Showing posts with label KK Tower. Show all posts
Showing posts with label KK Tower. Show all posts

Saturday, March 12, 2005

Bubble world




Using a rubber band analogy over top of a ball is a interesting way to approach the circle used, and the energy determinations found of value in calculating 1r radius(KK Tower) of that same circle, as you move to the top. But if you move it along a length and you find that you can calculate the difference in this length by the changes in the energy valuations?



It’s how you look at this space inside the bubble versus outside the bubble. John Baez might look at it on the outside as such above recognizing well the lines connectin flip and change depending on the energy demonstrated in a quantum grvaity model? While the inside of the bubble is dictated by some other means of interpretation? From the inside, a soccer ball universe(poincare structure) would seem so appropriate but here Max Tegmark has answer this view, through Wmap views?



For me, I would look at the surface of the bubble and the rainbows that could shimmer across it’s surface. We would be defining the shape of the bubble in a way we had not considered before? Moving sound in analogy to the world of gravitational considerations how would this view be considered now in context of bubble technologies?



Using circles as energy determination seems viable as they travel the length, but it becomes much more diffiuclt when you are trying to merge these bubbles, it looks discrete, when the lines are joining while curvature defines the connection between the two? You see the bubbles have a outer structure. As these circles merge, it is not past the knowledge to coisder that the path integral approach is being exemplified.

Running contrary to the view of bubble world, the images of a vast systems of cosmic strings that would flash across a universe may seem very interesting as I gaze from artistic perception about the flash of a lightening strike? That ignited new possibilties into expression, new life in the universe?

Quantum gravity, the as yet unconsummated marriage between quantum physics and Einstein's general relativity, is widely (though perhaps not universally) regarded as the single most pressing problem facing theoretical physics at the turn of the millennium. The two main contenders, ``Brane theory/ String theory'' and ``Quantum geometry/ new variables'', have their genesis in different communities. They address different questions, using different strategies, and have different strengths (and weaknesses).



What is Quantum Gravity?

Quantum gravity is the field devoted to finding the microstructure of spacetime. Is space continuous? Does spacetime geometry make sense near the initial singularity? Deep inside a black hole? These are the sort of questions a theory of quantum gravity is expected to answer. The root of our search for the theory is a exploration of the quantum foundations of spacetime. At the very least, quantum gravity ought to describe physics on the smallest possible scales - expected to be 10-35 meters. (Easy to find with dimensional analysis: Build a quantity with the dimensions of length using the speed of light, Planck's constant, and Newton's constant.) Whether quantum gravity will yield a revolutionary shift in quantum theory, general relativity, or both remains to be seen.

Thursday, January 13, 2005

KK: Kaluza Klein Theory

What is it?

KK Tower



Now part of the problem of visualization here is what and how the cosmic string could have developed. Now, determination of the various sizing of these strings would have had to incorporate the value of the energy involved, in terms of 1r and using the KK tower, such classifcations help in this direction.

Kaluza-Klein theory is a model which unifies classical gravity and electromagnetism. It was discovered by the mathematician Theodor Kaluza that if general relativity is extended to a five-dimensional spacetime, the equations can be separated out into ordinary four-dimensional gravitation plus an extra set, which is equivalent to Maxwell's equations for the electromagnetic field, plus an extra scalar field known as the "dilaton". Oskar Klein proposed that the fourth spatial dimension is curled up with a very small radius, i.e. that a particle moving a short distance along that axis would return to where it began. The distance a particle can travel before reaching its initial position is said to be the size of the dimension. This, in fact, also gives rise to quantization of charge, as waves directed along a finite axis can only occupy discrete frequencies.

Kaluza-Klein theory can be extended to cover the other fundamental forces - namely, the weak and strong nuclear forces - but a straightforward approach, if done using an odd dimensional manifold runs into difficulties involving chirality. The problem is that all neutrinos appear to be left-handed, meaning that they are spinning in the direction of the fingers of the left hand when they are moving in the direction of the thumb. All anti-neutrinos appear to be right-handed. Somehow particle reactions are asymmetric when it comes to spin and it is not straightforward to build this into a Kaluza-Klein theory since the extra dimensions of physical space are symmetric with respect to left-hand spinning and r-hand spinning particles.


So in order to get to the summation, views of hidden dimenisons had to be mathematically described for us, so a generalization here would suffice in the following diagram.



