Showing posts with label Graviton. Show all posts
Showing posts with label Graviton. Show all posts

Saturday, November 26, 2005

Aristotle and the Logic of the Natural World

Aristotle's logic, especially his theory of the syllogism, has had an unparalleled influence on the history of Western thought. It did not always hold this position: in the Hellenistic period, Stoic logic, and in particular the work of Chrysippus, was much more celebrated. However, in later antiquity, following the work of Aristotelian Commentators, Aristotle's logic became dominant, and Aristotelian logic was what was transmitted to the Arabic and the Latin medieval traditions, while the works of Chrysippus have not survived.


First and formost one should be drawn to the very highlighted statement emblazoned at the top of this blog.

PLato saids,"Look to the perfection of the heavens for truth," while Aristotle saids "look around you at what is, if you would know the truth"


I have to move quick forward here and reveal why the thinking is quite intense in terms of what such logic would have been revealling by "looking around you at what is." While I recognize this basis implanted in the natural world, such divisions arises from what had already existed. What we could accesss, as tangible realities of the ideas around us. "From whence they come?"

So maybe a list of the maths involved so far? If we can wrap these maths then what had we done from the perspective of the natural world? Would such creation of a new math help here?:) I have an idea, but all that thngs that currently exist and that will exist are already here. We just have to access them right? So what would support such adventures froma philosophy that had endured to realites of the natural process from the logic of a math? What math would this be?:)

  • Algebra

  • Geometry

  • Trigonometry

  • Calculus (single variable)

  • Analytic Geometry

  • Linear Algebra

  • Ordinary Differential Equations

  • Partial Differential Equations

  • Methods of approximation

  • Probability and statistics

  • Real analysis

  • Complex analysis

  • Group theory

  • Differential geometry

  • Lie groups

  • Differential forms

  • Homology

  • Cohomology

  • Homotopy

  • Fiber bundles

  • Characteristic classes

  • Index theorems

  • Supersymmetry and supergravity

  • K-theory

  • Noncommutative geometry (NCG for short)



  • So the idea is that Plato and Aristotle stand together, as a basis of what is happening in our world now. Between those of science and the resulting needs for experimentation. The roads to lead from the underlying avenues of philosophical thought, that would include math develoepment.

    Now how is this possible you ask? How is it possible such logic coud have been so revealling of nature that we would strive to find it's meaning in patterns underlying the nature of this reality, are actually abstract rules of engagement, that had been developed through philosophical thought? How so?

    If we look at the number of mayh creations what uses are these when moved into the basis is of the natural world? Would you not think these modes of thinking would be tempered by such logic, that math would find it's birthing as to the need for such expressions from this natural world?

    So part of the realization is that the creation of the math had to have already existed in the forms of natures response, and that such access gained to these ideas, are worth noting as a means to what already existed in nature. That is my logic:)

    Experimentation

    So is there a method to the madness of all these tidbits of information that would wrap all of this in a easy way to divine the logic of the natural world? Is it beyond comprehension? I don't believe so, or why would I waste my time as a lay person, to move into this world of a higher standard of abstract thought and developing sciences, to wonder about the origins of the nature of this reality and the cosmolgical equivalent of asking what happened in that beginning of creation?

    Would it be so subtle that such logic woud have been driven to ask where this beginning was, and what roads had currently lead all these minds to this very question.

    Some act very safe, and walk safe ground, by what methods are currently tangible in our assessments, while other are quite adventurous. Some ask, that you stay in line, with current experimentation or suffer the wrath of deriving illusionary tales of ideas, that had not matured yet, as to the feasibility to what will express this logic of the natural world.


    Betrayal of Images" by Rene Magritte. 1929 painting on which is written "This is not a Pipe"


    So mine is a simple philosophy, that holds complex variables. A simple painting, that holds a thuosand words?:) To me Math is like that, yet I am deficient in all the logic it had to bear down on the natural processes in this world. While my collegues are simple folk, I recognized the diversity of that group that Lubos and Clifford belong too. This is the origins of my statement. I understand as well, about the crackpostism that follows aether rejuvenation, yet I see the graviton as a member of that spacetime fabric.

    Is this enough to speak on the creation and fabrications we like to embue to that natural world? Is it enough to understand these concepts, and find such roads leading too, are the very fringes of what is known and came from a brighter light that shines from behind us, to those shadows on the wall?

    Friday, November 25, 2005

    Charlatan's Who Use Graviton?

    Are Gravity people Charlatan's?:)I certainly don't think so.:)



    well this is a good perspective with which one could move forward and explain it for us lay people here? :)

    Lubos Motl:
    The graviton is, on the contrary, an example of a correct derivation from semiclassical gravity - a legitimate approximate unification of GR and QM. Its existence follows from the theories we have, even given some degree of ignorance of quantum gravity at higher energies, and at the semiclassical level, it is absolutely analogous to the photon.

    The only difference is the value of the spin, the geometric interpretation of the graviton, and ultraviolet divergences from loops.


    I might have had wrong ideas here about what the graviton as a force carrier "proposed?" To exemplified what gravity is...as a further extension of the theory of general relativity? Lubos sets it straight then on such joinings.

    This is the crucial difference between the dark energy and modified gravity hypothesis, since, by the former, no observable deviation is predicted at short distances," Dvali says. "Virtual gravitons exploit every possible route between the objects, and the leakage opens up a huge number of multidimensional detours, which bring about a change in the law of gravity."

    Dvali adds that the impact of modified gravity is able to be tested by experiments other than the large distance cosmological observations. One example is the Lunar Laser Ranging experiment that monitors the lunar orbit with an extraordinary precision by shooting the lasers to the moon and detecting the reflected beam. The beam is reflected by retro-reflecting mirrors originally placed on the lunar surface by the astronauts of the Apollo 11 mission.



    I myself might find it nice to have the origins of how this graviton came about. How one might be mistaken to have seen the bulk as a teaming with them(blackholes?), and such congregations telling, about places stronger then, while others are weaker.

    How telling is the photon as it travels through these spaces? What was the initial trigger that set things free as Hawking radiation? Some analogies there to consider as well:)

    So it would be nice then if one could find analogies that would sit well and sink deep. You know that the general public likes to think easy, and not finding relevant all the dressings of mathematical explanations. Or do they?

    Is it wrong to move so far ahead theoretically to be called a charlatan, by those who recognized the limitiations of experimentally proving it?

    Saturday, October 29, 2005

    The Mexican Hat and the Bed pan



    Couldn't help but think of "entrainment" and the Tibetan bell or singing bowls. But let me explain first before you jump the gun.

    Sea Biscuit?

    No, just a interesitng perspective on it's uses?


    Well, I'll have you know I was First Triangle in our high school orchestra.


    I thought Sean would have more of affinity with the triangle? Try as I might, I looked through his ole site for that triangle in reference to one of his entries, and since no search function was readily availiable I gave up on that.

    But the point I would be making here, that in light of the concert hall and all it's music, what kind of dynamcial view could have been envisioned, in the way sound would reverberate throughout this hall?

    I mean the "mexican hat as a bed pan" and the idea of a "small cylinder" seem's a interesting way to have envisoned dream comparsions of vibrations? At least, that' what I saw as I hit the edge of the bed pan and the reality of discete functions became blurred. Okay enough:)

    Savas Dimopoulos:Here’s an analogy to understand this: imagine that our universe is a two-dimensional pool table, which you look down on from the third spatial dimension. When the billiard balls collide on the table, they scatter into new trajectories across the surface. But we also hear the click of sound as they impact: that’s collision energy being radiated into a third dimension above and beyond the surface. In this picture, the billiard balls are like protons and neutrons, and the sound wave behaves like the graviton.

    http://www.sciencewatch.com/may-june2001/sw_may-june2001_page4.htm

    I mean we have progressed some in terms of the definitions of "sound" in the CMB. So just going with the idea that sound could have other explanatory virtues, is always quite nice from the views of Plato's Academy.

