Strangelets in Cosmic Considerations

  • Cosmic Ray Collisions and Strangelets Produced

  • Microstate Blackhole Production

  • Quark Gluon PLasma II: Strangelets Produced

  • Accretion Disks

  • Strangelets Form Gravitonic Concentrations

  • IN a Viscosity State Production is ?

  • What Are those Quantum Microstates
  • Saturday, February 11, 2006

    History of the Superfluid: New Physics



    Nice Picture above.



    It is really confusing for me sometimes so I have to revisit the set up, to make sure I have things slotted to the way it is being used to penetrate reductionistic views, that help us understand the new physics that emerges from Gold Ion collisions.

    So what is a color glass condensate? According to Einstein's special theory of relativity, when a nucleus travels at near-light (relativistic) speed, it flattens like a pancake in its direction of motion. Also, the high energy of an accelerated nucleus may cause it to spawn a large number of gluons, the particles that hold together its quarks. These factors--relativistic effects and the proliferation of gluons--may transform a spherelike nucleus into a flattened "wall" made mostly of gluons. This wall, 50-1000 times more dense than ordinary nuclei, is the CGC (see Brookhaven page for a letter-by-letter explanation of the CGC's name). How does the gluon glass relate to the much sought quark-gluon plasma? The QGP might get formed when two CGC's collide


    So you say that the particles are supported by the HE4 Superfluid, then how does that energy leak off into the extra dimensions? Hmmmm. As thread unfolds below? What are these strangelets that are catapulted beyond the collider? Porous induced shell casing?

    As well as bringing the accelerator's counter-rotating beams together, LHC insertion magnets also have to separate them after collision. This is the job of dedicated separators, and the US Brookhaven Laboratory is developing superconducting magnets for this purpose. Brookhaven is drawing on its experience of building the Relativistic Heavy Ion Collider (RHIC), which like the LHC is a superconducting machine. Consequently, these magnets will bear a close resemblance to RHIC's main dipoles. Following a prototyping phase, full-scale manufacture has started at Brookhaven and delivery of the first superconducting separator magnets to CERN is foreseen before the end of the year.


    Bose Nova revisited

    I wanted to bring this to the surface again for inspection, as this comes out of the work another fellow and I had discussed at length as we shared perspective on the nature and dynamics geometrically inclined.


    Accretion Disk


    Sometimes, if one does not realized what is governing the thought process, why and how would such things not make some kind of sense. As we move our perceptions ever deeper into the workings of the reductionistic world and find, that these results are being meet in a theoretical sense, as developing well along experimental one too.

    As a layman these views are important to me ,more then the cyncism that pervades the supposed debate on model assumption. While the cynic provides no service other then being that. I have learn to see where the patience and developemental attitude requires a more conducive field of opportunity to bring out the best in each of those scientist that very quickly, the desired approach, is being gone after.

    So herein lies a little history, and the synoptic event that is holding my thoughts today.

    Do the Bosenova

    To set a BEC swirling Ketterle's team shone a rotating laser beam on it while holding it in place with strong magnets. The experiment is like "stroking a ping-pong ball with a feather until it starts spinning," muses Ketterle. The surprising thing was that suddenly, a regular array of whirlpools appeared in the BEC. "It was a breathtaking experience when we saw those vortices," recalls Ketterle. Researchers had seen such whirlpools before (in liquid helium and in BECs) but never so many at once. This array of superfluid whirlpools was exactly the kind of storm system astronomers predicted would swirl beneath the iron crust of a neutron star.

    Evidence for the swirling depths of neutrons stars is based on the fact that some neutron stars are pulsars - the emit a powerful beam of radiation as they spin - like a cosmic lighthouse. The pulses are very regular but occasionally there is a glitch and a pulse might come slightly too early or too late and it is these glitches that are thought to be due to superfluid vortices hammering into the inside of the neutron star's crust.

    Ketterle adds that attractions between atoms in a BEC could parallel the collapse of a neutron star so emulating the distant and massive in the laboratory too. The explosive collapse of a BEC, dubbed a "Bosenova" (pronounced "bose-a-nova") by Wieman releases only a tiny quantity of energy, just enough to raise the temperature of the BEC by 200 billionths of a degree. Supernovae release many times the energy.