Now, not having the room to explain, and having linked previous information on extension of KK theory, I wondered about the following. If we understood well, the leading perspective that lead us through to the dynamical realizations, then the road Gauss and Reimann lead us to would help us to understand the visualization materializing by the calorimeter disciptions of each energy placement harmonically describing each particle's value?

Electromagnetic Calorimeter of the Phenix


If one understood well enough about the direction of discernation of early universe consideration and microstates, then such questions would have been of value in the ideas of topological considerations?

Here again I would point to the Glast determinations and of how we percieve these comological interactions, that continue to be built mathematically? Cosmic string developement would have shown energy valuation that would have continued to expand if we see this as a continous fucntion of particle identification? The matter states would have become distinctive inregards to the weak field manifestations represented in the comsological functions of our universe now?

We would have had to learn to map topological considerations, and the only way is how we see the calorimeter is used?




Thursday, December 30, 2004

Where to Now?



Once you see parts of the picture, belonging to the whole, then it becomes clear what a nice picture we will have?:) I used it originally for the question of the idea of a royal road to geometry, but have since progressed.

If you look dead center Plato reveals this one thing for us to consider, and to Aristotle, the question contained in the heading of this Blog.

It is beyond me sometimes to wonder how minds who are involved in the approaches of physics and mathematics might have never understood the world Gauss and Reimann revealled to us. The same imaging that moves such a mind for consideration, would have also seen how the dimensional values would have been very discriptive tool for understanding the dynamics at the quantum level?

As part of this process of comprehension for me, was trying to see this evolution of ordering of geometries and the topological integration we are lead too, in our apprehension of the dynamics of high energy considerations. If you follow Gr you understand the evolution too what became inclusive of the geometry developement, to know the physics must be further extended as a basis of our developing comprehension of the small and the large. It is such a easy deduction to understand that if you are facing energy problems in terms of what can be used in terms of our experimentation, that it must be moved to the cosmological pallette for determinations.

As much as we are lead to understand Gr and its cyclical rotation of Taylor and hulse, Mercuries orbits set our mind on how we shall perceive this quantum harmonic oscillator on such a grand scale,that such relevance between the quantum and cosmological world are really never to far apart?

As I have speculated in previous links and bringing to a fruitation, the methods of apprehension in euclidean determinations classically lead the mind into the further dynamcis brought into reality by saccheri was incorporated into Einsteins model of GR. Had Grossman not have shown Einstein of these geoemtrical tendencies would Einstein completed the comprehsive picture that we now see of what is signified as Gravity?

So lets assume then, that brane world is a very dynamcial understanding that hold many visual apparatus for consideration. For instance, how would three sphere might evolve from this?

Proper understanding of three sphere is essential in understanding how this would arise in what I understood of brane considerations.

Spherical considerations to higher dimensions.

Spheres can be generalized to higher dimensions. For any natural number n, an n-sphere is the set of points in n-dimensional Euclidean space which are at distance r from a fixed point of that space, where r is, as before, a positive real number.

a 1-sphere is a pair of points ( - r,r)
a 2-sphere is a circle of radius r
a 3-sphere is an ordinary sphere
a 4-sphere is a sphere in 4-dimensional Euclidean space
However, see the note above about the ambiguity of n-sphere.
Spheres for n ≥ 5 are sometimes called hyperspheres. The n-sphere of unit radius centred at the origin is denoted Sn and is often referred to as "the" n-sphere.


INtegration of geometry with topological consideration then would have found this continuance in how we percieve the road leading to topolgical considerations of this sphere. Thus we would find the definition of sphere extended to higher in dimensions and value in brane world considerations as thus:



In topology, an n-sphere is defined as the boundary of an (n+1)-ball; thus, it is homeomorphic to the Euclidean n-sphere described above under Geometry, but perhaps lacking its metric. It is denoted Sn and is an n-manifold. A sphere need not be smooth; if it is smooth, it need not be diffeomorphic to the Euclidean sphere.

a 0-sphere is a pair of points with the discrete topology
a 1-sphere is a circle
a 2-sphere is an ordinary sphere
An n-sphere is an example of a compact n-manifold without boundary.

The Heine-Borel theorem is used in a short proof that an n-sphere is compact. The sphere is the inverse image of a one-point set under the continuous function ||x||. Therefore the sphere is closed. Sn is also bounded. Therefore it is compact.