    So with that dynamical view of the bulk what would sound look like from a gravitonic perception? Is this so wrong, to peg the triangle guy this way??

    Tuesday, October 25, 2005

    Improve Classic Clock Tests



    I think one had to understand what increasing complexity means in our universe? What relation to time would have been of value here while pointing to the quantum levels??

    While there must be some pervasive view overlooking all of our ideals about gravity considerations and bulk perspective, the consistancy of the return too, and resulting complexities in expression, would be very hard to define, if such probabilistic manifestation of matter distinctions were to arise from some "specific rotational values?" We have a image of the developement of our cosmo, so what pray tell would enlist these rotational values to become some other universe and not this one? This "information" had to exist, as it's collapse and consequencal negativity expression manifested?



    At the time such "anti-situations" are raised towards the very idea of findng a means to see such insight into a value issuing from this collapse. What would intiate such "jets" to emerge from a cosmological event or a quantum one??


    This relationship between matter particles and force carriers is called supersymmetry.


    If such a view was consistent within the framework of the "collapsing event" then how would supersymmetrical valuation ever be held to the creation of these "negative values"? It's beginning? So where would the information rest in the bulk. It's condensive features in graviton gatherings indicate such a value would have been triggerred in this collapse.




    Of course we deal with historical perspectives first so we get a good sense here.

    The two clocks depicted in the official logo for the CPT '04 meeting are related by the parity transformation (P). The inversion of black and white represents charge conservation (C), while time reversal (T) is represented by the movement of the hands of the clock in opposite directions.


    Of course this starts out as a philosphical journey but it gets more detailed as time moves on, and we look for such issues in subject Sean writes above? From whence all things come and at whch point would a pendulum point of swing detail the very nature of such oscillating features? So if ones understand flat euclidean plane where no gravity exists, then what value would arise to a dynamcial view of the nature GR sets our minds too?


    The same picture can be generalized to quantum field theory (QFT), the ground state becoming the vacuum state, and the role of the little man being played by ourselves. This means that there may exist symmetries of the laws of nature which are not manifest to us because the physical world in which we live is built on a vacuum state which is not invariant under them. In other words, the physical world of our experience can appear to us very asymmetric, but this does not necessarily mean that this asymmetry belongs to the fundamental laws of nature. SSB offers a key for understanding (and utilizing) this physical possiblity.


    Friday, October 14, 2005

    Art and Science

    This is going to be quite the blog entry because as little a response might have been from Clifford's links to artistic imagery and it's relation to science. I definitely have more to say.

    So being short of time, the entries within this blog posting will seem disjointed, but believe me it will show a historical significance that one would not have considered had one not seen the relevance of art and it's implications along side of science.

    Did Picasso Know About Einstein

    Arthur Miller
    Miller has since moved away from conventional history of science, having become interested in visual imagery through reading the German-language papers of Einstein, Heisenberg and Schrödinger - "people who were concerned with visualization and visualizability". Philosophy was an integral part of the German school system in the early 1900s, Miller explains, and German school pupils were thoroughly trained in the philosophy of Immanuel Kant.


    Piece Depicts the Cycle of Birth, Life, and Death-Origin, Identity, and Destiny by Gabriele Veneziano
    The Myth of the Beginning of Time

    The new willingness to consider what might have happened before the big bang is the latest swing of an intellectual pendulum that has rocked back and forth for millenia. In one form or another, the issue of the ultimate beginning has engaged philosophers and theologians in nearly every culture. It is entwined witha grand set of concerns, one famosly encapsulated in a 1897 painting by Paul Gauguin: D'ou venons? Que sommes-nous? Ou allons-nous?
    Scientific America, The Time before Time, May 2004.



    Sister Wendy's American Masterpieces":

    "This is Gauguin's ultimate masterpiece - if all the Gauguins in the world, except one, were to be evaporated (perish the thought!), this would be the one to preserve. He claimed that he did not think of the long title until the work was finished, but he is known to have been creative with the truth. The picture is so superbly organized into three "scoops" - a circle to right and to left, and a great oval in the center - that I cannot but believe he had his questions in mind from the start. I am often tempted to forget that these are questions, and to think that he is suggesting answers, but there are no answers here; there are three fundamental questions, posed visually.

    "On the right (Where do we come from?), we see the baby, and three young women - those who are closest to that eternal mystery. In the center, Gauguin meditates on what we are. Here are two women, talking about destiny (or so he described them), a man looking puzzled and half-aggressive, and in the middle, a youth plucking the fruit of experience. This has nothing to do, I feel sure, with the Garden of Eden; it is humanity's innocent and natural desire to live and to search for more life. A child eats the fruit, overlooked by the remote presence of an idol - emblem of our need for the spiritual. There are women (one mysteriously curled up into a shell), and there are animals with whom we share the world: a goat, a cat, and kittens. In the final section (Where are we going?), a beautiful young woman broods, and an old woman prepares to die. Her pallor and gray hair tell us so, but the message is underscored by the presence of a strange white bird. I once described it as "a mutated puffin," and I do not think I can do better. It is Gauguin's symbol of the afterlife, of the unknown (just as the dog, on the far right, is his symbol of himself).

    "All this is set in a paradise of tropical beauty: the Tahiti of sunlight, freedom, and color that Gauguin left everything to find. A little river runs through the woods, and behind it is a great slash of brilliant blue sea, with the misty mountains of another island rising beyond Gauguin wanted to make it absolutely clear that this picture was his testament. He seems to have concocted a story that, being ill and unappreciated (that part was true enough), he determined on suicide - the great refusal. He wrote to a friend, describing his journey into the mountains with arsenic. Then he found himself still alive, and returned to paint more masterworks. It is sad that so great an artist felt he needed to manufacture a ploy to get people to appreciate his work. I wish he could see us now, looking with awe at this supreme painting.
    "


    Art Mirrors Physics Mirrors Art, by Stephen G. Brush


    Arthur Miller addresses an important question: What was the connection, if any, between the simultaneous appearance of modern physics and modern art at the beginning of the 20th century? He has chosen to answer it by investigating in parallel biographies the pioneering works of the leaders of the two fields, Albert Einstein and Pablo Picasso. His brilliant book, Einstein, Picasso, offers the best explanation I have seen for the apparently independent discoveries of cubism and relativity as parts of a larger cultural transformation. He sees both as being focused on the nature of space and on the relation between perception and reality.

    The suggestion that some connection exists between cubism and relativity, both of which appeared around 1905, is not new. But it has been made mostly by art critics who saw it as a simple causal connection: Einstein's theory influenced Picasso's painting. This idea failed for lack of plausible evidence. Miller sees the connection as being less direct: both Einstein and Picasso were influenced by the same European culture, in which speculations about four-dimensional geometry and practical problems of synchronizing clocks were widely discussed.

    The French mathematician Henri Poincaré provided inspiration for both Einstein and Picasso. Einstein read Poincaré's Science and Hypothesis (French edition 1902, German translation 1904) and discussed it with his friends in Bern. He might also have read Poincaré's 1898 article on the measurement of time, in which the synchronization of clocks was discussed--a topic of professional interest to Einstein as a patent examiner. Picasso learned about Science and Hypothesis indirectly through Maurice Princet, an insurance actuary who explained the new geometry to Picasso and his friends in Paris. At that time there was considerable popular fascination with the idea of a fourth spatial dimension, thought by some to be the home of spirits, conceived by others as an "astral plane" where one can see all sides of an object at once. The British novelist H. G. Wells caused a sensation with his book The Time Machine (1895, French translation in a popular magazine 1898-99), where the fourth dimension was time, not space.


