Showing posts with label Calorimeters. Show all posts
Showing posts with label Calorimeters. Show all posts

Monday, April 14, 2008

Calorimetric Views

BEHOLDING beauty with the eye of the mind, he will be enabled to bring forth, not images of beauty, but realities, for he has hold not of an image but of a reality, and bringing forth and nourishing true virtue to become the friend of God and be immortal, if mortal man may. Would that be an ignoble life? PLATO



The calorimeter design for GLAST produces flashes of light that are used to determine how much energy is in each gamma-ray. A calorimeter ("calorie-meter") is a device that measures the energy (heat: calor) of a particle when it is totally absorbed. CsI(Tl) bars, arranged in a segmented manner, give both longitudinal and transverse information about the energy deposition pattern. Once a gamma ray penetrates through the anticoincidence shield, the silicon-strip tracker and lead converter planes, it then passes into the cesium-iodide calorimeters. This causes a scintillation reaction in the cesium-iodide, and the resultant light flash is photoelectrically converted to a voltage. This voltage is then digitized, recorded and relayed to earth by the spacecraft's onboard computer and telemetry antenna. Cesium-iodide blocks are arranged in two perpendicular directions, to provide additional positional information about the shower.


The complexity and sum over histories leaves an indelible pathway for all energy Disposition patterns(photons in the Electromagnetic Calorimeters), as well as, an adventure "within the confines of the Hadronic Calorimeters views."

In a sense when referenced to a "configuration space," then what design of the calorimeter that we would measure the earliest signs o the universe in expression as the "supposed productions of the cosmos." That we could say, we have a "new view in the window of that same cosmos?"

Iron wedges of the CMS forward calorimeter-Source from Quantum Diaries Survivor.

The future

If new detectors will ever be built to explore a yet higher energy regime than the one about to be probed by LHC, calorimeters will be as necessary as they are today. The following characteristics will be desirable in a design of new generation:

* self-triggering (the ability of independent portions of the system to identify and measure a signal, interpreting it and sending an accept signal to the data aquisition system)
* stand-alone tracking (the ability of the calorimeter system to independently determine the direction of crossing particles)
* an integrated time-of-flight measurement (the capability to separate different particle signals based on the delay between their arrival time and the interaction time)
* high resolution and granularity (attainable with silicon technology)

The needs of these fancy features, however, rests on the specific hunt that we will decide to embark on. Which, in turn, critically depends on the discoveries that the Large Hadron Collider will produce!
Calorimeters for High-Energy Physics - part 2, by Tommaso Dorigo


See:

Calorimeters for High Energy Physics experiments - part 1
Calorimeters for High-Energy Physics - part 2 April 11, 2008

Wednesday, March 28, 2007

Time as a Measure

SuperCosmologists Think Out of the Box, by Clifford at 1:13 am, August 3rd, 2005

From what we have learned so far about string theory, the natural starting point for doing physics which makes contact with our world seems to be to start in 9+1 dimensional spacetime. A modern perspective tells us to go further: Strings are not the only important objects in the game, but extended objects of more dimensions called “branes” are also important. (The term comes from starting with “membrane” which is a two dimensional object, calling it a “2-brane” and then having the idea of a “3-brane”, “4-brane” etc. Or just “brane” when you want to be non-specific.) It turns out that we need to consider these objects too. Fully non-perturbative considerations also encourage us to consider “M-theory”, which (at least at low energy) appears as an eleven dimensional (10+1) theory with no strings at all, just branes of a couple of sorts.


Do we suspect we had gone so far from reality to think about science we had somehow left our thought processes out of the loop, for what is demanded from science? I still like to think that with what ever process that one like Lee Smolin would want to talk abut on a philosophical level had it's counterpart in some process that I am speaking about below.

It's only fitting that while one could deal with the "abstractness spoken by Clifford" that we could have of course said the same thing with Lee Smolin's philosophical sojourns. In regards to "time," as an element of where we had taken reductionism too. To the depths of perception that speak to the very early universe. The microseconds of our universe spoken too, settled here to the 3+1 world of matter constituents.

