Showing posts with label Helioseismology. Show all posts
Showing posts with label Helioseismology. Show all posts

Wednesday, September 14, 2011

Solar Weather

 

The Sun as viewed by the Solar Dynamics Observatory (SDO) in 193 angstrom. The verticle black area near the center is the coronal hole. Credit: NASA/SDO

› View larger UPDATE: 09.09.11 - A strong geomagnetic storm is in progress following the impact of a CME around 7:30 EDT on Sept. 9th. This could be the first of several hits from a series of CMEs expected to reach Earth during the weekend, related to the sunspot 1283 flares during the week. High-latitude sky watchers should be alert for auroras after nightfall.

A high-speed solar wind stream flowing from a large coronal hole should reach Earth on Sept. 11-12 sparking even more aurora.

Friday, April 01, 2011

Solar Dynamics Observatory Pick of the Week

(Click on Image for Larger Veiwing)


Then and Now

A side-by-side comparison of the Sun from precisely two years ago (left, from SOHO) to the present (right, from Solar Dynamics Observatory) dramatically illustrates just how active the Sun has become (Mar. 27-28, 2011). Viewed in two similar wavelengths of extreme ultraviolet light, the Sun now sports numerous active regions that appear as lighter areas that are capable of producing solar storms. Two years ago the Sun was in a very quiet period (solar minimum). The Sun's maximum period of activity is predicted to be around 2013, so we still have quite a ways to go.See: Solar Dynamics Observatory

Monday, January 03, 2011

Concepts Fade to Moments

Relativity, by M. C. Escher. Lithograph, 1953.


Of course I struggle "with" as to be free and in liberation of, as if to liberate oneself from all the constraints that we have applied to our circumstance, "by choice." Can this be done? Can a human being actually float and defy gravity? I mean, how ridiculous?:) No....not one of those meditating bouncing beans either.


So it is ever the exercise in my mind to clarify and to seek an understanding of something given that holds great meaning, and may help me to understand an experience that will not let go..
  
Lex III: Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales et in partes contrarias dirigi.


I was given an image in mind a long time ago that has stayed close to me even while I concertize myself to the very explanations that science has to offer as a basis of fact. That if one could in a sense "experience an opposing force of another body,"  that "through playing" one can come into what I had learn about the sensing of, as to blend with opposition. So as to move accordingly, while knowing that it could reach an extreme, I could in turn, turn it back on itself.

A body's mass also determines the degree to which it generates or is affected by a gravitational field. If a first body of mass m1 is placed at a distance r from a second body of mass m2, each body experiences an attractive force F whose magnitude is
 F = G\,\frac{m_1 m_2}{r^2} \, ,
where G is the universal constant of gravitation, equal to 6.67×10−11 kg−1 m3 s−2. This is sometimes referred to as gravitational mass (when a distinction is necessary, M is used to denote the active gravitational mass and m the passive gravitational mass). Repeated experiments since the 17th century have demonstrated that inertial and gravitational mass are equivalent; this is entailed in the equivalence principle of general relativity.


If you have ever expressed this physically, as in some Martial Art Form,  some competitive edge in reaction, then it will have been grokked at it's fullest, because you have blended the concept, with movement. It's as if structurally you are given lines to follow, but now have to extend those lines into actually movements,  from the mind, into the physical body.

View of inner parts of earth. # continental crust # oceanic crust # upper mantle # lower mantle # outer core # inner core * A : Mohorovičić discontinuity * B : Core-mantle boundary (Gutenberg discontinuity) * C : Lehmann discontinuity * Author : KronicTOOL * Software : Photoshop (Click on Image for larger viewing)


Now one would have to assume there is some mathematical basis to this exchange, yet I would rather focus on the exchange, as to define this in our life as something "sensual in movement and form." Is it perfectly systematical and symmetrical "that one side had to equal the other," in order for me to explain something about life as an expressive attitude about our dealings in society? How "justice might work" as a balancing scale? A balancing scale, about life and it's truths

Weight at Earth's Core

Would your body weigh more or less if standing on the Earth's core? What about above sea level?