    The Search for Extra Dimensions
    OR Does Dzero Have Branes?


    by Greg Landsberg
    Theorists tell us that these extra spatial dimensions, if they exist, are curled up, or "compactified."In the example with the ant, we could imagine rolling the sheet of paper to form a cylinder. If the ant crawled in the direction of curvature, it would eventually come back to the point where it started--an example of a compactified dimension. If the ant crawled in a direction parallel to the length of the cylinder, it would never come back to the same point (assuming a cylinder so long so that the ant never reaches the edge)--an example of a "flat"dimension. According to superstring theory, we live in a universe where our three familiar dimensions of space are "flat,"but there are additional dimensions, curled up so tightly so they have an extremely small radius


    Issues with Dimensionality

    "Why must art be clinically “realistic?” This Cubist “revolt against perspective” seized the fourth dimension because it touched the third dimension from all possible perspectives. Simply put, Cubist art embraced the fourth dimension. Picasso's paintings are a splendid example, showing a clear rejection of three dimensional perspective, with women's faces viewed simultaneously from several angles. Instead of a single point-of-view, Picasso's paintings show multiple perspectives, as if they were painted by a being from the fourth dimension, able to see all perspectives simultaneously. As art historian Linda Henderson has written, “the fourth dimension and non-Euclidean geometry emerge as among the most important themes unifying much of modern art and theory."

    And who could not forget Salvador Dali?

    In geometry, the tesseract, or hypercube, is a regular convex polychoron with eight cubical cells. It can be thought of as a 4-dimensional analogue of the cube. Roughly speaking, the tesseract is to the cube as the cube is to the square.

    Generalizations of the cube to dimensions greater than three are called hypercubes or measure polytopes. This article focuses on the 4D hypercube, the tesseract.



    So it is interesting nonetheless isn't it that we would find pictures and artists who engaged themselves with seeing in ways that the art seems capable of, while less inclinations on the minds to grasp other opportunities had they had this vision of the artist? They of course, added their flavor as Salvador Dali did in the painting below this paragraph. It recognize the greater value of assigning dimensionality to thinking that leads us even further had we not gone through a revision of a kind to understand the graviton bulk perspective could have so much to do with the figures and realization of what dimensionality means.



    So while such lengths had been lead to in what curvature parameters might do to our views of the cosmos, it wasn't to hard to envision the realistic valuation of graviton as group gatherings whose curvature indications change greatly on what we saw of the energy determinations.

    Beyond forms

    Probability of all events(fifth dimension) vvvvvvvvvvvvv Future-Time vvvvvvvvvvv | vvvvvvvvv | vvvvvvv | vvvvv | vvv | v | <<<<<<<<<<<<>>>>>>>>>>>now -------| flash fourth dimension with time | A | AAA | AAAAA | AAAAAAA | AAAAAAAAA | AAAAAAAAAAA | AAAA ___AAAAA | AAAAA/__/|AAAAA____Three dimension AAAAAA|__|/AAAAAA | AAAAAAAAAAAAAAAAAAA | | ___ | /__/ brane--------two dimension \ / .(U)1=5th dimension


    I hope this helps explain. It certainly got me thinking, drawing it:)

    Similarly a hypercube’s shadow cast in the third dimension becomes a cube within a cube and, if rotated in four dimensions, executes motions that would appear impossible to our three-dimensional brains.

    So hyperdimenionsal geometry must have found itself describable, having understood that Euclid's postulate leads to the understanding of the fifth. A->B and the field becomes a interesting idea, not only from a number of directions(Inverse Square Law), dimensional understanding of a string, that leads from the fifth dimensional perspective is a point, with a energy value that describes for us the nature of curvature, when extended to a string length(also becomes the point looking at the end, a sphere from a point, and at the same time a cylinder in its length).

    In looking at Einsteins fourth dimension of time, the idea of gravity makes its appearance in respect of dimension.

    So how is it minds like ours could perceive a fifth dimensional perspective but to have been lead to it. It is not always about points( a discrete perspective)but of the distance in between those points. We have talked about Gauss here before and Riemann.

    Who in Their Right Mind?


    Penrose's Influence on Escher
    During the later half of the 1950’s, Maurits Cornelius Escher received a letter from Lionel and Roger Penrose. This letter consisted of a report by the father and son team that focused on impossible figures. By this time, Escher had begun exploring impossible worlds. He had recently produced the lithograph Belvedere based on the “rib-cube,” an impossible cuboid named by Escher (Teuber 161). However, the letter by the Penroses, which would later appear in the British Journal of Psychology, enlightened Escher to two new impossible objects; the Penrose triangle and the Penrose stairs. With these figures, Escher went on to create further impossible worlds that break the laws of three-dimensional space, mystify one’s mind, and give a window to the artist heart.


    Penrose and Quanglement


    Order and Chaos, by Escher (lithograph, 1950)

    Saturday, September 24, 2005

    The Total Field

    For me this title above strikes a cord somehow in the struggle and regard, leading in our comprehensions to the extension of the standard model. By bringing gravity into the picture and descibing the graviton teaming in the bulk of expression.



    The general theory of relativity is as yet incomplete insofar as it has been able to apply the general principle of relativity satisfactorily only to grvaitational fields, but not to the total field. We do not yet know with certainty by what mathematical mechanism the total field in space is to be described and what the general invariant laws are to which this total field is subject. One thing, however, seems certain: namely, that the general principal of relativity will prove a necessary and effective tool for the solution of the problem for the toal field.
    Out of My Later Years, Pg 48, Albert Einstein

    Well now the reason why this paragraph strikes such a chord with me, has everything to do with the information that I have progressed through, in order to reach this vision Lisa Randall does not think one asa layman is capable of? Now I should be fair here, and I am not judging personalities, but the essence of the statements about "observation" and "vision".

    Lisa Randall:
    Most people think of "seeing" and "observing" directly with their senses. But for physicists, these words refer to much more indirect measurements involving a train of theoretical logic by which we can interpret what is "seen."


    Now in my quest for comprehension, such building has gone on in my conceptual foundations, are ones that we are carefully lead through in theoretical developement. Ah so we see where such extensions have gone beyond th elayan's view then? To have such things of expression, in the computer world, as numerical relativity, is a nice way in which to round out the data and experience. But as she points out, we are talking about Physicists.

    Lisa Randall:
    Remarkably, we can potentially "see" or "observe" evidence of extra dimensions.


    Those Russion Dolls

    Well now. I have this strange picture in my head about "time variable images" we seen of the earth in measure, and such a statement above, by Einstein. It is information on the "total field" that struck immediately in my mind about all those things that lead one through to the comprehension of general relativity. It is indeed, about "gravity" and it indeed seen in the larger aspects of the cosmological scale. But then, how would such a thing take us down to scale in our look at quantum mechanical views. Other components of earth that efect time avraiableness and we are indeed driving this image of scale down to the component parts of our earth?



    So I have this picture of earth here. I know its not so pretty, but it describes in greater context the world as you have not seen it before. This advancement in observation, is much more inherent in our culture now, that the grade with which we assign physicists and the lay persons, are really never that far apart. What was accomplished, was that leading infomration and theorectical developement paved the way for an "illustrous view" as to those I impart now. They were already there but never seen in context of each other and as a total field.



    So now as I think about Lisa's words, I recognize more deeply the sigificance of how far our vision has been taken, not just in terms of the physicists view, but of how far we had been taken in layman terms as well. What then else retains this view about the total field that I had not show and in it writing, other images come to mind as follows.

    So developing this sense in terms of relativity and views of Einstein in regards to the total filed had consequences in my mind about how we view things in new ways.

    If conceived as a series of ever-wider experiential contexts, nested one within the other like a set of Chinese boxes, consciousness can be thought of as wrapping back around on itself in such a way that the outermost 'context' is indistinguishable from the innermost 'content' - a structure for which we coined the term 'liminocentric'.