So you see it began someplace else in dimensional perspective that is not so disconnected from the reality with which we like to work.




Experimentalists probe the structure of the proton by scattering electrons (white line) off quarks which interact by exchanging a quantum of light (wavy line) known as a photon.
See Compton and Graviton Scatterings?

How did one get to that level with which to discern the nature of the energy in relation to the photon? I have assume a certain position, in terms of what the photon represents as it speak to the very colouring of the gravitational field.



So how was one to look at the landscape without understanding that there is a measure to the nature of the gravitational field represented by that Photon?

IN relation to the landscape. This is not what stood out when I went to look at Lee Smolin’s reference to chapter 5 with regards to comment #148 I hope this shift is okay for posting?

Just drawing attention to the dates of publication and comparison of views. I was thinking of “Benchmarks” in terms of the progressions, that could have been marked as successes, and help one to realize that there was still a process unfolding?

I thought these two views countering one another?

A second obstacle arises from the theory’s reliance on the idea of spontaneous symmetry breaking to explain why each of the elementary particles we see in the world has different properties. While this is a beautiful idea, there is a certain ad hoc quality to how it is realized. To this date, no one has so far observed a Higg’s particle and we have only a very imprecise idea of their properties. Page 61, The Life of the Cosmos by Lee Smolin ISBN 0-19-510837-x 1997


As a Lay person I was thinking of the word “ad hoc” in Lee’s statement, and wonder if this is still reflected in his views of today. This was a build up and precursor to the statement about string theory in question according to Lee’s book statement??

Unravelling String Theory,by Edward Witten 29 Dec 2005

String theory is the only known generalization of relativistic quantum field theory that makes sense. The framework of special relativity plus quantum mechanics is so rigid that it practically forces quantum field theory upon us. The tightness of the modern framework is one of the main reasons why physicists were able to discover what has become the standard model of elementary particles.


Have we moved past this today and “all” in agreement?


Of course being the layman I am it is important that information that is given on Clifford's board is correct. One can quickly swipe out any statement quite easily without understanding the historical aspect of what Lee Smolin is suggesting. What is he suggesting?

Lee Smolin Mar 27th, 2007 at 8:23 am

For one thing the existence of the string landscape has been, at least for me, a great stimulus to revising the notion of time in quantum cosmology. Beyond that the context in which the role of time in quantum cosmology has to be discussed is that of attempts to formulate background independent theories, to the extent that efforts are made to construct a manifestly background independent framework for string theory in the compact case-with no asymptotic symmetries or boundary conditions, the problem of time has to be confronted.


Now of course after this I had been thinking when Lee Smolin made his statement in the selected paragraph above, some things that I had been thinking about.

Gravitational Mass for a Photon

The relativistic energy expression attributes a mass to any energetic particle, and for the photon



The gravitational potential energy is then



When the photon escapes the gravity field, it will have a different frequency




Since it is reduced in frequency, this is called the gravitational red shift or the Einstein red shift.

Escape Energy for Photon

If the gravitational potential energy of the photon is exactly equal to the photon energy then



Note that this condition is independent of the frequency, and for a given mass M establishes a critical radius. Actually, Schwarzchilds's calculated gravitational radius differs from this result by a factor of 2 and is coincidently equal to the non-relativistic escape velocity expression



A black hole is an object so massive that even light cannot escape from it. This requires the idea of a gravitational mass for a photon, which then allows the calculation of an escape energy for an object of that mass. When the escape energy is equal to the photon energy, the implication is that the object is a "black hole."


For the longest time I have tried to understand what could be used to answer Lee's statement above. While I have no substituted I looked at what the physics had to say and what we may learn from the horizon.

The elephant and the event horizon by Amanda Gefter

Hawking radiation owes its existence to the weirdness of the quantum world, in which pairs of virtual particles pop up out of empty space, annihilate each other and disappear. Around a black hole, virtual particles and anti-particles can be separated by the event horizon. Unable to annihilate, they become real. The properties of each pair are linked, or entangled. What happens to one affects the other, even if one is inside the black hole.
See here for article.