As you go further inside the Earth, the force you feel due to gravity lessens, assuming the Earth is has a uniform density all the way throughout. Less force means you weigh less.

The reason is that the mass attracting you is inside a sphere, and is given by M = (4/3) * pi * (radius)3 * density

The force you feel is given by F = G * M * (your mass) / (radius)2

This means the net force is F = G * (4/3) * pi * radius * density * (your mass)

(pi=3.14159 and G = Newton's gravitational constant)

So as you go further inside the Earth, the radius is decreasing, so the force you feel is decreasing. The mass above you oddly enough doesn't contribute at all to any net force on your body.

In reality, of course, the Earth is not of uniform density, and there is a slight increase in force as you go down from the surface, before it begins to decrease again. Still, you weigh less standing on the Earth's core.

As far as what happens above sea level - you must realize that what happens outside the Earth is different from what happens inside the Earth. Inside, as you go deeper and deeper, the mass attracting you is less and less (as stated). Above sea level (the surface of the Earth, specifically) as you go further and further away, the mass remains constant (obviously), but the distance gets larger and larger, which makes the force (given by F = G * M(Earth) * M(you) / r2) smaller.

Notice that the formula that applies inside the Earth is different from the one that applies outside.

Dr. Louis Barbier
(October 2003)

So there is this ancient notion about gravity being the same at all places on the earth, that slighting the idea of such minute differences, one would have to say "that it is not the same" and hence has left oneself "back in time" before it could be understood that  the earth can be looked at in another way? That the length and distance to it's outer edge, as some inverse square law can be explained "of all things." Systemically explaining away,  by understanding that gravity "is the same according to the weight of" is not the same in all places.

Truth, is that slight difference?

So how does one break free inside, between the understanding of Feather and Iron, versus Feather and Heart?

Structurally, building any foundation there are exactitude's toward defining that space according to  dimensional attributes as to straight lines and angles of perception. If you actualize this in physical form, you may have constructed a building. There are rules according to Pythagorean theorem that allows you build square things.

The emergence of,  follows distinctive rules according to expression, artistically inclined, and for me, any point in space has such abilities. How structurally sound, any expressive display that for realities sake and purpose, we see where such expressions can arrive out of nothing? It was not logical and did not make sense to me that such expression can appear  out of nothing, to become something. So there is a bias here for me about what is being revealed in that point, as well as, of what is being revealed in that moment.


I am of course interested in the creative process of a scientist. I am trying to be as responsible as I can about our comparison of the Heart and Truth(Feather) on the same scale as to be lead by example so as to define this concept better as,  "If the heart was free from the impurities of sin," not as some religious perspective about good and evil, but about the slight differences in the changes in the gravity of earth, and about the object that occupies that space, as well as,  the inherent nature of that truth.


Composition of Earth's mantle in weight percent[16][citation needed]
Element Amount Compound Amount
O 44.8
Si 21.5 SiO2 46
Mg 22.8 MgO 37.8
Fe 5.8 FeO 7.5
Al 2.2 Al2O3 4.2
Ca 2.3 CaO 3.2
Na 0.3 Na2O 0.4
K 0.03 K2O 0.04
Sum 99.7 Sum 99.1



If I should point toward elemental considerations, each to its own,  then,  as some expression of some inverse square law toward that outer rim of physicality of earth's domain, then  it is with this insight that I look toward  the "weight" of the concept with which "entrance to freedoms of eternal life" are nothing more then the recognition of "what weighs" according to those truths and what we adopt in our own lives according to the choices we make. If I say Heart, then it is wise that such entrances into the human being, is but a mental thing about how we weight things according to our set of criteria according Truth?