    Now it has to be understood, that the total field is one which has inclusiveness such as these boxes indicate, that such views of our blue marble earth, do not consider as we lay "one" over the top of another. Such extensions to our views of earth, lead me to understand the complexity of these views in ways that we had not considered before, and with such a synoptical view, what indeed shall this total field say about earth? So that's where I am at. Much like, Glast, in it's own synoptical view about the range of our vision.

    So we have this frame of reference now to consider. Our apprehensions about earth(some who share the climatic valuation) that we can now say, that Inverse square law contains information in relation to "these boxes". That if taken to "new heights" our climatic valuations about this new view of earth, how shall we judge now, that such Kaluza Klein modes held in relation to the expanding nature of this point(circle) can have energy valuations assigned right from the supersymmetrical vision ofa beginning, to have phases (symmetry breaking)with which our views have been generated, in what we see of earth now?



    While indeed then, "light had been joined to gravity" how shall we wrap again the views of this earth, in what is now a teaming in this new place, where differences exist in our views. Strengths and weaknesses, are measures in this new abstracted view?

    So we have this total view in mind, about the "total field" and I have taken us to a a abstracted space within the idealization of what exists here now as earth arose from some beginning point. To what the earth encapsulates.

    How we view then such comsological events has a greater story as we look deep into space, and see the valution of those same cosmological events streaming past all things in existance, that such a gravitational view has arrows pointing in a certain direction. To ideas about comsological expansion and such. This has gone to far I think about our place in this new abstracted view of the universe:)

    Monday, August 15, 2005

    Explanation on the Landscape


    Photograph by Clifford Johnson


    While on Cosmic Invariance, Clifford brings a much needed attempt at explanation on how we view the landscape. I'll have to spend sometime going over this becuase it is a critical position and difference between two facets of thinking within the scientific community. Susskind and Lee Smolin have lead this discussion repeatedly before, and I find this continued effort, a nice way to continue to peer into.

    Some response helps too, and indicates our attention to the reasons why such positions are adopted. I find this very important in understanding why these respective positions, are taken and what possibly might issue from the stated position.

    Lee Smolin on Aug 15th, 2005 at 9:01 am :
    Method A: ASSUME 1) that there is a real non-perturbative theory behind all the approximate calculations and 2) that it is relevant for nature. Then interpret various results, having to do with dualities, the landscape etc given these assumptions.

    Method B: Look for evidence that the two assumptions of method A are true.

    One evaluates results very differently, depending on whether one uses method A or method B. There is nothing wrong with using Method A from time to time, so long as the assumptions are made explicit, and the risks that are thereby taken on explicitly acknowledged. One can learn things that will turn out be true about the theory, if 1) is true, or about nature, if 2) is true. But one cannot do science only or even mostly by Method A, no matter how promising an idea may seem. What I find disturbing in your essay, and in many conversations with string theorists is that they reason by Method A but they do not state explicitly their assumptions. This puts me often in the uncomfortable situation, when discussing with a string theorist, of having to add, “but there is one more possibility, the theory might be wrong.”


    So Jacque Distler adds his views and I heard he walked out on the conference? So am I to take it that this very topic tries his impatience, that he might have seen bias raise it's ugly head, or that holding a position like Peter Woit's put them the odd man out? I think Lee is doing a fine Job of trying to keep cohesion amongst the scientists that we do not have to worry, about such antics, as they eventually come around to accept the debate?:)

    Jacques Distler on Aug 15th, 2005 at 10:52 am
    Lee was, most recently, at Strings 2005, and he does hang out with his stringy colleagues at Perimeter.

    I don’t know whether that counts for you, but it does for me.


    The Layman's view

    As stated before in how Clifford presents his perspective I immediately noticed a corresponding image in my mind in terms of hypherysics.



    Now you have to forgive my laymen perspective because when they start talking about the landscape, I tend to see this completed image in my mind, much as I have relayed it here(Are Scientists Currently Censoring Debate on Global Warming). Although it seeks to detail the environment as a relative view on such perspective as landscape, I thought I would see how Cliiford's view and the resulting talks might have been understood from my own perspective.

    Unfortunately I do not have the guidance other then what I can intuitive garner in my continue development, so I hope I do other justice and do not degrade this topic in any way.


    The ground state of a three-dimensional box of dimension L can be obtained by setting n=1 for all three dimensions, giving an energy three times the ground state energy of the one-dimensional box. The ground state for the three-dimensional box would be


    So when one looks at these images of the landscape what is being said here, I tried to garner a overall perspective as I did in the "censoring debate on Global warming".



    I give a direct link to the picture that had been presented early on in my research, because I tended to see this split very early on as a positional one worth taking note. But somewhere along the line my thinking changed as I saw the vast differences and capabilities of the bulk possibilities in terms of graviton scattering and condensing feature.

    So transferring this thinking to global differences help me to continue to see how Clifford or string theory approach to landscape development might be seen. I rest easy that there are those better qualified, but this has not limited what I have now been able to see. As others will see in the landscape interpretation.

    Friday, July 29, 2005

    How the Natural World has Been Painted

    While some are intrigued by EM waves, I have a fascination for GW and the way we can portrait the natural world, we do not see.



    The sounds of gravitional waves are probably too low for us to actually hear. However, the signals that scientists hope to measure with LISA and other gravitational wave detectors are best described as "sounds." If we could hear them, here are some of the possible sounds of a gravitational wave generated by the movement of a small body inspiralling into a black hole.

    There is a lesson in this, when you learn to hear what billiard balls sound like, and what the resulting "click" could represent.

    Savas Dimopoulos

    Here’s an analogy to understand this: imagine that our universe is a two-dimensional pool table, which you look down on from the third spatial dimension. When the billiard balls collide on the table, they scatter into new trajectories across the surface. But we also hear the click of sound as they impact: that’s collision energy being radiated into a third dimension above and beyond the surface. In this picture, the billiard balls are like protons and neutrons, and the sound wave behaves like the graviton.


    It helps you to see the world as a very much different place then the one we are accustomed too.

    Can these be applied to such romantic reasoning, that we are encouraged to poetry and other things, where such idealizations, are battling for whose interpretation is right? What portraits are these that there is no romm for them to hang for observation? A glimpse of Mona Lisa's smile, that if taken from various perspective it would seem to be always looking at you? How could you distance yourself, if you are what you think?

    Quantum Gravity

    The jump from conventional field theories of point-like objects to a theory of one-dimensional objects has striking implications. The vibration spectrum of the string contains a massless spin-2 particle: the graviton. Its long wavelength interactions are described by Einstein's theory of General Relativity. Thus General Relativity may be viewed as a prediction of string theory!


    Imagine the very canvas is string theories very fabric of the cosmos:)


    J. Metzinger Le Gouter/Teatime (1911)


    "Dynamical triangulations" and such, that such a painting will explore the greater potential of perception, from varying perspectives?

    Art Mirrors Physics Mirrors Art

    The French mathematician Henri Poincaré provided inspiration for both Einstein and Picasso. Einstein read Poincaré's Science and Hypothesis (French edition 1902, German translation 1904) and discussed it with his friends in Bern. He might also have read Poincaré's 1898 article on the measurement of time, in which the synchronization of clocks was discussed--a topic of professional interest to Einstein as a patent examiner. Picasso learned about Science and Hypothesis indirectly through Maurice Princet, an insurance actuary who explained the new geometry to Picasso and his friends in Paris. At that time there was considerable popular fascination with the idea of a fourth spatial dimension, thought by some to be the home of spirits, conceived by others as an "astral plane" where one can see all sides of an object at once. The British novelist H. G. Wells caused a sensation with his book The Time Machine (1895, French translation in a popular magazine 1898-99), where the fourth dimension was time, not space.

    Thursday, July 07, 2005

    B Field Manifestations

    Ah what the heck......I'll bite....let the skeptics converge in a harmonic convergence:)

    Nigel Hitching

    Sylvester Surfaces and the B field?