This process itself. Would it not instigate the position of Lee to ask what can be revealed in the nature of the photon? While there is calorimetric measures designed in Glast, was it not with the understanding that "high energy" photons could exist? We are using the "escape velocity of the photon" to discern the nature of the blackhole?

This is Lee's current measure of time in any discussion?



See this link for what was deleted from Clifford's blog and I will try and expand and clear up what was quick to be discarded. You had to follow the comments in that section, to get the idea of what "entanglement may mean" for what we see of what exists on the boundary of the blackhole,as a indicator represented by the colour of that photon. Now of course I have exceeded the perspective limited by the 3+1 as a Relativity, yet I go as far as implement the fabric of the spactime as a correlate of what we see of that photon.

Tuesday, October 17, 2006

A new LHC experiment is born!

The LHC experiments are mostly on a very grand scale, with huge detectors and collaborations of as many as 2000 people; however, LHCf, like TOTEM, is quite special. The detectors are much smaller and LHCf has an equally small collaboration of just 22 people. The collaboration led by Yasushi Muraki, with members from Japan, Italy and the US, has just finished testing its detectors.

The focus of the experiment is to study the forward moving particles in the proton-proton collisions at the LHC. This will be used to compare the various shower models widely used to estimate the primary energy of ultra high-energy cosmic rays, with energy in the region of 1019 eV (10 billion billion electronvolts). When the proton-proton collisions occur at the LHC pions are produced just as in a cosmic ray air shower. The amount of these secondary particles produced at the LHC can be measured accurately with the LHCf detectors, since the energy and direction of the primary beam is well known. The data will then be compared with the models used by the cosmic ray community.

Although discovered as long ago as 1912 by the Austrian physicist, Victor Hess, cosmic rays remain mysterious. In particular, physicists would like to know more about the origins of the very high energy cosmic rays, up to 1020 eV that have been observed during recent decades. Some important experiments, such as the Pierre Auger Cosmic Ray Observatory in Argentina (See CERN Courier, July/August 2006), the Telescope Array experiment in the US and the HESS experiment in Namibia are dedicated to this research (See CERN Courier, February 2005). The LHCf experiment aims to give some valuable data to input into these studies; many of the physicists participating in LHCf are also involved in these and other projects related to cosmic rays.

The detectors of LHCf will be placed on either side at 140 m from the ATLAS interaction point. This location will allow for observation of particles at nearly zero degrees to the proton beam direction. The detectors consist of two towers of sampling calorimeters designed by Katsuaki Kasahara from the Shibaura Institute of Technology. Each of them is made of tungsten plates and plastic scintillators of 3 mm thickness for sampling.

Many of the physicists from LHCf have reunited from the former SPS experiment UA7, which also focused on forward physics. The LHCf experiment will be simulating cosmic ray collisions nearly 1000 times more energetic than UA7 was able to access. The energy of proton collisions in the LHC will be equivalent to a cosmic ray of 1017 eV smashing into the atmosphere. Therefore, LHCf will use the LHC beams to test the interaction models of cosmic rays to higher accuracy.

Did you know?

Cosmic rays are charged particles, mainly protons, but also alpha particles (helium nuclei) or heavier nuclei that bombard the Earth's atmosphere from outer space. These nuclei collide with the nuclei in the upper atmosphere producing many secondary particles, which in turn collide with other nuclei in the lower atmosphere. This process continues in a cascade, producing a shower of billions of particles reaching the ground.

Cosmic rays show a wide range of energy. The low energy cosmic rays are plentiful (many thousand per square metre every second), many of which come from the sun. The highest energy cosmic rays, up to 1020 electronvolts, are very rare, arriving at a rate of one per square kilometre per century! The source of ultra high energy cosmic rays remains a mystery, as the primary ray seems to come from all directions.


This, when we had thought science was at an end?