Cross section of the whole Earth, showing the complexity of paths of earthquake waves. The paths curve because the different rock types found at different depths change the speed at which the waves travel. Solid lines marked P are compressional waves; dashed lines marked S are shear waves. S waves do not travel through the core but may be converted to compressional waves (marked K) on entering the core (PKP, SKS). Waves may be reflected at the surface (PP, PPP, SS).

Seismographs detect the various types of waves. Analysis of such records reveals structures within the Earth.

Friday, April 23, 2010

Solar Dynamics Observatory


SpaceCraft
  • The total mass of SDO at launch was 3000 kg (6620 lb); instruments 300 kg (660 lb), spacecraft 1300 kg (2870 lb), and fuel 1400 kg (3090 lb).
  • Its overall length along the sun-pointing axis is 4.5 m, and each side is 2.22 m.
  • The span of the extended solar panels is 6.25 m.
  • Total available power is 1500 W from 6.6 m2 of solar arrays operating at an efficiency of 16%
  • The high-gain antennas rotate once each orbit to follow the Earth.


***
April 21, 2010: Warning, the images you are about to see could take your breath away.
At a press conference today in Washington DC, researchers unveiled "First Light" images from NASA's Solar Dynamics Observatory, a space telescope designed to study the sun.


"SDO is working beautifully," reports project scientist Dean Pesnell of the Goddard Space Flight Center. "This is even better than we could have dreamed."


Launched on February 11th from Cape Canaveral, the observatory has spent the past two months moving into a geosynchronous orbit and activating its instruments. As soon as SDO's telescope doors opened, the spacecraft began beaming back scenes so beautiful and puzzlingly complex that even seasoned observers were stunned.
Source for story here


***
NASA's New Eye on the Sun Delivers Stunning First Images
04.21.10
View related briefing materials here.

NASA's recently launched Solar Dynamics Observatory, or SDO, is returning early images that confirm an unprecedented new capability for scientists to better understand our sun’s dynamic processes. These solar activities affect everything on Earth.

Some of the images from the spacecraft show never-before-seen detail of material streaming outward and away from sunspots. Others show extreme close-ups of activity on the sun’s surface. The spacecraft also has made the first high-resolution measurements of solar flares in a broad range of extreme ultraviolet wavelengths.

"These initial images show a dynamic sun that I had never seen in more than 40 years of solar research,” said Richard Fisher, director of the Heliophysics Division at NASA Headquarters in Washington. "SDO will change our understanding of the sun and its processes, which affect our lives and society. This mission will have a huge impact on science, similar to the impact of the Hubble Space Telescope on modern astrophysics.”




(From NASA:) A full-disk multiwavelength extreme ultraviolet image of the sun taken by SDO on March 30, 2010. False colors trace different gas temperatures. Reds are relatively cool (about 60,000 Kelvin, or 107,540 F); blues and greens are hotter (greater than 1 million Kelvin, or 1,799,540 F). Credit: NASA
(From NASA:) A full-disk multiwavelength extreme ultraviolet image of the sun taken by SDO on March 30, 2010. False colors trace different gas temperatures. Reds are relatively cool (about 60,000 Kelvin, or 107,540 F); blues and greens are hotter (greater than 1 million Kelvin, or 1,799,540 F). Credit: NASA

Source of Picture is taken from here

Monday, January 25, 2010

Poincaré Hyperbolic Disk

"Poincaré Hyperbolic Disk" from the Wolfram Demonstrations Project

See also:Poincaré Hyperbolic Disk

***

Hyperbolic Geometry


Geometric models of hyperbolic geometry include the Klein-Beltrami model, which consists of an open disk in the Euclidean plane whose open chords correspond to hyperbolic lines. A two-dimensional model is the Poincaré hyperbolic disk.

Weisstein, Eric W. "Hyperbolic Geometry." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HyperbolicGeometry.html
 
***






A computer-generated image showing the pattern of a p-mode solar acoustic oscillation both in the interior and on the surface of the sun. (l=20, m=16 and n=14.) Note that the increase in the speed of sound as waves approach the center of the sun causes a corresponding increase in the acoustic wavelength.