    Are you a "gold fish" or a "Ant world person?" Are you a pigeon? Have you sent your vision into the things of nature, to explore it's potential in other ways?



    Figure 2. Clebsch's Diagonal Surface: Wonderful


    Rupert SheldarkeThe morphic fields of mental activity are not confined to the insides of our heads. They extend far beyond our brain though intention and attention. We are already familiar with the idea of fields extending beyond the material objects in which they are rooted: for example magnetic fields extend beyond the surfaces of magnets; the earth’s gravitational field extends far beyond the surface of the earth, keeping the moon in its orbit; and the fields of a cell phone stretch out far beyond the phone itself. Likewise the fields of our minds extend far beyond our brains.

    The Faraday's, the Gauss's, the Reimanns learnt to see in other ways? Does this imply some spooky valuation beyond the confines of the brain's home?

    "The gravitons behave like sound in a metal sheet," says Dvali. "Hitting the sheet with a hammer creates a sound wave that travels along its surface. But the sound propagation is not exactly two-dimensional as part of the energy is lost into the surrounding air. Near the hammer, the loss of energy is small, but further away, it's more significant."


    So is it just a brain thingy, or is this "field real?" Some were not so unintelligent to "refute the aether" at one time. For we now understand what exists in the real spacetime valuations, beyond what is held to the brane, and see bulk manifestation, as real and populated. AS a extension, beyond those surfaces.

    The Sound of Billiard Balls

    Savas Dimopoulos:
    Here’s an analogy to understand this: imagine that our universe is a two-dimensional pool table, which you look down on from the third spatial dimension. When the billiard balls collide on the table, they scatter into new trajectories across the surface. But we also hear the click of sound as they impact: that’s collision energy being radiated into a third dimension above and beyond the surface. In this picture, the billiard balls are like protons and neutrons, and the sound wave behaves like the graviton.


    Are we execising the brains ability to get this toposense and geoemtrical revelation beyond straight lines and distances between points?

    So what is a chaldni plate?:) helps you to see how sound is of value beyond the confines Faradays magnetic field lines, as real effects of that same magnet, and resonant coupling points. Exercising the potential of banging metal, helps the mind point to other places too. Playing pool, does too?:)

    Tuesday, June 14, 2005

    Gravity Leakage: Energy Accounted for in LHC Predictions?

    If people were going to do test runs and predictions, how would they fair before the process is up and running?

    Lubos Motl:
    What does he say about the cosmological constant? Well, it does not exist. The accelerating expansion of the Universe is, Dvali argues, due to a "leak of gravitational force" into extra dimensions that only appears at very long distances.


    So how is this supposed to support views of the space allocated to the views of a bulk with possibilties of expression, if contained in the graviton gatherings? How would high energy support the new visionary aspects of langrange points knowing that Gia has a way to measure. Would this support Gia's views?

    Leaking Gravity May Explain Cosmic Puzzle
    By Sara Goudarzi
    Special to SPACE.com
    posted: 28 February 2005



    Dvali would modify the theory of gravity so that the universe becomes self-accelerating, eliminating the need for dark energy. He presented his work here earlier this month at the annual meeting of the American Association for the Advancement of Science.

    Dvali borrows from string theory, which states that there are extra, hidden dimensions beyond the four we are familiar with: three directions and time. String theory suggests that gravitons -- hypothetical elementary particles transmitting gravitational forces -- can escape to other dimensions. Dvali says this would cause "leaks" in gravity over cosmic proportions, reducing gravitational pull at larger distances more than expected.

    "The gravitons behave like sound in a metal sheet," says Dvali. "Hitting the sheet with a hammer creates a sound wave that travels along its surface. But the sound propagation is not exactly two-dimensional as part of the energy is lost into the surrounding air. Near the hammer, the loss of energy is small, but further away, it's more significant."

    Sunday, June 12, 2005

    Search for Extra-dimensions with ATLAS at the LHC: The Lions Den

    I have often wonder whether or not my opinions about left and right aspect battling in society, are right?:) Peter Woit saids string theory is right wing financed? I hate to dread that media has been perversive enough in order to support political factions affecting science?

    So I'll tell you how affected I have become too, so you can see that the greater significance and responsibility is not really about right and left, but about science's perspective about the state of affairs beyond the matters at hand?

    I couldn't help think of the flavour of good scientific minds, who would rise to the challenge, and make the theoretical approach some struggle between good and evil? As some atheistic attempt, "to remove informative possibilities" from the subject that might have come from the "trigger of emergent properties"? I don't say change quantum mechanical porpityies either just that we see it in context of a new model. Is this wrong, or right?

    Fancy free, and without adeu, I cast myself on what it must be like, if such a fancy was taken to the issues of "Intelligent design," that it could have ever undermined the basis of this literary conversation, to have scientists designated here and there, as a division, regardless of the virtues of scientific inquiry held to both.

    So herein, begins the story.:)

    "The soul that rises with us, our life's star,
    Hath had elsewhere its setting,
    And cometh from afar.
    "

    "Intimations of Immortality" by William Wordsworth

    >"Or, if through lower lives I came--
    Tho' all experience past became,
    Consolidate in mind and frame--
    I might forget my weaker lot;
    For is not our first year forgot?
    The haunts of memory echo not."
    "Two Voices" by Tennyson


    "As to you, Life, I reckon you are the leavings of many deaths,
    No doubt I have died myself ten thousand times before."
    ""Leaves of Grass" by Walt Whitman



    Solidus of Justinian I (r. 527–565), 538–565

    Byzantine; Minted in Constantinople
    Gold; Diam. 3/4 in. (1.9 cm)
    Bequest of Joseph H. Durkee, 1898 (99.35.7406)
    Coins connected an emperor to his subjects. Through inscriptions and images, they conveyed imperial ideals and commemorated auspicious events. The emperor paid the army and received taxes in coins, and he was responsible for maintaining their weight and purity. This coin was minted under Justinian, whose preference for a completely frontal portrait—rather than the traditional profile—would set a standard for the rest of Byzantine history.


    The struggle then is something contained back in our history, to have those who will guide us through common sense to say, that the evils of society are no less the roads taken by revisionist who would try and change the path of Christianity? Be smited by, those who hold on religious tenant might have been extolled into the future of lives? Where go these "lost souls" while they converge on string theory and try and change history?:)

    From A Defense of an Essay of Dramatic Poesy (1668) by John Dryden

    Imagination in a man, or reasonable creature, is supposed to participate of reason, and when that governs, as it does in the belief of fiction, reason is not destroyed, but misled, or blinded: that can prescribe tot he reason, during the time of the representation, somewhat like a weak belief of what it sees and hears; and reason suffers itself to be so hoodwinked, that it may better enjoy the pleasures of the fiction: but it is never so wholly made a captive as to be drawn headlong into a persuasion of those things which are most remote from probability: 'tis in that case a free-born subject, not a slave; it will contribute willingly its assent, as far as it sees convenient, but will not be forced....Fancy and reason go hand in hand; the first cannot leave the last behind; and though fancy, when it sees the wide gulf, would venture over, as the nimbler; yet it is withheld by reason, which will refuse to take the leap, when the distance over it appears too large



    Missing E_T and its uses (LHC)?

    This larger font sized comment directs us in our quest to wonder what had been going with the anti-stringy camps who might have challenged the views? Is there sufficient data to back up the statements, other then to stand as "religous converts of a point of view," soley spoken by the "more advanced," might have their reasons why this approach is insufficient? Other then, to hold the roads of a predawn attempts in christianity to a societal way of thinking, contrary, to the established views written in the years of Constantinople in 538?:)

    Thanks to the high collision energy and luminosity of the LHC, the ATLAS detector will be capable of revealing the existence of extra spatial dimensions in some substantial region of parameter space. The talk will summarize recent studies from the collaboration on different possible signals predicted by models where the dimensions are "large", where they are of size ~TeV^-1 or where they are "warped". These signals include direct emission of Kaluza-Klein states of gravitons, virtual effects of graviton exchange and gauge boson excitations. We shall also discuss the possibilities of observing black holes.