Wednesday, April 12, 2006

Computer Language and Math Joined from Artistic Impressionism?

Most people think of "seeing" and "observing" directly with their senses. But for physicists, these words refer to much more indirect measurements involving a train of theoretical logic by which we can interpret what is "seen."- Lisa Randall




Cubist Art: Picasso's painting 'Portrait of Dora Maar'
Cubist art revolted against the restrictions that perspective imposed. Picasso's art shows a clear rejection of the perspective, with women's faces viewed simultaneously from several angles. Picasso's paintings show multiple perspectives, as though they were painted by someone from the 4th dimension, able to see all perspectives simultaneously.


Sean from Cosmic Variance writes his opening post by including the title, "The language of Science".


I would have said maths as well, yet, as a Layman there is much for me to learn.


THOMAS BANCHOFF has been a professor of mathematics at Brown University in Providence, Rhode Island, since 1967. He has written two books and fifty articles on geometric topics, frequently incorporating interactive computer graphics techniques in the study of phenomena in the fourth and higher dimensions


The marriage between computer and math language(Banchoff) I would say would be important from the prospective of displaying imaging, seen in the development of abstract language as used in numerical relativity? Accummalated data gained from LIGO operations. Time variable measures?



My first demonstration was with a Calabi Yau model of the torso. Visually seeing this way, helped to progress understanding. The transferance from the math structure to imaging in computer, to me, seemed very hard thing to do.


Alain Connes

Where a dictionary proceeds in a circular manner, defining a word by reference to another, the basic concepts of mathematics are infinitely closer to an indecomposable element", a kind of elementary particle" of thought with a minimal amount of ambiguity in their definition.



If the math is right, the "concepts spoken," will be right also?



How such reductionism is held to the values of science, is seen in the work of the calorimeters. Glast and LHC designs give introspective views of how fine our perspective is being shaped. Can we see the underlying imaging as a toll, respective of reductionism as seeing the dynamical and geoemtrical background to all events measured? LIGO in data accumulation, describing the infomration released into the bulk perspective.

Toroidal_LHC_ApparatuS

In the theory of relativity, momentum is not proportional to velocity at such speeds.) Thus high-momentum particles will curve very little, while low-momentum particles will curve significantly; the amount of curvature can be quantified and the particle momentum can be determined from this value.

Sunday, December 11, 2005

Rayleigh Scattering

Over top of this whole post, I have wrapped it in context as if the fifth dimension. It is being expresed as part of a larger understanding of how such grvatons in their congergations might have been percieved? Yet Lubos cautions this perspective. I don't understand why.

Aaron Bergman on Dec 10th, 2005 at 1:46 am
The S-matrix is contact with (hypothetical) experiments. Most of the things we compute in QFT are S-matrix elements. The fact that we’re not really living in a region with free |in> and |out> states doesn’t stop us from figuring out what happens in a collider.


Some now looking at the relation to what can be constitued to interactions between the nature of the Sun such relation woud have spelt opportunities of what John Ellis might have expressed in the Pierre Auger experiments? NON?

As I read about this particular subject of the S-matrix I choose this particluar subject to get my head around it, and still, might have been lacking in moving through this subject. But something triggered in my mind to a previous question raised, that I thought I would bring forward here.

Of course I am thinking about the calorimeters used in Glast and the cosmological depth, as well, in the LHC where the quantum nature is expressed as well. These cannot be taken together?

Gavin Polhemus on Nov 23rd, 2005 at 6:24 pm
When you look at a rainbow you see the arcs of color, often against a dark backdrop of clouds. You also see the grayish mist of the falling rain. Where does the mist appear brighter?

a) inside the rainbow
b) outside the rainbow
c) the brightness is the same inside and outside
d) it varies




While I am talking about "Heaven's ephemeral qualites" in the pictured link, there was also a link attached to it as well in that post. It would help explain this process in context of Gavin's question. I'm definitely listening, and the information is coming from various sources. You see this, as I bring those sources together here.

