Mean Gravity Field |
The Mean Gravity Field lets us work from this mass understanding and provides for, flunctuations in that Gravity field hence the understanding of Time Variable Gravity Field
On planet Earth, we tend to think of the gravitational effect as being the same no matter where we are on the planet. We certainly don't see variations anywhere near as dramatic as those between the Earth and the Moon. But the truth is, the Earth's topography is highly variable with mountains, valleys, plains, and deep ocean trenches. As a consequence of this variable topography, the density of Earth's surface varies. These fluctuations in density cause slight variations in the gravity field, which, remarkably, GRACE can detect from space.
I wanted to put this into perspective, since we can extend our vision of the gravity field, and how we would look at mass distribution. Using this method, we calibrate, understanding current topological features of hills and valleys that serve to remind us, of the mass distribtuion that has gone on in the formation of our planet Earth.
Since passing over these locations calculations recognize these density valuation of mass regions. This allows us to understand the current gravity standard placed on that location.
Time-Variable Gravity Measurements from the GRACE Satellite
NASA, in partnership with the German Space Agency DLR, launched the dedicated gravity satellite GRACE (the Gravity Recovery and Climate Experiment) in March, 2002. This five year mission will map out the Earth's gravity field to unprecedented accuracy at monthly intervals. The temporal variations in gravity inferred from these data will allow people to study a wide range of processes, cutting across a variety of Earth science disciplines, that involve redistribution of mass within the Earth and at or near its surface. It will be possible, for example, to produce monthly estimates of changes in continental water storage anywhere in the world, averaged over scales of a few hundred km and greater, to accuracies of better than 1 cm water thickness.
I have referrred to the hill and valley perspectives that have arisen in relation to how we see the landscape(earth's). If this feature was not comprehended in some model application, would it not have served to settle minds who see no valuation in such landscape perspectives, as a basis to a much better understanding of the nature of the universe, and the reality around us?
Where has the extra energy gone? For some scientists this question highlights something interesting about what extra dimensions might have implied? You gauge the gravitational fields and learn to see time variability as a feature not just of mass consideration, but of energy determinations as well. It's only fitting?:)
The image above shows the many processes of the Earth’s hydrologic cycle that contribute to total changes in water storage
So setting up a comprehensive understanding of these differences, the mean gravitational field and Time Variable gravity field we see now some relationship to things finer in its constitution, and the relationship to Climate.
The Landscape?
What value might be assigned to this understanding, that we look at how such emissions and its effect on the information gathered. Would we see the effect of civilizations and the way this has effecedt those particular geographical regions.
Have we thus found a legitimate model, that current debates on the Kyoto protocals might serve to get everyone on base for determinations. Will this effectvely change the dialogue currently going on in our assessments, of the needed reduction of CO2 emissions?