    In post below this one the question of extra energy was a important one in that it highlights the question of those "extra dimensions or not." For my generalized view, there is no leading explanation to the general public that would annouce how this diversion from current scientific approaches of Cern, will lead to satisfaction of the road of super string theory has taken. To understand, it is not willy nilley approach to some "Intelligent design quest" that such string theorists had been cornered too, in discription by anti-stringy voices?

    From what I had understood contrary to this view of the string camp, it's only opositon was LQG and the roads that lead in that general direction. At least these were directions that operated from a basis of discrete or continuity, other then mere speculation of the sort that would dissuaade most readers from idolizing , and being drawn into the lair of lions?:)

    It was as if the rhtymns of life could been entangled in minds and the quantum Harmonic osccilator embedded to language that science found in the true numerical basis of eisstance, that it could be cast in forms of shakesperean words, and hidden from the view by Francis Bacon's true discourse on history?

    On constitution reform, Jefferson Davis words needed revision, to have a man like Benjamin Franklin stand up and devote a treaty on reason? It would guide the American view, to a healthy and just system of inquiry, as to the rights and freedoms shared by the American views? What lessons lie in scientific inquiry then to have those who stand at the forefront, and make it some intangible realism of the "forces of light and darkness "fighting to bring society into it's talons?

    "Death, so called, is but older matter dressed
    In some new form. And in a varied vest,
    From tenement to tenement though tossed,
    The soul is still the same, the figure only lost."

    Poem on Pythagoras, Dryden's Ovid.


    See:

  • ICHEP'04-Accepted Abstracts for Session 12: Beyond the standard model
  • Thursday, May 12, 2005

    A recipe for making strings in the lab

    All you educated people must forgive me here. I do not have the benefit, of the student and teacher relationship, yet I rely heavily on my intuitive processes. I cannot say whether for sure these are always right. IN this sense, I would not have been liked to call a Liar, or one who had ventured forth to spread illusionary tactics to screw up society.

    On the contrary, my ideal is set in front of my mind, and all things seem to gather around it most appropriately. A place and time, where good educators have watched out for the spread and disemmination, that could lead society away from, good science? I will give credit to Peter Woit in this sense. Lubos Motl for staying the course. As to those who excell these views for us as well. We are your distant cousins in need of education and for those, in the backwoods of isolation.

    Fixations on Objective Design

    This is far from the truth of my goal, and "fixations on objective design" of reality, are not what I was hoping to reveal. More, the understandng, that to get there, there are some considerations to think about.

    The idealization in theoretcial developement should show this. The physics must accompany the development of this lineage of mathematics, as well as the lineage of physics must lead mathematics? What is the true lineage? Could any mathematican tell me or are they limited to the branches they deal with in physics?

    Now back to the topic of this thread.

    When I was a kid, I liked to take buttons and place a thread through them. Watching Mom, while I prep the button, she got ready to sew. I would take both ends of the thread and pull it tightly. I liked the way the button could spin/thread depending on how hard I pull the thread.



    Now for some of you who don't know, the pythagorean string tension was arrived at by placing gourds of water on strings, to dictated the harmonical value, "according to weight?"


    It is said that the Greek philosopher and religious teacher Pythagoras (c. 550 BC) created a seven-tone scale from a series of consecutive 3:2 perfect fifths. The Pythagorean cult's preference for proportions involving whole numbers is evident in this scale's construction, as all of its tones may be derived from interval frequency ratios based on the first three counting numbers: 1, 2, and 3. This scale has historically been referred to as the Pythagorean scale, however, from the point of view of modern tuning theory, it is perhaps convenient to think of it as an alternative tuning system for our modern diatonic scale.


    So we see the nature spoken too, in a much different way?

    KakuIf strings are to be the harmony then what music do such laws of chemistry sing? What is the mind of God? Kaku saids,"According to this picture, the mind of God is Music resonanting through ten- or eleven dimensional hyperspace which of course begs the question, If the Universe is a symphony, then is there a composer to the symphony."

    Simply put, superstring theory says all particles amf forces are manifestations of different resonances of tiny one dimenisonal strings(or possibly membranes) vibrating in ten dimensions.


    Artist's impression of the setup.

    The disks represent the bosonic condensate density and the blue balls in the vortex core represent the fermionic density. The black line is a guide to the eye to see the wiggling of the vortex line that corresponds to a so-called Kelvin mode, which provides the bosonic part of the superstring
    (image and text: )arXiv.org/abs/cond-mat/0505055.

    Now I will tell you why this elementary experiment is very good for fixing the mind around some potential idea? Now, when I look at it, and look at the ball placings on each disk ( are they in the same spot....hmmm yes this could be a problem), each disk will automatically spin according to the placement of the ball, in relation to it's edge. Now when you place this in line, like a one dimensional string, as if you see this string vibrate, imagine how you would get these waves to exemplify themself and the disk placement acccordingly.

    Now it is most important that you see the tension of this string vibrate, in relation to how we see the disks spin. Pull tightly on the string and you get a wonderful view of a oscillatory nature, that is dictated by the respective placement of the balls on the disk. Good stuff!

    In brackets above, the exploration of artistic rendition is very good, because it allows you to further play with this model and exhaust it's potential. Would it be incorrect to say, that ball placement and vibratory placement can be related to string harmonics? In this case, how would KK tower and circle allocation to disk identify this string, but to have some signature in the way these disks spin,,individually and as a whole(one string)

    The link below was 2000 but it is effective in orientating thoughts?


    To find extra dimensions of the type studied by the CERN group, experimenters are on the alert for what they call Kaluza-Klein towers, which are associated with carriers of the nongravitational forces, such as the photon of electromagnetism and the Z boson of the weak force. Excitations of energy within the extra dimensions would turn each of these carriers into a family of increasingly massive clones of the original particle—analogous to the harmonics of a musical note.


    For me, nodal impressions at spots, serve me well to see the vibratory nature of the reality that we live in. Balloons with dyes spread around it, and sound application help us see where such nodal point considerations would settle themself to these distinctive notes. You take the sum(it harmical value, in order to distinctively classify the partcle/object?

    Maybe we can have experts describe this in a most genaral way, where I might have complicated the picture:?) What I did want to say about artistic rendition, is like the work of Penrose. It is very important it culminates the vision, to real things? As I showed in Monte Carlo effect. Or, John Baez's view of Plato's God?

    Ultracold Superstrings byMichiel Snoek, Masudul Haque, S. Vandoren, H.T.C. Stoof

    Supersymmetric string theory is widely believed to be the most promising candidate for a "theory of everything", i.e., a unified theory describing all existing particles and their interactions. Physically, superstring theory describes all particles as excitations of a single line-like object. Moreover, the bosonic and fermionic excitations are related by supersymmetry. A persistent problem of string theories is the lack of opportunity to study them experimentally. In this Letter, we propose and analyze a realistic condensed-matter system in which we can create a non-relativistic Green-Schwarz superstring in four space-time dimensions. To achieve this, we make use of the amazing tunability that is now possible with ultracold trapped atomic gases. In particular, for the creation of the superstring we consider a fermionic atomic gas that is trapped in the core of a vortex in a Bose-Einstein condensate. We explain the tuning of experimental parameters that is required to achieve supersymmetry between the fermionic atoms and the bosonic modes describing the oscillations in the vortex position.


    Now what is very interesting to me is the way such harmonical value can be seen in in relation to particle identification. It is not always easy to see how such disks and toys could exemplify this for us, but I am trying. If we wanted to see the new toy and the relations that I will show how would this all relate to the disk and the ball on it?



    I wanted to look at what you were saying to "try," and understand.