Lubos Motl:
String theory allows us to calculate the S-matrix (another example that we do call an "observable") for all particles in the spectrum which includes the scattering of gravitons. We don't have to insert our knowledge about the problematic "bulk" observables: string theory automatically tells us not only the right answers but also the right questions. "It is the S-matrix you should calculate, silly," she says. It also tells us what are the corresponding evolution observables for anti de Sitter space.

Someone may therefore convince you that the S-matrix is the only meaningful observable that has any physical meaning in a quantum theory of gravity. This sentence is both deep, if an appropriate interpretation is adopted, as well as discouraging.


What is most troubling then is that a simpe picture of the lensing that can occur in the the gravitational perspective, might have been enlisted in how we see this light travel through to the CSL lensing that is being spoken too?

Simulating the joint evolution of quasars, galaxies and their large-scale distribution

The cold dark matter model has become the leading theoretical paradigm for the formation of structure in the Universe. Together with the theory of cosmic inflation, this model makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability. Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations. Here we present a novel framework for the quantitative physical interpretation of such surveys. This combines the largest simulation of the growth of dark matter structure ever carried out with new techniques for following the formation and evolution of the visible components. We show that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with next generation surveys.



The poster shows a projected density field for a 15 Mpc/h thick slice of the redshift z=0 output. The overlaid panels zoom in by factors of 4 in each case, enlarging the regions indicated by the white squares. Yardsticks are included as well. The postscript file has been produced for A0 format. Beware of it's huge size!


Now Lubos mentions the bulk relation here, and I wonder why such a take on a gathering of graviton perceptions would not help to see Heaven's ephemeral qualites as consequences of the pathways this light can take?

Mine is a simple way in which to understand such graviton scattering which might have "some reasoning?" behind it that would have said the blackhole concentration of such a photon persepctive woud have held greater consequence to the blackhole position in the universe? non?

Rayleigh scattering using the S-matrix

For the example of sunlight shining on the atmosphere, the S-matrix predicts that shorter-wavelength light (blue end of the spectrum) will scatter at larger angles than longer-wavelength light (red end of the spectrum). And this is exactly what we see! Let me go through it. It helps to have a globe handy, perhaps using a pencil or straight piece of wire to simulate an incoming ray of sunlight; imagine a very thin layer over the surface which is the atmosphere. A small scattering angle means the light continues on nearly in the direction it started out in, while a large angle means close to perpendicular to the incoming direction.

Saturday, June 11, 2005

The Trigger


Since there exist in this four dimensional structure [space-time] no longer any sections which represent "now" objectively, the concepts of happening and becoming are indeed not completely suspended, but yet complicated. It appears therefore more natural to think of physical reality as a four dimensional existence, instead of, as hitherto, the evolution of a three dimensional existence.


Why no new Einstein?

This article entitled above has been thought about in terms of the issue brought forth by Peter Woit and Lubos Motl rspectively.

When I seen Sean's post it brought back to me the work I had been doing to understand the way in which such measures allow us to precieve the interactive feature of the world that few of us will ever see without these means of measure.



It also brought me back to how we see in terms of calorimetric views, in the Glast satelitte. Here was two methods, that used similar processes, to help us understand the interact feature we might seen in the reductionist priciples that are happening right now out in the cosmo and what the potential was through particle collisions.


Part of the counterpart of looking at particle creation would have been able to understand the part of the calorimeters that are used to measure the evidence produced. IN this context, it lead me to the Atlas information held at CERN. It also made me think of Glast determinations of early universe indications from the calorimeter located in the Glast satelitte.



Sean Carroll:
As a theorist (and one who grew up in astronomy departments), one of the most fascinating concepts in high-energy experiments is that of a trigger. Each detector will witness approximately one billion collisions per second, which is a lot. You might imagine that you're faced with two problems: simply recording all the data from each event, and then sifting through them for the interesting bits. You're right, but it's much worse than you think. That's because each event isn't just a few bytes if data; it's of order one megabyte per event. There's simply no way you could record all of the data.