    So while I had drawn attention to the process afew years ago that we had discussed, it was important that the very idea of a geometrical process that encompass all the information we currently have, has been filed to specific areas for consideration.

    While the tidbits placed our perspectives all over the map, and held the idealization of the geometry to Feynman's toy models, a greater implication existed that few of realized as we can read about Dirac and the way in which he sees. While I had not been blessed with such a mathematical mind, it seems my vision of things are quite capable, while speaking about reductionistic proceses intuitive roads that lead to the developmental understanding of the nature of the supefuid. A place in which flatspacetime geometry would allow you to consider properties that ask us to explain what this emergent property might be.

    So, if such supersymmetrical idealization was to exist what was this place to say about what began here, or there, in the expression of our universe? Something had to be created that was new to us in our assessment as "new physics." So what was produced? Where did this avenue and funnel allow such an expression that we would look at the bose nova expressing itself, in a model approach.

    Whirling atoms dance into physics textbooks

    Superconductivity is superfluidity for charged particles instead of atoms. High-temperature superconductivity is not fully understood, but the MIT observations open up opportunities to study the microscopic mechanisms behind this phenomenon.

    "Pairing electrons in the same way as our fermionic atoms would result in room-temperature superconductors," Ketterle explained. "It is a long way to go, but room-temperature superconductors would find many real-world applications, from medical diagnostics to energy transport." Superfluid Fermi gas might also help scientists test ideas about other Fermi systems, like spinning neutron stars and the primordial soup of the early universe.


    Historical Perspective
  • Eric Cornell

  • Carl Wieman

  • Wolfgang Ketterle

  • 2001 Nobel Prize in Physics

  • Neutron star

  • M. Coleman Miller




  • Today and the New Physics



    So now that you see that this process is a interesting one, it is necessary to see how such comparative views on a cosmological scale could have been ever immersed in the microperspective.

    This has been my attempt at bringing the place for persepctve into line so that such "new physics" woud have captured the layman's mind. Found the seed bed for new maths, to have created a visionary world that could have arisen from this point on the brane, that such circles, had a greater meaning then one could have ever realized.

    What was happening outside of our colliders that we could speak to what was happening inside of the colliders? This is amazing story, as we now see that events happening with high energy particles, have made themself known in our immediate envirnment to have said what can exist here now in such weak field manifestations, that we had graduated from the normal gravity wave perception GR lead us from, and sent us too?

    Many Holes?

    So now that a cosmological event has captured our mind, the big bang taken us to the first microseconds of our universe, the supersymmetrical view realized, what say we see the possiblility in those new bubbles that arise from Dirac's Sea?

    Each hole while existing within the frame work of a supefluid state madeit possible for us to realize that such expressions would have happen at such micro levels that we had been thinking about how we send our measures to such levels? The new physics is what had been strange to our normal way of thinking and now?

    It would have been my hope that bringing five different people together in the Cosmic Variance scheme of things, would have created the perfect group, as to bringing persepctive and varied opinion together in perception into the family and said how nice that these different perspectives were really one aspect of the whole picture?

    Thursday, February 09, 2006

    Warm Dark Matter

    Having a global perspective using the cyclical model, seem to open some of the ideas about the nature and geometry of this universe as mentioned in article below.

    I have been watching since the earlier days of the jamming session on the train, where individuals who seem to get together, seem to produce this amazing idea in just a short span of time.

    Reference to Aaron's article linked of Steinhardts

    For most astronomical observations the simplest possible choice seems to give an adequate description: the dark matter is primarily made up of elementary particles which are long-lived, cold and collisionless and has been termed cold dark matter. The most direct way to see if this choice is correct is via earth based laboratory particle detectors and several experiments are underway.


    Well what was troubling to me then, was that if you had a age to the universe, let's say 13.7 billion years, then while some like Lubos might refer to Andy Stromingers blackhole issue and living in it, I was somewhat puzzle in ascertions about this geometry and cyclcial nature, that such a idealization could exist in parts of our universe.