    One of the most exciting predictions of Einstein's theory of general relativity is the existence of a new type of wave, known as a gravitational wave. Just as in electromagnetism, where accelerating charged particles emit electromagnetic radiation, so in general relativity accelerating masses can emit gravitational radiation. General relativity regards gravity as a curvature of spacetime, rather than as a force, so that these gravitational waves are sometimes described as `ripples in the curvature of spacetime'.





    This mode is characteristic of a spin-2 massless graviton (the particle that mediates the force of gravity). This is one of the most attractive features of string theory. It naturally and inevitably includes gravity as one of the fundamental interactions.




    By looking at the quantum mechanics of the relativistic string normal modes, one can deduce that the quantum modes of the string look just like the particles we see in spacetime, with mass that depends on the spin according to the formula




    Remember that boundary conditions are important for string behavior. Strings can be open, with ends that travel at the speed of light, or closed, with their ends joined in a ring.


    See:

  • Quantum Harmonic Oscillators


  • Distinctions of Holographical Sound
  • Wednesday, April 27, 2005

    The Calorimetric View?



    The Title, might seem somewhat strange, but a issue has developed for me that I see raised in the scourge of other intellectuals, who disavow the extra dimension scenario.

    So you have this view and you have this idea of missing energy? Where did it go and where did it come from? Pierre Auger linked previously and the Oh my god particle, raise this idea more in line with the vaster layout of this possibilty.

    You see these things are happening around us now, and you needed a much comprehensive view of this compacted dynamcial world? So the methods seen for determination help us to see what is happening in relation not only to particle reductionistic views, but of the relationship happening with Earth and the Sun. Our other Cosmic relations, that move here in the vast network of spacetime contortions that signal informative views from earlier times


    ATLAS and the LHC
    Describing the strong, weak and electromagnetic interactions in terms of gauge theories, the Standard Model (SM) of fundamental particles and their interactions has successfully explained and predicted many aspects of high-energy particle interactions. However, despite its tremendous successes, it remains theoretically unsatisfactory. The SM cannot answer what is the origin of particle masses, contains a large number of arbitrary parameters, and does not explain why there are so many types of quarks and leptons, among other questions. Perhaps as much as theoretical breakthroughs are needed in order to improve the SM, so are experimental observations on phenomena which can further constrain the SM or may reveal physics beyond it.


    The question I raised was in looking at where the missing energy had gone? This is a important question, becuase it speaks to what energy gone in/out, as not being equal? I take it, that all particle reductionistic interpretations would have surmized it's energy value, and then, had something left over that is accoutable? How would you know it's missing?

    Now I was looking a Cabi's ole post and from it, this lead me to look at the title of the connected paper for consideration.


    A Toroidal LHC ApparatuS


    Part of the counterpart of looking at particle creation would have been able to understand the part of the calorimeters that are used to measure the evidence produced. IN this context, it lead me to the Atlas information held at CERN. It also made me think of Glast determinations of early universe indications from the calorimeter located in the Glast satelitte. See the Looking Glast


    A Higgs Mechanism for Gravity, by Ingo Kirsch

    In this paper we elaborate on the idea of an emergent spacetime which arises due to the dynamical breaking of diffeomorphism invariance in the early universe. In preparation for an explicit symmetry breaking scenario, we consider nonlinear realizations of the group of analytical diffeomorphisms which provide a unified description of spacetime structures. We find that gravitational fields, such as the affine connection, metric and coordinates, can all be interpreted as Goldstone fields of the diffeomorphism group. We then construct a Higgs mechanism for gravity in which an affine spacetime evolves into a Riemannian one by the condensation of a metric. The symmetry breaking potential is identical to that of hybrid inflation but with the non-inflaton scalar extended to a symmetric second rank tensor. This tensor is required for the realization of the metric as a Higgs field. We finally comment on the role of Goldstone coordinates as a dynamical fluid of reference.


    Now I have not gone into in detail because I am somewhat slow and a bottom feeder trying very hard to gain perspective of the world these fellows like to deal with.

    So the water symbolically speaking, sound manifest, with those inhabiting a dynamical world, speak about the nature of matter constitutions. That come from some state of existance? Here the idea, that it could emerse from nothing (where do the graviton perceptions reside?), is again hard to swallow becuase, "preconstitutional states," had allowed such manifestations to emerge from something? It just seemed logical? Non!

    When you think this is going to be the end of it, I thought, I would recap, because I have given the containment(calorimetric) that such particle views, or early universe connections, might have brought forward in detectors methods?

    This would have satisfied Peter Woit I am sure, but this view is far from over. The rules have defined a greater context to the issue that points us to the deeper issue of what Gerard 't Hooft might have said was comprehensible features of computerized information consistancies. This would have been far from the truth. Blackhole particle production, would have said hold on? To have this comprehensive view, you needed to include a completed version of the standard model? Without the grvaiton in cvomputerized versions you see where the picture is far completed and you se where the extra dimensiona would have certain features that would have incorporated graviton perceptions in the bulk?



    The horizon would have been far from complete had the standard model not included this into the the energy in/out version. This would have been the thread(string) that connected the innner space of the blackhole with the particle production that would have dissipated/exploded in view? How would computerization meet this demand? LIGO?

    Wednesday, March 30, 2005

    Raychaudhuri Equation



    Is it sand running through our fingers, or a taffy like substance, in symbolic form?

    The difference, discretium and fluidity of nature, geometrically/topologically driven, are at war with what we might interpret in time? Early on, Salvador Dali understood well this geometrical propensity to the tesserack, that he embued his art with higher religious context(time). But in real life, he was different man?:)

    The issues were not far removed from perspective, that this battle would find itself challenged, in how we would portray the nature of reality? That it had burst forth in science and it's manifestations.

    But come back to earth, and we have to wonder indeed if this fluid is slipping through our fingers as time reveals a more intrinistic view of the reality in the cosmos?



    Sean Carroll said:Friedmann fights back:
    For those of you interested in the attempt by Kolb, Matarrese, Notari, and Riotto to do away with dark energy, some enterprising young cosmologists (not me, I'm too old to move that quickly) have cranked through the equations and come out defending the conventional wisdom. Three papers in particular seem interesting:



    Lubos Motl:Superhorizon fluctuations and accelerating Universe:
    Several physicists and bloggers, e.g. Jacques Distler, Peter Woit and especially Sean Carroll who may be considered a true expert in these questions and who added a very new article after this article of mine was published, recently noticed a paper that claimed that the cosmological constant was not needed. Instead, the accelerating expansion was conjectured to be a consequence of fluctuations of a scalar field (and the associated stress energy tensor) whose wavelength was longer than the Hubble radius i.e. the size of the visible Universe, roughly speaking.



    I agree with Lubos here in regards to what has already been establish to date in the positions. Here with Sean Carroll, Jacques Distler, Peter Woit, and Lubos Motl respectively, that they all agree on the standards set here?

    This would be a clear statement of position, and one that would signal, accepted practice on the expository view of our cosmos? Is it to ambitious?

    Out of this a standard, even if there are divergences of personality; this is wiped away, so that we are introduced to new information as Sean shows us withRaychaudhuri equation? This gives one direction to look at.

    This equation has the special characteristic that it is true without reference to the Einstein equations . That is, it is true for any spacetime. It is an intrinsic property of the volume expansion.

    Now we come back to the intuitive development from this standard presence. Would it be so wrong to ask that four minds to stand together and paper their perspective? Then open it up to geometry/topological views, in relation to how we might develop the imagery of what might have been gathered from the dynamical realization of early universe idealizations?



    In regards to the tactile experience one might want to comprehend is in the way the universe now has unfolded?

    Now there is a most definite need to grasp the issue here in terms of what causality might mean in terms of balckhole/3 brane collapse as a perspective to the dynamics that would be revealled, for photon,/graviton production from the blackhole?