So indeed such views move our consideration to what happens at these levels and the beginning of this process known as the trigger. Mine, is a generalized view and without inducing the features of Intelligent Design and such, I am still amazed that ths issue has moved some of these minds to wonder about the forces of light and darkness, and what these gentlemen might have seen as the "good and evil of the world?"

Is this what it has come down too? That the requirment of Cern will not have found the means to point us in the direction of the "basis of all design" and leave us to wonder what that trigger might have been? I think, as vague as I lead, I have been lead? On the contrary, such sharing that had taken place has alowed me the oortunity to explore these potentials amongst a segment of the population, that few had ever dared to enter froma public perspective.



It seems quite simple to me, that such a basic question belies the level of commitment that our forebears have in "directing us." To look at, "what could exist in the space around us," and we had not understood that something could exist in both worlds of design. That the weak and strong, might show us, that there is a basis? Again here I am cautioned by John Ellis's views.


Toward the end of a ten-year experiment in 1991, postdoc Hungye Dai of the University of Utah was puzzling over some really unusual data. The experiment was Fly’s Eye, which pioneered a new method of studying ultra-high-energy cosmic rays by monitoring the faint flashes of ultraviolet light produced in the sky when the particles hit the upper atmosphere. Lead scientist Pierre Sokolsky recalls when Dai showed him the anomalous numbers. Sokolsky thought they were a fluke from the detector: “You know, you always expect to see stuff like that, and it’s usually just junk,” says Sokolsky. “So I told him to go away, and to look at it some more.”


So we are indeed looking for this method, this trigger, that would unite both possible worlds, to understand as we look around us, something exists which we had never entertained before? Microstate blackholes and blackholes of the cosmo, as triggers?

But if this is so, then what language would suit us to know that the basis of this existance can operate in both seemingly unrelated views of GR and Quantum mechanics?

So like Smolin, we are looking hard for this trigger, and many scientists are engaged from different perspectives to say that if we unite in this view, then indeed the new spirit of Einstein was born, because we set him free amongst the population?

Missing E_T and its uses (LHC)?

Wednesday, April 27, 2005

The Calorimetric View?



The Title, might seem somewhat strange, but a issue has developed for me that I see raised in the scourge of other intellectuals, who disavow the extra dimension scenario.

So you have this view and you have this idea of missing energy? Where did it go and where did it come from? Pierre Auger linked previously and the Oh my god particle, raise this idea more in line with the vaster layout of this possibilty.

You see these things are happening around us now, and you needed a much comprehensive view of this compacted dynamcial world? So the methods seen for determination help us to see what is happening in relation not only to particle reductionistic views, but of the relationship happening with Earth and the Sun. Our other Cosmic relations, that move here in the vast network of spacetime contortions that signal informative views from earlier times


ATLAS and the LHC
Describing the strong, weak and electromagnetic interactions in terms of gauge theories, the Standard Model (SM) of fundamental particles and their interactions has successfully explained and predicted many aspects of high-energy particle interactions. However, despite its tremendous successes, it remains theoretically unsatisfactory. The SM cannot answer what is the origin of particle masses, contains a large number of arbitrary parameters, and does not explain why there are so many types of quarks and leptons, among other questions. Perhaps as much as theoretical breakthroughs are needed in order to improve the SM, so are experimental observations on phenomena which can further constrain the SM or may reveal physics beyond it.


The question I raised was in looking at where the missing energy had gone? This is a important question, becuase it speaks to what energy gone in/out, as not being equal? I take it, that all particle reductionistic interpretations would have surmized it's energy value, and then, had something left over that is accoutable? How would you know it's missing?

Now I was looking a Cabi's ole post and from it, this lead me to look at the title of the connected paper for consideration.