Helioseismology is the study of the propagation of wave oscillations, particularly acoustic pressure waves, in the Sun.

***

SOHO Reads the Solar Flares



Measurements of the Sun's oscillations provide a window into the invisible interior of the Sun allowing scientists to infer the structure and composition as well as the rotation and dynamics of the solar interior.

(Extreme ultraviolet Imaging Telescope) images the solar atmosphere at several wavelengths, and therefore, shows solar material at different temperatures. In the images taken at 304 Angstroms the bright material is at 60,000 to 80,000 degrees Kelvin. In those taken at 171, at 1 million degrees. 195 Angstrom images correspond to about 1.5 million Kelvin. 284 Angstrom, to 2 million degrees. The hotter the temperature, the higher you look in the solar atmosphere.


p-Modes

The mysterious source of these oscillations was identified by way of theoretical arguments in 1970 and confirmed by observations in 1975. The oscillations we see on the surface are due to sound waves generated and trapped inside the sun. Sound waves are produced by pressure fluctuations in the turbulent convective motions of the sun's interior. As the waves move outward they reflect off of the sun's surface (the photosphere) where the density and pressure decrease rapidly..


*** 
It's Effect on Earth




The plots on this page show the current extent and position of the auroral oval at each pole, extrapolated from measurements taken during the most recent polar pass of the NOAA POES satellite. "Center time" is the calculated time halfway through the satellite's pass over the pole.

Today's Space Weather

Any threat to communications is always seriously assessed. What we want to see on the other side of the Sun is whether any outburst is coming, that could seriously affect those same communications.

See Also:Backreaction: Reflections on the Sun

Thursday, May 22, 2008

Galactic Neutrino Communications

Galactic Neutrino Communication by John G. Learned, Sandip Pakvasa, A. Zee

We examine the possibility to employ neutrinos to communicate within the galaxy. We discuss various issues associated with transmission and reception, and suggest that the resonant neutrino energy near 6.3 PeV may be most appropriate. In one scheme we propose to make Z^o particles in an overtaking e^+ - e^- collider such that the resulting decay neutrinos are near the W^- resonance on electrons in the laboratory. Information is encoded via time structure of the beam. In another scheme we propose to use a 30 PeV pion accelerator to create neutrino or anti-neutrino beams. The latter encodes information via the particle/anti-particle content of the beam, as well as timing. Moreover, the latter beam requires far less power, and can be accomplished with presently foreseeable technology. Such signals from an advanced civilization, should they exist, will be eminently detectable in neutrino detectors now under construction.


I though I'd better fill in the spots about leaving comments in places, and not showing the significance of what I am pointing to by insinuation alone.

However, Kapusta also notes that a sufficiently advanced civilization might use pulses of neutrino superfluid for long-distance communications.
See:Cern Courier:The right spin for a neutrino superfluid



This of course requires that we look at what Joe Kapusta is actually doing at Cern. A comment that is "slight of hand," that shows what I am pointing too, is at the forefront of what is to come out of Cern at startup, along with the benefits of the Muon detection.

Well you had to know, left to my own devices, the ability to pick out the information that is setting the course for humanities future, is of course great interest to me. What descending people may see of this blog, or the "tightening of the circle" against the influences from here, is of course a close mindedness that always comes at a cost. The abilities I may harbour in other areas are less of a concern to me, knowing that what I am sharing is always the work at the edges of the periphery of our vision.

Vernon Barger: perspectives on neutrino physics Posted by dorigo

Barger then mentioned the idea of mapping the universe with neutrinos: the idea is that active galactic nuclei (AGN) produce hadronic interactions with pions decaying to neutrinos, and there is a whole range of experiments looking at this. You could study the neutrinos coming from AGN and their flavor composition.


