Friday, October 07, 2005

Projective Geometries

Action at a Distance

Now ths statement might seem counterproductive to the ideas of projective geometry but please bear with me.


In physics, action at a distance is the interaction of two objects which are separated in space with no known mediator of the interaction. This term was used most often with early theories of gravity and electromagnetism to describe how an object could "know" the mass (in the case of gravity) or charge (in electromagnetism) of another distant object.

According to Albert Einstein's theory of special relativity, instantaneous action-at-a-distance was seen to violate the relativistic upper limit on speed of propagation of information. If one of the interacting objects were suddenly displaced from its position, the other object would feel its influence instantaneously, meaning information had been transmitted faster than the speed of light.


Test of the Quantenteleportation over long distances in the duct system of Vienna Working group Quantity of experiment and the Foundations OF Physics Professor Anton Zeilinger

Quantum physics questions the classical physical conception of the world and also the everyday life understanding, which is based on our experiences, in principle. In addition, the experimental results lead to new future technologies, which a revolutionizing of communication and computer technologies, how we know them, promise.

In order to exhaust this technical innovation potential, the project "Quantenteleportation was brought over long distances" in a co-operation between WKA and the working group by Professor Anton Zeilinger into being. In this experiment photons in the duct system "are teleportiert" of Vienna, i.e. transferred, the characteristics of a photon to another, removed far. First results are to be expected in the late summer 2002.



One of the first indications to me came as I looked at the history in regards to Klein's Ordering of Geometries. Now I must admit as a layman I am very green at this understanding but having jumped ahead in terms of the physics involved, its seems things have been formulating in my head, all the while, this underatnding in terms of this "order" has been lacking.

In Euclidean geometry, the basic notions are distances and angles. The transformations that preserve distances and angles are precisely the rigid motions. Effectively, Klein's idea is to reverse this argument, take the group of rigid motions as the basic object, and deduce the geometry. So a legitimate geometric concept, in Euclidean geometry, is anything that remains unchanged after a rigid motion. Right-angled triangle, for example, is such a concept; but horizontal is not, because lines can be tilted by rigid motions. Euclid's obsession with congruent triangles as a method of proof now becomes transparent, for triangles are congruent precisely when one can be placed on top of the other by a rigid motion. Euclid used them to play the same role as the transformations favored by Klein.

In projective geometry, the permitted transformations are projections. Projections don't preserve distances, so distances are not a valid conception projective geometry. Elliptical is, however, because any projection of an ellipse is another ellipse.


So spelt out here is one way in which this progression becomes embedded within this hisotry of geometry, while advancing in relation to this association I was somewhat lifted to question about Spooky action at a distance. WEll if such projective phase was ever considered then how would distance be irrelevant(this sets up the idea then of probabilistic pathways and Yong's expeirment)? There had to be some mechanism already there tht had not been considered? Well indeed GHZ entanglement issues are really alive now and such communication networks already in the making. this connection raised somewhat of a issue with me until I saw the the phrase of Penrose, about a "New Quantum View"? Okay we know these things work very well why would we need such a statement, so I had better give the frame that help orientate my perspective and lead to the undertanding of spin.



Now anywhere along the line anyone can stop such erudication, so that these ideas that I am espousing do not mislead. It's basis is a geometry and why this is important is the "hidden part of dirac's mathematics" that visionization was excelled too. It is strange that he would not reveal these things, all the while building our understanding of the quantum mechanical nature of reality. Along side of and leading indications of GR, why would not similar methods be invoked as they were by Einstein? A reistance to methodology and insightfulness to hold to a way of doing things that challenegd Dirac and cuased sleepless nights?



Have a look at previous panel to this one.

While indeed this blog entry open with advancements in the Test in Vienna, one had to understadn this developing view from inception and by looking at Penrose this sparked quite a advancement in where we are headed and how we are looking at current days issues. Smolin and others hod to the understnding f valuation thta is expeirmentally driven and it is not to far off to se ehosuch measure sare asked fro in how we ascertain early universe, happening with Glast determinations.

Quantum Cryptography

Again if I fast forward here, to idealization in regards to quantum computational ideas, what value could have been assigned to photon A and B, that if such entanglement states recognize the position of one, that it would immediately adjust in B?

Spooky At any Speed
If a pair of fundamental particles is entangled, measuring an attribute of one particle, such as spin, can affect the second particle, no matter how far away. Entanglement can even exist between two separate properties of a single particle, such as spin and momentum. In principle, single particles or pairs can be entangled via any combination of their quantum properties. And the strength of the quantum link can vary from partial to complete. Researchers are just beginning to understand how entanglement meshes with the theory of relativity. They have learned that the degree of entanglement between spin and momentum in a single particle can be affected by changing its speed ("boosting" it into a new reference frame) but weren't sure what would happen with two particles.



So there is this "distance measure" here that has raised a quandry in my mind about how such a projective geometry could have superceded the idea of "spooky things" and the issues Einstein held too.

So without understanding completely I made a quantum leap into the idealization in regards to "logic gates" as issues relevant to John Venn and introduced the idea around a "relative issues" held in my mind to psychological methods initiated by such entanglement states.

As far a one sees here this issue has burnt a hole in what could have transpired within any of us that what is held in mind, ideas about geomtires floated willy Nilly about. How would such "interactive states" have been revealled in outer coverings.

The Perfect Fluid

Again I am fstforwding here to help portray question insights that had been most troubling to me. If suych supersymmetrical idealizations arose as to the source and beginning of existance how shall such views implement this beginning point?

So it was not to unlikely, that my mind engaged further problems with such a view that symmetry breaking wouldhad tohave signalled divergence from sucha state of fluid that my mind encapsulated and developed the bubble views and further idealizations, about how such things arose from Mother.

What would signal such a thing as "phase transitions" that once gauged to the early universe, and the Planck epoch, would have revealled the developing perspective alongside of photon developement(degrees of freedom) and released information about these early cosmological events.

So I have advance quite proportinately from the title of this Blog entry, and had not even engaged the topological variations that such a leading idea could have advanced in our theoretcical views of Gluonic perceptions using such photonic ideas about what the tragectories might have revealled.

So indeed, I have to be careful here that all the while my concepts are developing and advanced in such leaps, the roads leading to the understanding of the measure here, was true to form and revalled issues about things unseen to our eyes.

It held visionistic qualities to geometric phases that those who had not ventured in to such entanglement states would have never made sense of a "measure in the making." It has it's limitation, though and why such departures need to be considered were also part of my question about what had to come next.

1 comment:

  1. Anonymous3:51 PM

    Lots of people haven't a clue what entanglement is all about. That's why this site is most helpful:

    Quantum Entanglement - Illustrated and without math.

    ReplyDelete