A Toroidal LHC ApparatuS


Part of the counterpart of looking at particle creation would have been able to understand the part of the calorimeters that are used to measure the evidence produced. IN this context, it lead me to the Atlas information held at CERN. It also made me think of Glast determinations of early universe indications from the calorimeter located in the Glast satelitte. See the Looking Glast


A Higgs Mechanism for Gravity, by Ingo Kirsch

In this paper we elaborate on the idea of an emergent spacetime which arises due to the dynamical breaking of diffeomorphism invariance in the early universe. In preparation for an explicit symmetry breaking scenario, we consider nonlinear realizations of the group of analytical diffeomorphisms which provide a unified description of spacetime structures. We find that gravitational fields, such as the affine connection, metric and coordinates, can all be interpreted as Goldstone fields of the diffeomorphism group. We then construct a Higgs mechanism for gravity in which an affine spacetime evolves into a Riemannian one by the condensation of a metric. The symmetry breaking potential is identical to that of hybrid inflation but with the non-inflaton scalar extended to a symmetric second rank tensor. This tensor is required for the realization of the metric as a Higgs field. We finally comment on the role of Goldstone coordinates as a dynamical fluid of reference.


Now I have not gone into in detail because I am somewhat slow and a bottom feeder trying very hard to gain perspective of the world these fellows like to deal with.

So the water symbolically speaking, sound manifest, with those inhabiting a dynamical world, speak about the nature of matter constitutions. That come from some state of existance? Here the idea, that it could emerse from nothing (where do the graviton perceptions reside?), is again hard to swallow becuase, "preconstitutional states," had allowed such manifestations to emerge from something? It just seemed logical? Non!

When you think this is going to be the end of it, I thought, I would recap, because I have given the containment(calorimetric) that such particle views, or early universe connections, might have brought forward in detectors methods?

This would have satisfied Peter Woit I am sure, but this view is far from over. The rules have defined a greater context to the issue that points us to the deeper issue of what Gerard 't Hooft might have said was comprehensible features of computerized information consistancies. This would have been far from the truth. Blackhole particle production, would have said hold on? To have this comprehensive view, you needed to include a completed version of the standard model? Without the grvaiton in cvomputerized versions you see where the picture is far completed and you se where the extra dimensiona would have certain features that would have incorporated graviton perceptions in the bulk?



The horizon would have been far from complete had the standard model not included this into the the energy in/out version. This would have been the thread(string) that connected the innner space of the blackhole with the particle production that would have dissipated/exploded in view? How would computerization meet this demand? LIGO?

Monday, November 15, 2004

Longitudinal and Transverse Information about the Energy Deposition Pattern



The calorimeter design for GLAST produces flashes of light that are used to determine how much energy is in each gamma-ray. A calorimeter ("calorie-meter") is a device that measures the energy (heat: calor) of a particle when it is totally absorbed. CsI(Tl) bars, arranged in a segmented manner, give both longitudinal and transverse information about the energy deposition pattern. Once a gamma ray penetrates through the anticoincidence shield, the silicon-strip tracker and lead converter planes, it then passes into the cesium-iodide calorimeters. This causes a scintillation reaction in the cesium-iodide, and the resultant light flash is photoelectrically converted to a voltage. This voltage is then digitized, recorded and relayed to earth by the spacecraft's onboard computer and telemetry antenna. Cesium-iodide blocks are arranged in two perpendicular directions, to provide additional positional information about the shower.

I am enamoured by the ideas of Nature, that such sublteness could have been defined in the cosmo with this exchange of information. That we are now looking at these events in the cosmo with some understanding, using measurements, where previously held comments about what we had understood in that same cosmo, had not shown to be of any use?

For the well informed, and those who venture into the Blog of Petter Woit, we find, that even Sean Carrol must caution Peter and thus I do the same, here, not just in regards to supersymmetry( my previous posts in early historical journey laid out in the question of Gerard t'Hooft), the ways in which interpret and map these dynamical situations?



A question is left in my mind as Gerard postulates that same universe. How would the fundamentals of quantum mechanics speak to what we had understood here.

Without some guidance and tutorial thoughts for introspection one would have to wonder about the artistic interpretation we assign the energy of this dynamical universe?