    Andy's public lecture

    Lubos Motl:
    Andy answered many questions and some of them have been very frequent questions that follow many similar talks. What is a string made of (nothing else), is it made of matter (no, you would get an F), is it made of waves of space (no), was the Big Bang a black hole (if it were, we are still in it), what can string theory say about the origin of the Universe (not much so far), and so forth


    What events in galaxy formation could be taken back to that beginning, yet the ideal state of affiars held to a flat space time considered and slowing expansive rates of expression? Show relationship to over all nature of this universe in action. Would it not conflict with arrow of time in it's expression, to know that such galaxy formations woud take us back to the birth of this universe?

    What made this equally complicated was that no event in this cosmos, could be older then the 13.7 billions years, yet, we see in nucleosythesis processes, we can do this in our ascertion of of what happened in the first microseconds of this universe? It would mean, no event can be older than?

    If you have a global persepctive on universe cyclical operations, then where are the places that take us to the origins of nucleosysthesis processes (Geometrical inclusion of our own universe)in all galaxy formations? Blackholes?:)

    It would mean all comparative examples of such galaxies would then never be older then the age of the universe, and we run into trouble with the arrow of time?

    Or, can any event that we take to the age of the universe, be a natural process?

    Wednesday, February 08, 2006

    The Lowest Octave State

    Sometimes simple concepts, like something representing the lowest vibration mode of the string, the lowest octave helps in a sense helps to orientate what the particles mean, such as protons,neutrons and electrons. Where they exist now as they cosmic collsions meet and dissapte it's influence in our atmospheres, our planet.

    Yet Moshe speaking about sparticles has interesting relations in context of symmetry breaking, yet, without thinking about what experiments are now being listed, what value this lowest vibration mode? What value that leads us to think about this lower scale as evidence now held within our views.

    Clifford:
    We’ve got to remember what we assumed in order to get to the cirtical dimensions, and then revisit those assumptions every time we learn something new about the whole story


    Would be a consistent pattern, when new options and experimental consideration are introduced. In the case I listed above in ICECUBE.

    The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."


    I think this would be consistent on the level of what you are saying Clifford? Lay people like myself would understand this I think. While very aware of the higher energy considerations in context of reductionism, had taken us too dual blackhole considerations within the collisions taking place not just in the colliders.

    It presented opportunites in how we see what strings might have emplied in Cerenkov radiation? What is it that we should see in this relation, that strings would have said here is another opportunity?

    Cerenkov Radiation and the Blue Glow

    At full power (200 kilowatts), the UMR Reactor core produces approximately 6.4 trillion fissions per second. Each fission event liberates a tremendous amount of energy, a portion of which is carried away by fission products which then decay and produce high-energy beta particles. Often, these beta particles are emitted with such high kinetic energies that their velocities exceed the speed of light (3.0x108 meters per second) in water. When this occurs, photons, seen to the eye as blue light, are emitted and the reactor core "glows" blue.

    While no particle can exceed the speed of light in a vacuum, it is possible for particles to travel faster than light in certain mediums, such as water. The speed of light in a particular medium, v, is related to the speed of light in a vacuum, c, by the index of refraction, n, by v = c/n. Water has an index of refraction of 1.3, thus the speed of light in water is 2.3x108 meters per second. Therefore, beta particles with kinetic energies of 0.26 MeV travel at speeds in excess of 230 million m/s!


    It is important to remember somethings here. I am trying to hone in on the exact reasons for this idealization, to see in the ways that we do. Why the sky is blue in relation to the sun that shines and the Earth as it is ?:) How often has the child asked, while we had been witness to the very thing in our everyday waking lives.

    Thus we are quickly transported into the strange world of refractve indexes and such, as examples of what angle and departures these particle might take in their collisions courses. Yet we know as we look up that beyond the blue, it gets dark again Redshifting on the horizons as our sun sets.

    Cosmological particles exsit that are free of our atmosphere. What say these things in that environ, while it is dark? What shall we say of these things when the sun influences dances on our outer atmosphere?