Sometimes it is very hard not to imagine this sphere would have these closed strings that would issue from its poles and expand to its circumference, as in some poincare projection of a radius value seen in 1r. It is troubling to me that the exchange from energy to matter considerations would have seen this topological expression turn itself inside/out only after collapsing, that pre definition of expression would have found the evoltuion to this sphere necessary.

Escher's imaging is very interesting here. The tree structure of these strings going along the length of the cylinder would vary in the structure of its cosmic string length based on this energy determination of the KK tower. The imaging of this closed string is very powerful when seen in the context of how it moves along the length of that cylinder. Along the cosmic string.

To get to this point:) and having shown a Platonic expression of simplices of the sphere, also integration of higher dimension values determined from a monte carlo effect determnation of quantum gravity. John Baez migh have been proud of such a model with such discrete functions?:) But how the heck would you determine the toplogical function of that sphere in higher dimensional vaues other then in nodal point flippings of energy concentration, revealled in that monte carlo model?

Topological consideration would need to be smooth, and without this structure how would you define such collpases in our universe, if you did not consider the blackhole?

So part of the developement here was to understand where I should go with the physics, to point out the evolving consideration in experimentation that would move our minds to consider how such supersymmetrical realities would have been realized in the models of the early universe understanding. How such views would have been revealled in our understanding within that cosmo?

One needed to be able to understand the scale feature of gravity from the very strong to the very weak in order to explain this developing concept of geometry and topological consideration no less then what Einstein did for us, we must do again in some comprehensive model of application.



Monday, December 27, 2004

What are Sounds in the New Concept of Theoretics Approach?

I must be true to my word, and follow the tidit of information that I posted on Peter Woit's site. I am pointing to the two positions that both Lubos and Peter declare of themselves, in what they choose to represent of their thinking.

Lubos Said:
As I go towards the present, physics of these topics becomes increasingly difficult, requires higher education, expertise - and I think that something remotely similar exists in any other sufficiently complex field of science, including e.g. number theory, too. Proving the Fermat Last Theorem is a pretty fancy thing that requires some new technology, does not it?



In what Lubos saids, there is no arguing about the prerequsites of insight that follow educational roads to comprehending the world. In a way, that I have mentioned, that few recognize.

So as a commoner and having followed this thinking over the last few years, it so happened that a conceptual frameworld developed that help me look at the physics and approachs that are developing at the the very front lines of theoretical and mathematical developement.

Of course my statements have to be laid in contrast to what is being shown to us on a public scale. To have derived this thinking, gracefully exploding into new phase transitive models of apprehension. What better contrast then to have another mind like Peters Woits to contradict the mathematics that has been developed in string theory?

Peter makes it clear, that the mathematics is in question? If you attack the model of string/M theory you attack it's mathematics. There is no way to avoid this logically. Being the spokesman of why theoretcially this model of strings will never survive? In a innocent enough posting thread of his Peter voices this in a quiet humourous way by point out the logic of his thinking as well? That humour has to be based on some pre existing understanding of math in order to be driven into the jovial states of laughter?:)


Peter saids:
Mathematical Humor

Now for some comic relief:


A new issue of the Notices of the AMS is out. It contains an entertaining article entitled Foolproof: A Sampling of Mathematical Folk Humor with many examples of mathematical humor. Physicists also put in an appearance
.


So as if this concept dropped into our views, from the 21 century(the future), we find that these concepts move the common person forward by having our front line physics and theoretcial people explaining how this concept is developing backwards or is it forwards?:)

Yes it is amazing to think, that a whole concept could exist within this reality and that the arguement is being fought on whether to accept this belief or not? That the substance of this reality could mathematical say the same things, from both Peter and Lubos. This will be then the basis of our interpretation, of the way we will derive the physics of approach by elements of structures, that have preceded us in our determnations revealled in the Einsteinian way? This exposition is articulated countless times, on a geoemtrical and topological determination, that rests early in Euclid's developement of postulates, continuing on to the road taken Reimann spherical which determinations lead us in our visions of gravity.

What the hell would any commoner know, if they did not understand that this basis of interpetation did not explode fractorially into the concept we now look at in terms of dimensional attributes above the spacetime we have come to accept and look at, in our everyday lives?



It is nice to have people Like Michio Kaku who can help orientate the common person into the reality that has moved these theoretical positions with clear and concise methods of interpretation. But my start of comprehension in based on the work of Savas Dimopoulos and the conection Nima and others have to a developing view about dimensional interpretation.