So you look at the universe in "different ways" and never before had you thought to think that the constrains that are applied to self, is the limitation we settle our own points of view too. These are the "resounding factors" that work "like a Higgs" as these things gather around it. Life gathers around that "point of view." You've set the tone. Brain Cox on Ted.com, gives a nice example of Margaret Thatcher moving across the room.

I do not know how many times I can use the word like "tone" and not have found some relevance to the psychology of the individual, and then, see it's relation out there in terms of the Lagrangian. HelioSeismology's(see sidebar and click on sun, or, other abstract picture) and how it that we can predict such events within the very sun itself and by use of SOHO. This gives us an advantage and a warning system in place in relation to sunspot activity.

Ruffles in the Field

So easy then to speak on the significance of the emotive struggle, and then not to find a relation to the space around us. The context of gathering thoughts and things, as they are defined as some graviton gathering in a bulk perspective of space?

Why I glamour to the cause of those who hurt the attempts to see the world in different ways, and leave people to prognosticate to their own devices and to the call of, "let there be dragons." Gathered around then to the limitations of the thinking mind, set by others. We want people to push these boundaries, not be limited by them.



This picture is a copy of a "16 century woodcut" copied by Camille Flammarion in 1888.


The Flammarion woodcut. Flammarion's caption translates to "A medieval missionary tells that he has found the point where heaven and Earth meet..."
The widely circulated woodcut of a man poking his head through the firmament of a flat Earth to view the mechanics of the spheres, executed in the style of the 16th century cannot be traced to an earlier source than Camille Flammarion's L'Atmosphère: Météorologie Populaire (Paris, 1888, p. 163) [38]. The woodcut illustrates the statement in the text that a medieval missionary claimed that "he reached the horizon where the Earth and the heavens met", an anecdote that may be traced back to Voltaire, but not to any known medieval source. In its original form, the woodcut included a decorative border that places it in the 19th century; in later publications, some claiming that the woodcut did, in fact, date to the 16th century, the border was removed. Flammarion, according to anecdotal evidence, had commissioned the woodcut himself. In any case, no source of the image earlier than Flammarion's book is known.
See here for larger version "with caption" that has been translated above.

Pushing back the veil of our boundaries of thought are always of interest to me and the woodcut while speculated upon is my way of expressing this attempt.

See:

  • The Right Spin for a Neutrino Superfluid
  • Tuesday, May 20, 2008

    Decomposable Limits of Definitions

    With the discovery of sound waves in the CMB, we have entered a new era of precision cosmology in which we can begin to talk with certainty about the origin of structure and the content of matter and energy in the universeWayne Hu


    There are ways in which I have "perceived the landscape" that may be more appealing to one with Bohmian views? The way in which the analogy of sound is used has deep implications not only in the avenues of expression made about the examples herein shown, but with Helioseismology's as well, and the way in which we can interpret the sun as we look at it in a greater depth.

    Phil Warnell said...
    as chance serves to be nothing other then an incidental cause and relies on the existence of a realm of the “possible” and not one of the “probable”. By the way your mappings of hills and valleys are quite close to this vision as it represents the “wave” as one element of reality in the Bohmian view. All that remains to be added are the particles and the dynamics that exist in the wave that are relayed to or reacted to by the particles. The mystery does not exist only the ignorance and for some the truth of it being so.


    It's an exercise for me to look back over the ideas that had been going on in my mind, and observations being made about "energy stored" in a system. One would never have realized the similarities that "Colour of Gravity" implies, accepting the wave nature of the particle could have given perspective on the idea of consequence as we live our lives. Function humanly possible and the depth of these actions more tangible and though being subtle in the idea of a wave, has given matter states a place to reside given nodal definitions, just as the modular forms do, as they reside in the valleys.



    How is it one sees in terms of Lagrangian views when you look out into space now that such congregation of the graviton gathered for it's exemplary views on the nature of vibration.

    A Chladni plate consist of a flat sheet of metal, usually circular or square, mounted on a central stalk to a sturdy base. When the plate is oscillating in a particular mode of vibration, the nodes and anti-nodes set up form a complex but symmetrical pattern over its surface. The positions of these nodes and anti-nodes can be seen by sprinkling sand upon the plates;


    Potential

    * The mathematical study of potentials is known as potential theory; it is the study of harmonic functions on manifolds. This mathematical formulation arises from the fact that, in physics, the scalar potential is irrotational, and thus has a vanishing Laplacian — the very definition of a harmonic function.
    * In physics, a potential may refer to the scalar potential or to the vector potential. In either case, it is a field defined in space, from which many important physical properties may be derived.
    o Leading examples are the gravitational potential and the electric potential, from which the motion of gravitating or electrically charged bodies may be obtained.
    o Many entities in physics may be described as vector fields, but it is often easier to work with the corresponding potentials as proxies for the fields themselves. For instance, some force fields exert forces on a body equal to the product of the field and some invariant scalar property of the body, such as the mass or charge. As a body moves through such a force field, it rises and falls in the field's potential, gaining and losing energy through mechanical work. This exchange of energy allows the interaction to be analyzed in terms of simple laws of conservation of energy, without resorting to kinematics, which can be computationally difficult.
    o In electrochemistry there are Galvani potential and Volta potential.
    o The gravitational field is a notable example of such a field. The electric field also behaves this way in many cases, though in the general case it does not (see Electric potential and Faraday's Law).
    * Specific forces have associated potentials, including the Coulomb potential, the van der Waals potential, the Lennard-Jones potential and the Yukawa potential.


    Dr. Jenny's cymatic images are truly awe-inspiring, not only for their visual beauty in portraying the inherent res-ponsiveness of matter to sound (vibration) but because they inspire a deep re-cognition that we, too, are part and parcel of this same complex and intricate vibrational matrix -- the music of the spheres! These pages illumine the very principles which inspired the ancient Greek philosophers Heraclitus, Pythagoras and Plato, and cosmologists Giordano Bruno and Johannes Kepler.


    Potential Energy

    Potential energy is the energy which is stored. Potential energy exists when there is a force that tends to pull an object back towards some original position when the object is displaced. This force is often called a restoring force. The phrase 'potential energy' was coined by William Rankine.[1] For example, when a spring is stretched to the left, it exerts a force to the right so as to return to its original, un-stretched position. Or, suppose that a weight is lifted straight up. The force of gravity will try to bring it back down to its original position. The initial steps of stretching the spring and lifting the weight both require energy to perform. According to the principle of conservation of energy, energy cannot be created or destroyed; hence this energy cannot disappear. Instead it is stored as potential energy. If the spring is released or the weight is dropped, this stored energy will be converted into kinetic energy by the restoring force — elasticity in the case of the spring, and gravity in the case of the weight.

    The more formal definition is that potential energy is the energy of position, that is, the energy an object is considered to have due to its position in space. There are a number of different types of potential energy, each associated with a particular type of force. More specifically, every conservative force gives rise to potential energy. For example, the work of elastic force is called elastic potential energy; work of gravitational force is called gravitational potential energy, work of the Coulomb force is called electric potential energy; work of strong nuclear force or weak nuclear force acting on the baryon charge is called nuclear potential energy; work of intermolecular forces is called intermolecular potential energy. Chemical potential energy, such as the energy stored in fossil fuels, is the work of Coulomb force during rearrangement of mutual positions of electrons and nuclei in atoms and molecules. Thermal energy usually has two components: the kinetic energy of random motion of particles and potential energy of their mutual positions.

    As a general rule, the work done by a conservative force F will be



    where ΔPE is the change in the potential energy associated with that particular force. The most common notations for potential energy are PE and U. It is important to note that electric potential (commonly denoted with a V for voltage) is not the same as electric potential energy.




    We can't actually hear gravational waves, even with the most sophisticated equipment, because the sounds they make are the wrong frequency for our ears to hear. This is similar in principle to the frequency of dog whistles that canines can hear, but are too high for humans. The sounds of gravitional waves are probably too low for us to actually hear. However, the signals that scientists hope to measure with LISA and other gravitational wave detectors are best described as "sounds." If we could hear them, here are some of the possible sounds of a gravitational wave generated by the movement of a small body inspiralling into a black hole.




    See:

  • The Sound of Gravitational Waves

  • The Sound of the Landscape

  • Nodes and Anti-nodes

  • Ways IN which To Perceive Landscape?
  • Thursday, September 28, 2006

    SOLAR B and Van Ellen Belts

    SCIENCE GOALS OF SOLAR-B
    To determine the mechanisms responsible for heating the corona in active regions and the quiet Sun.




    There are of course reasons why you want to keep these perspectives together.

    While I have been extolling the virtues of Grace satelitte systems and climate it has been noticed that the developing framework of science here is also important and has been recognized in regards to what we don't see, and what happens in the Sun/Earth relation.


    Univ. of Iowa
    Space physicist James Van Allen, shown here in a University of Iowa photo, was best-known for discovering the radiation belts that now bear his name.


    For me, my "philosphical views" take me to the "basis of all life", and the valuation I have see in how we related things, emotively, mentally, and spiritually with the planet and the lifeforms on it.

    I couldn't help be amazed at the direction of my research over time, and the value the Van Ellen Belts serve as a model, to the human structure as a schema of what goes on in relation to earth's spherical body interactions.

    Shall I dare point out this thought?

    Shall I carry it over to the human being, or the computer screen, that is affected by....? Communciations, that are interrrupt by the value of what the Sun casts off in it's corona?

    Helioseismology

    The science studying wave oscillations in the Sun is called helioseismology. One can view the physical processes involved, in the same way that seismologists learn about the Earth's interior by monitoring waves caused by earthquakes. Temperature, composition, and motions deep in the Sun influence the oscillation periods and yield insights into conditions in the solar interior.


    I keep the "image" in the right index for such a reason.

    The Coming Season of the Aurora Borealis.



    Helioseismology became of interest to me, and the way in which we can percieve this relation. To be able topercieve when the events were to be most illuminating. So yes, I was always enthrall by what I could myself see in space, as I watched going into the fall months as the "aurora borealis danced" in the color displays. To know what was going on in that Sun/Earth relation.

    Last night, under the stars, we looked through my "construction technique of the roof" of the Gazebo, as it divided the night sky of stars into eight sections. We relaxed in the hotub, under a beautiful display of the cosmo.

    Wednesday, September 06, 2006

    Beyond the Dance of the Sun

    When we first start facing truth, the process may be frightening, and many people run back to their old lives. But if you continue to seek truth, you will eventually be able to handle it better. In fact, you want more! It's true that many people around you now may think you are weird or even a danger to society, but you don't care. Once you've tasted the truth, you won't ever want to go back to being ignorant!


    If we concretize thngs and leave no room, then other theories seem like a waste of time compared to our views? Is their no room, to see what perfection the sun has for us in it's rays?


    SOHO is a project of international cooperation between ESA and NASA


    A lot of times it is much easier to accept the cosmological review of the universe in such a grand scale why would we think we need something more then what is already here? What has the subject of helioseismology to do with the way Wayne Hu may look at his universe?

    One of the lessons I learnt as I tried to understand how they tied together the cosmological and quantum world, was to understand that relativity only spoke to that cosmo at large, and that to think anythng more, we would have to bring quantum perspectve in line with it.

    We talked lots about micro perspective and particle creation and understood that the beginning of the universe is tied directly to how we micro perceptively deal with it's origins?

    You may look at the sun and then realize the dynamical nature such quantum perception reveals as this process continues to unfold for us, as long as the energy is there to support it?

    Now that you have shifted your views to the "nature of the dance," I had some choreographies for you to consider.

    A Microperspective of the Cosmological world.

    A giddy craze was sweeping across Europe at the turn of the 17th century. The wealthy and the well-connected were hoarding things—strange things—into obsessive personal collections. Starfish, forked carrots, monkey teeth, alligator skins, phosphorescent minerals, Indian canoes, and unicorn tails were acquired eagerly and indiscriminately. Associations among these objects, if they were made at all, often reflected a collector's personal vision of an underlying natural "order". Critical taxonomy was rarely in evidence.


    I'll just point towards Greg Egans animations in this article.

    What are Holonomy figures

    While you are seeing these dynamics in context of cosmological reviews would you discard images of the quantum world?), how is abstractness(not real?). Holding many others in thoughts about geometrical propensities from a historical course in projective geometries?

    Withn context of a complete revolution, the noting of the solar body and polarity shifts are quite natural, yet, how would you not think of these geometrical dynamcis as how we might look at the "B field" and Cayley shapes?

    Just something to add to your thoughts as you concretize your views about let's say, quasars.



    I like the Latin name of Sun(Sol). Plato's use of "the sun" in the analogy of the Cave?

    And now, I said, let me show in a figure how far our nature is enlightened or unenlightened: --Behold! human beings living in a underground den, which has a mouth open towards the light and reaching all along the den; here they have been from their childhood, and have their legs and necks chained so that they cannot move, and can only see before them, being prevented by the chains from turning round their heads. Above and behind them a fire is blazing at a distance, and between the fire and the prisoners there is a raised way; and you will see, if you look, a low wall built along the way, like the screen which marionette players have in front of them, over which they show the puppets.


    Holding a "ideal or image" in mind "as to perfection," can be a guiding light in terms of what possibly "enlightenment" may do for society? What any one moment might do in our realization of what "truly rings the basic core of our understanding" about what we thought long and hard about.:)

    A "aha" moment perhaps? A "greater depth of seeing" beyond the "shadows on the walls."

    Friday, March 31, 2006

    Helioseismology




    Neutrino oscillation( 31 March 2006 Wikipedia)

    Neutrino oscillation is a quantum mechanical phenomenon whereby a neutrino created with a specific lepton flavor (electron, muon, or tau) can later be measured to have a different flavor. More specifically, the probability of measuring a particular flavor for a neutrino varies periodically as it propagates. Neutrino oscillation is of theoretical and experimental interest, as observation of the phenomenon implies nonzero neutrino mass.




    If you change the way you look at things sometimes, this change, helps you see in different ways that you might not have before? WMAP?

    Sounding the Sun: HelioseismologyP.B. Stark

    On the other hand, the Sun is essentially transparent to neutrinos, and to acoustic waves. Using acoustic energy, we can "see into the Sun" in a way that is quite similar to using ultrasound to image the interior of the human body.

    Oscillations of stars have been recognized since the late 1700s. The complicated pattern of the Sun's oscillation was first observed in 1960 by Robert Leighton, Robert Noyes, and George Simon.

    The explanation of the pattern in terms of trapped acoustic waves came in 1970-71 by Roger Ulrich, John Leibacher, and Robert Stein. This explanation predicted certain detailed features of the spectrum of solar oscillations that were confirmed by observations made in 1975 by Franz Deubner.

    The Sun is constantly vibrating in a superposition of acoustic normal modes (like the patterns with which a guitar string vibrates, but for a spherical body rather than a string). The characteristic period of oscillation is about 5 minutes. It takes on the order of a few hours for the energy to travel through the Sun. The velocity amplitude of solar p-modes is about 1 cm/s; the relative brightness variation is about 10-7.

    Mode lifetimes range from hours to months. Modes are typically excited many times per lifetime.


    Let's look at the origins of the images below. Have I described their origin?

    See:

  • Angels and Demons



  • The Devil, is in the details of a Mirror World?


    While the "true cast" is here? :)