    Wikipedia and the Uses of Cerenkov Radiation(8 Feb 2006)

    When a high-energy cosmic ray interacts with the Earth's atmosphere, it may produce an electron-positron pair with enormous velocities. The Cherenkov radiation from these charged particles is used to determine the source and intensity of the cosmic ray, which is used for example in the Imaging Atmospheric Cherenkov Technique (IACT), by experiments such as H.E.S.S. and MAGIC. Similar methods are used in very large neutrino detectors, such as the Super-Kamiokande.


    So I am again drawn back to the state of the earth's gravitational field, with which this planet being weak, lets us see particle states that it does? How shall I keep in mind, that such circumstance free of refractive indexes( a vacuum)speed of light wil mett the chance to have faster then light capabilties, in a blue glow? Have I then nailed the reasons why such concepetualization take to the two extrmes of what vison had garnered for us, and the circles meaningwhile it signfied this interchangeability?

    Ah, my more layman head. :)Like a Koan supplied to tax the mind, a simple statement is drawn out, over and over again, while in time, the mind becomes flooded with so many possibilities with a flash of light. What is this Koan, that I speak of?

    Brian Greene:
    How can a six-foot tall human being 'fit' inside such an unbelievably microscopic universe? How can a speck of a universe be physically identical to the great expanse we view in the heavens above


    Don't worry Clifford, while Brian Greene might have been the spokesperson for all scientist actors, it is still with some benefit that we undertand how the abstract mind releases itself, but for a short time. While the influence of nature has its way with us. Whilst we had been so intensely looking, the break from the work, allowed the culmination to seep through in a simple jesture of understanding. That seems to be the way of it.

    Tuesday, February 07, 2006

    Evidence for Extra Dimensions and IceCube

    ...the creative principle resides in mathematics. In a certain sense therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed.
    Albert Einstein

    Sometimes if we paid attention enough, the neurons seem to fire appropriately and the detachment of the ideas seemingly distant from one another, become illuminated and connected? Imagine it taking place in Clifford's other office.

    Foundations Study Guide: Philosophy of Mathematics by David S. Ross, Ph.D.

    The philosophy of mathematics is the philosophical study of the concepts and methods of mathematics. It is concerned with the nature of numbers, geometric objects, and other mathematical concepts; it is concerned with their cognitive origins and with their application to reality. It addresses the validation of methods of mathematical inference. In particular, it deals with the logical problems associated with mathematical infinitude.

    Among the sciences, mathematics has a unique relation to philosophy. Since antiquity, philosophers have envied it as the model of logical perfection, because of the clarity of its concepts and the certainty of its conclusions, and have therefore devoted much effort to explaining the nature of mathematics.


    Such a cognitive fucntion then would be important as these math symbols arose in our minds. Possible new mathematical models in which to describe the nature we see around us. So one makes sure they have a pad and pencil, while they ventured away from the regime, with which the mind has been so intensely engaged?

    Now being so far from the understanding of these mathematics, I can only hope to understand the concepts as they unfold in a geometrical insight, while I try to make sure I understand them in relation to abstract thinking.

    SNO on the go – at last!


    Over the past 30 years, five different experiments have sought to measure the flux of these elusive particles from the Sun (produced by the same nuclear processes that make it shine) and have consistently come up short of theoretical predictions. One explanation is that the neutrinos emitted ‘oscillate’ into another variety of neutrino which past experiments could not detect.


    Within the IceCube collaboration the Univ. of Uppsala and the Univ. of Berkeley have joined the DESY initiative. The DESY team is also in close contact to the groups in Europe, the USA and Asia which are working on acoustic detectors for Neutrino-Telescopes installed in water. Details on the different projects have been presented on the First Workshop on Acoustic Cosmic Ray and Neutrino Detection held at Stanford in September 2003.