Savas Dimopoulos
Here’s an analogy to understand this: imagine that our universe is a two-dimensional pool table, which you look down on from the third spatial dimension. When the billiard balls collide on the table, they scatter into new trajectories across the surface. But we also hear the click of sound as they impact: that’s collision energy being radiated into a third dimension above and beyond the surface. In this picture, the billiard balls are like protons and neutrons, and the sound wave behaves like the graviton.

It is very hard for people to see this third dimension, but if the analogies help, then you should be able to understand the world of this tension, and the harmony involved generated from the musical comparison that is associated?

We can't actually hear gravitational waves, even with the most sophisticated equipment, because the sounds they make are the wrong frequency for our ears to hear. This is similar in principle to the frequency of dog whistles that canines can hear, but are too high for humans. The sounds of gravitional waves are probably too low for us to actually hear. However, the signals that scientists hope to measure with LISA and other gravitational wave detectors are best described as "sounds." If we could hear them, here are some of the possible sounds of a gravitational wave generated by the movement of a small body inspiralling into a black hole.

Have a look here and listen:)Make sure your speakers are on.

This helps one to distinquish the purposes of what might have been driven as a being represented in the manifestation of GR as a spacetime fabric . Holographically, these dimensions consolidate not as a point particles(harmonically driven interpretations) but as a strings on the brane?

The "air," of this particle identification, is density articluated( KK tower on brane thickness?), by energy determinations that are dimensionally related? The only way for us to see this, is to derive some topological feature, that moves into geometrical interpetations of that same energy value determination?



Without these graphs to demonstarte particle movements from collisions, how would you define topologically this energy distribution?

There is more to be added here, to complete this posting, that will show up later.

I would like to tantilize the minds view of this landscape, with a rendition of the Hills are alive with the Sound of Music, and what this looks like, as portrayed by Les Houches.:)

Thursday, December 02, 2004

=> A Symmetry Breaking Phase Transition


If we understand what that point suggests, we understand well what the planck length has told us to consider, that even for the briefest of moment, the gamma ray burst would have revealled the CMB in its glory, and slowly we see how such consolidations would have materialize in the current temperatures values of that CMB today?

Below is a quote from Green that help me to recognize the energy values assigned in the KK Tower, to have understood the Radius of this circle, has to reveal symmetrical phases in the developement of that same cosmo. I needed a way in which to see how it was possible geommetrically to absorb the variations in the symmetries of events, in that same cosmo such points could have existed at any time? We needed to look for these locations. These blackholes?


How can a speck of a universe be physically identical to the great expanse we view in the heavens above?

The Elegant Universe, Brian Greene, pages 248-249





G -> H -> ... -> SU(3) x SU(2) x U(1) -> SU(3) x U(1)

Here, each arrow represents a symmetry breaking phase transition where matter changes form and the groups - G, H, SU(3), etc. - represent the different types of matter, specifically the symmetries that the matter exhibits and they are associated with the different fundamental forces of nature





Figure 8 [replaced by our Figure 2] is to be conceived three-dimensionally, the circles being cross-sections of spherical shells in the plane of the drawing. A man is climbing about on the huge spherical surface 1; by measurements with rigid rods he recognizes it as a spherical shell, i.e. he finds the geometry of the surface of a sphere. Since the third dimension is at his disposal, he goes to spherical shell 2. Does the second shell lie inside the first one, or does it enclose the first shell? He can answer this question by measuring 2. Assume that he finds 2 to be the smaller surface; he will say that 2 is situated inside of 1. He goes now to 3 and finds that 3 is as large as 1.

How is this possible? Should 3 not be smaller than 2? ...

He goes on to the next shell and finds that 4 is larger than 3, and thus larger than 1. ... 5 he finds to be as large as 3 and 1.

But here he makes a strange observation. He finds that in 5 everything is familiar to him; he even recognizes his own room which was built into shell 1 at a certain point. This correspondence manifests itself in every detail; ... He is quite dumbfounded since he is certain that he is separated from surface 1 by the intervening shells. He must assume that two identical worlds exist, and that every event on surface 1 happens in an identical manner on surface 5. (Reichenbach 1958, 63-64)


As you can see Brain Greene's quote at the top of the page was taken from the context of the paragraph below. One of the difficulties in a commoner like me, was trying to piece together how the develpement of the mind of string theorists, could have geometrically defined the relationships on a more abstract level. As strange as it may seem, I found other correpsondances that would have probably shaken the very foundation of our human thinking, that I could not resist looking and following these developements.