    Using Calorimeter, we see where such advances help us to distinquish early universe information in Glast cosiderations, but how much more suttle has this experience need to be expanded upon, to understand the exchange that takes place in the gravitational collapse?

    John Baez:
    Now, the way Hawking likes to calculate things in this sort of problem is using a "Euclidean path integral". This is a rather controversial approach - hence his grin when he said it's the "only sane way" to do these calculations - but let's not worry about that. Suffice it to say that we replace the time variable "t" in all our calculations by "it", do a bunch of calculations, and then replace "it" by "T" again at the end. This trick is called "Wick rotation". In the middle of this process, we hope all our formulas involving the geometry of 4d spacetime have magically become formulas involving the geometry of 4d space. The answers to physical questions are then expressed as integrals over all geometries of 4d space that satisfy some conditions depending on the problem we're studying. This integral over geometries also includes a sum over topologies.
    That's what Hawking means by this:

    Stephen Hawking:I adopt the Euclidean approach, the only sane way to do quantum gravity non-perturbatively. In this, the time evolution of an initial state is given by a path integral over all positive definite metrics that go between two surfaces that are a distance T apart at infinity. One then Wick rotates the time interval, T, to the Lorentzian. The path integral is taken over metrics of all possible topologies that fit in between the surfaces.


    How would missing energy events isolate the realization that such ventures would have been specific in detailing the envelope capturing all that has evolved in our universe to know that there is this consistancy, that spreads itself through all possibiltyies of Feynman's sum over paths of expression, that still needs to be identified?

    Now you must know that there are consequences when we see this collapse take place that asks us to consider the nature of the temperatures and diameter in reduction?

    That what has been reduced in this energy developing scenarion of the cosmos in action, is a applicable view to geometry/topology that at the same time reveals the idealization of entropic features of supersymmetical views that we learn to see?

    How this experience, as tactile as I approach it, is induced, is at very illusatory experience way back in some speculative past.:)Whooh! What? Careful now, I am analogically speaking here, because I like to see this way. It feels right(not saying it is right) as simple statement quickly summing up many mathematical views in a very short and simple way. That's what I hope anyway.

    When you look at this fluid geometrically/topolgically driven what view has transpired in blackhole production? You want to be able to understand the symmetrical breaking that is taking place? Crystalization processes, would quickly surmize a Laughlin view from a fast cooling temperature, to realize, it is much more slower then this in the cooling(15 bilion year assumption) in a cosmological process?

    So we understand curvature is well aquainted with vast track of cosmological views, but it become much more diffiult at such microscopic thinking. Sort of, all smeared out in a vast supersymmetrical views of previous states of existance, that quickly gather to form maybe, cosmic strings?:)

    John Baez said,
    But you shouldn't imagine the mood as one of breathless anticipation. At least for the physicists present, a better description would be something like "skeptical curiosity". None of them seemed to believe that Hawking could suddenly shed new light on a problem that has been attacked from many angles for several decades. One reason is that Hawking's best work was done almost 30 years ago. A string theorist I know said that thanks to work relating anti-deSitter space and conformal field theory - the so-called "AdS-CFT" hypothesis - string theorists had become convinced that no information is lost by black holes. Thus, Hawking had been feeling strong pressure to fall in line and renounce his previous position, namely that information is lost. A talk announcing this would come as no big surprise.

    Tuesday, March 22, 2005

    Quantum Jitter



    When you look at the spacetime fabric the cosmological views makes it nice and neat for us, when we are tryng to comprehend the ripples and waves that are generated.

    So how, you might ask, can multiple strings make up a proton if each has a mass of ten billion billion times that of a proton? The answer has to do with quantum jitter. According to the uncertainty principle in quantum mechanics, nothing is completely at rest. Quantum jitter actually has negative energy that cancels out much of a string's mass. In the case of the graviton, the cancellation is perfect, yielding a particle with zero mass. This is what was predicted since gravitons travel at the speed of light.


    The microscopic view of gravitatinal wave generation asks that we look much closer at how we perceive the actions of the turbulence and uncertainty as we move closer for a introspective view of the compact spaces that the genration of graviton in place of the views such uncertainty might be generated.

    Reviews Georg Riemann's view of curved spaces, which is the mathematical core of general relativity. Quantum geometry is the mathematical core of string theory, though it is not as ready-made as was Riemann's geometry for Einstein. Riemann drew on Gauss, Lobachevsky, Bolyai etc. and evaluated the measure of distances in curved space. Einstein concluded the curvature of space is gravity.

    Friday, March 11, 2005

    Supersymmetry

    There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world.
    — Nikolai Lobachevsky


    John Ellis:
    Extensions of the Standard Model often contain more discriminatory parameters, and this is certainly true of supersymmetry, my personal favourite candidate for new physics beyond the Standard Model. One of the possibilities suggested by supersymmetry is that Higgs bosons might distinguish couple differently to matter


    Without consideration of that early universe, the quantum interpretation doesn't make sense unless you include it in something whole?



    Lubos said,
    There are also many other, indirect ways how can we "go" back in time. This is what evolution, cosmology, and other fields of science are all about.



    Unsymmetrical-cooling-gravity weaker
    Expanding
    \ /
    \ /
    \ /
    _\ /___
    / \ / /
    / \ / /
    / \/ / --------300,000 years
    / / Gravity strong
    ------------- Symmetrical
    ^
    I
    seedlike

    Q-------------Quark measure is stronger

    \ /
    \ /
    \ /
    \ /
    Q--Q



    Symbolically how do you create a inclusive system, but to look at alien and foreign ways in which this logic might force you to consider the interactivity of a theory of everything? Greater quark distance, greater energy, higher gravitational field generation. The field around this distance, and supersymmetrical realization bring us closer to the source of the energy creation, closer to the source of the universe's beginnings



    ....to consider such eneregies within the sphere of M, at a quantum level, as well at such cosmological scales."


    The Bubble Universe / Andre Linde's Self Creating Universe

    These are the theories discussed in class. The bubble universe concept involves creation of universes from the quantum foam of a "parent universe." On very small scales, the foam is frothing due to energy fluctuations. These fluctuations may create tiny bubbles and wormholes. If the energy fluctuation is not very large, a tiny bubble universe may form, experience some expansion like an inflating balloon, and then contract and disappear from existence. However, if the energy fluctuation is greater than a particular critical value, a tiny bubble universe forms from the parent universe, experiences long-term expansion, and allows matter and large-scale galactic structures to form.

    The "self-creating" in Andre Linde's self-creating universe theory stems from the concept that each bubble or inflationary universe will sprout other bubble universes, which in turn, sprout more bubble universes. The universe we live in has a set of physical constants that seem tailor-made for the evolution of living things.




    It is very difficult sometimes to bring another individuals view in line with the vast resources that could point the mind to consider the whole thing?



    If you did not have a encompassing philosophy, and I know this word is dirty to some, but without pointing to a basis for which the universe sprang, then such topological features would never make sense.

    So you direct the thinking to what the early universe looked like(?), and it's potential for expression. A lot of things are going on that are not considered geometrically/topologically unfolding, which hide within the basis of expression. So you have to use analogies to nudge the mind into possible structural considerations, with evidence of graviton production?

    Notes on Hyperspace Saul-Paul Sirag
    The rule is that for n hidden dimensions the gravitational force falls off with the inverse (n + 2 ) power of the distance R. This implies that as we look at smaller and smaller distances (by banging protons together in particle accelerators) the force of gravity should look stronger and stronger. How much stronger depends on the number of hidden dimensions (and how big they are). There may be enough hidden dimensions to unify the all the forces (including gravity) at an energy level of around 1 TeV (1012 eV), corresponding to around 10-19 meters. This would be a solution to the hierarchy problem of the vast difference in energy scale between the three standard gauge forces and gravity. This is already partly solved by supersymmetry (as mentioned previously); but this new idea would be a more definitive solution--if it were the right solution!