    The muon will travel faster than light in the ice (but of course still slower than the speed of light in vacuum), thereby producing a shock wave of light, called Cerenkov radiation. This light is detected by the photomultipliers, and the trace of the neutrinos can be reconstructed with an accuracy of a couple of degrees. Thus the direction of the incoming neutrino and hence the location of the neutrino source can be pinpointed. A simulation of a muon travelling through AMANDA is shown here (1.5 MB).


    Some understanding of the dual nature of blackholes is needed here in order to understand what is "produced" and how this is "spread out."

    "String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap. This increases the number of 'down' neutrinos detected. At the same time, the creation of black holes causes 'up' neutrinos to be caught in the Earth's crust, reducing the number of 'up' neutrinos. The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."





    Before engaging article below it is important that the differences be noted between strangelets(strange quarks), and the distortions in neutrino properties. If it is understood the microstate blackholes are created, then the dispersion of other particle in the atmosphere give us indications and consequences gained from dual nature of the blackhole.

    I am confused here, and this point of interactive consideration is holding my mind as to why both these situations together are important. The difficulty may come from from the immediate association, while reocgnition of these two have been raised from the event and collision.

    Earth punctured by tiny cosmic missilesBy Robert Matthews, Science Correspondent
    (Filed: 12/05/2002)

    Strangelets - sometimes also called strange-quark nuggets - are predicted to have many unusual properties, including a density about ten million million times greater than lead. Just a single pollen-size fragment is believed to weigh several tons.

    They are thought to be extremely stable, travelling through the galaxy at speeds of about a million miles per hour. Until now, all attempts to detect them have failed. A team of American scientists believes, however, that it may have found the first hard evidence for the existence of strangelets, after scouring earthquake records for signs of their impact with Earth.



    See:

  • Cosmic Ray Collisions and Strangelets Produced
  • Strange Abstract Movements

    When one is engaged in the strange world of the abstract, Quark to Quark measures left me in a strange state. Lines having been given values in distance. That were not readily available to the eye. These lines are happening in spaces, that give "energy values" to that every distance? Gausssian coordinates. The metric.


    The Clebsch Diagonal Cubic Surface. It is smooth and all its different 27 lines are real. There are 10 so-called Eckardt points, i.e. points in which three of the lines meet.


    So this is a preview to me while working in these abstract spaces, I wanted to make sense of it all, and how such expressions that arise in the standard model, had some framework in which it can follow.




    Dürer Magic Square with Lines


    A new perspective hidden in the Prof.dr R.H. Dijkgraaf second rendition, and thesis image, reveals a question mark of some significance?:) So how would we see the standard model in some "new context" once gravity is joined with some fifth dimensional view?


    What gravity would imply if all dimensional relations are introduced to the entropic models of matter states, while this energy valuation to determination, using information gathered are forcing us to see in ways in regards to those same energy density states?

    So you look for these things, in model approaches like, the first three minutes of Steven Weinberg's or even further yet into model approaches given here.


    Big Bang Nucleosynthesis Edward L. Wright



    OKay. So You Say the Beginning


    As can be seen from the curves, at the higher temperatures only neutrons and protons exist, with there being more protons than neutrons. But, as the temperature decreases, there is an increase in the amount of deuterium and helium nuclei. Just below 1 billion degrees there is a significant increase in deuterium and helium, and a decrease in the abundance of protons and neutrons. This is the deuterium "bottleneck" mentioned previously. This uses up the all the free neutrons and some protons, and causes the neutron line to drop off, and the proton line to dip (relatively few protons are used up). The deuterium abundance only increases to a point because it is an intermediate to the formation of helium. So as it is created, it is quickly consumed to complete the process of helium nucleosynthesis. Once all the neutrons have been used up, its presence drops off.


    So while you are intrigued by this beginning, something happens that confronts the rational, of how you ever got to this point. Does it matter? I think it does, and if you to are ever to conlucde this assertion of a cyclial nature, you need foundational perspective that helps recognize why string theorist's abhor infinities. What the heck do they mean?


    In fact, the temperatures and densities reached in these collisions are similar to those found in the early universe a few microseconds after the Big Bang.


    So how much closer can you be taken to the beginning? You need an overview for this cyclical nature to make sense of it.