The familiar extended dimensions, therefore, may very well also be in the shape of circles and hence subject to the R and 1/R physical identification of string theory. To put some rough numbers in, if the familiar dimensions are circular then their radii must be about as large as 15 billion light-years, which is about ten trillion trillion trillion trillion trillion (R= 1061) times the Planck length, and growing as the universe explands. If string theory is right, this is physically identical to the familiar dimensions being circular with incredibly tiny radii of about 1/R=1/1061=10-61 times the Planck length! There are our well-known familiar dimensions in an alternate description provided by string theory. [Greene's emphasis]. In fact, in the reciprocal language, these tiny circles are getting ever smaller as time goes by, since as R grows, 1/R shrinks. Now we seem to have really gone off the deep end. How can this possibly be true? How can a six-foot tall human being 'fit' inside such an unbelievably microscopic universe? How can a speck of a universe be physically identical to the great expanse we view in the heavens above?
The Elegant Universe, Brian Greene, pages 248-249



I was attracted very early to what I seen in the Klien bottle, that such modelling of these concepts was very striking to me. How could one not have seen some correspondance to the way in which the torus could have been revealled? That one might have considered, such modelling in the shape of our universe, as the point emerged from the brane? This inside/out feature was very troubling to me and still is, that I have endeveaor to follow this line of thinking, alongside of other avenues that were less then appreciated by the scientist/theorist that I have refrained from mentioning it here now.

Figure 15-18b Conformal Changes

Saturday, November 20, 2004

Fool's Gold



Ludwig Boltzmann
(1844-1906)

In 1877 Boltzmann used statistical ideas to gain valuable insight into the meaning of entropy. He realized that entropy could be thought of as a measure of disorder, and that the second law of thermodynamics expressed the fact that disorder tends to increase. You have probably noticed this tendency in everyday life! However, you might also think that you have the power to step in, rearrange things a bit, and restore order. For example, you might decide to tidy up your wardrobe. Would this lead to a decrease in disorder, and hence a decrease in entropy? Actually, it would not. This is because there are inevitable side-effects: whilst sorting out your clothes, you will be breathing, metabolizing and warming your surroundings. When everything has been taken into account, the total disorder (as measured by the entropy) will have increased, in spite of the admirable state of order in your wardrobe. The second law of thermodynamics is relentless. The total entropy and the total disorder are overwhelmingly unlikely to decrease



However, don't be fooled! The charm of the golden number tends to attract kooks and the gullible - hence the term "fool's gold". You have to be careful about anything you read about this number. In particular, if you think ancient Greeks ran around in togas philosophizing about the "golden ratio" and calling it "Phi", you're wrong. This number was named Phi after Phidias only in 1914, in a book called _The Curves of Life_ by the artist Theodore Cook. And, it was Cook who first started calling 1.618...the golden ratio. Before him, 0.618... was called the golden ratio! Cook dubbed this number "phi", the lower-case baby brother of Phi.

How much wiser are we with the understanding that Curlies Gold told us much about what to look for in that One Thing?



The result is that the pinball follows a random path, deflecting off one pin in each of the four rows of pins, and ending up in one of the cups at the bottom. The various possible paths are shown by the gray lines and one particular path is shown by the red line. We will describe this path using the notation "LRLL" meaning "deflection to the left around the first pin, then deflection right around the pin in the second row, then deflection left around the third and fourth pins".


So, what is the value of PI, if a "point" on the brane holds previous information about the solid things we see in our universe now? Have we recognized the momentum states, represented by the KK Tower and the value of 1R as it arises from the planck epoch?

The statistical sense of Maxwell distribution can be demonstrated with the aid of Galton board which consists of the wood board with many nails as shown in animation. Above the board the funnel is situated in which the particles of the sand or corns can be poured. If we drop one particle into this funnel, then it will fall colliding many nails and will deviate from the center of the board by chaotic way. If we pour the particles continuously, then the most of them will agglomerate in the center of the board and some amount will appear apart the center. After some period of time the certain statistical distribution of the number of particles on the width of the board will appear. This distribution is called normal Gauss distribution (1777-1855) and described by the following expression: