Thursday, February 23, 2006

History of the Universe and the Standard Model

Who would of thought the history of the universe could have ever been contained in this one moment? While it had been translated to 13.7 billions years, what is the value of recognizing this vast history, to what is contained in that one specific moment held in context of the collisions, we have in the colliders? What takes place between high energy particles, and what this process helps us to understand, as we see neutrino effects, talked about in ICECUBE.



So while we ponder this momenet in time, some things became apparnet as one reads words retro spect, that help to clarify what had been going on in my mind, while never really undertanding that what had been transpiring in my thinking, had been more or less, described from another perspectve as well.

I talked about "correlation of cognition," becuase it is important that we understnd intuitive development. That we build confidence in ourselves, as we move through the informtaion and see that what we had been learning, had taken us to another level of comprehension, as if, having digested the model in question, whatever that may be.


Fig. 1. In quantum chromodynamics, a confining flux tube forms between distant static charges. This leads to quark confinement - the potential energy between (in this case) a quark and an antiquark increases linearly with the distance between them.



The Four Fundamental Forces

Electromagnetism causes like-charged objects to repel each other and oppositely charged objects to attract each other. The electromagnetic force binds negative electrons to the positive nuclei in atoms and underlies the interactions between atoms. Its force carrier particle is a photon.

The strong force binds quarks together. While the electromagnetic force works to repel the positively charged protons in the nucleus of an atom, the strong force is stronger and overrides these effects. The particle that carries the strong force is called a gluon, so-named because it so tightly "glues" quarks together into larger particles like protons and neutrons. The strong force is also responsible for binding protons and neutrons together in the nucleus.

Gravity is the phenomenon by which massive bodies, such as planets and stars, are attracted to one another. The warps and curves in the fabric of space and time are a result of how these massive objects influence one another through gravity. Any object with mass exerts a gravitational pull on any other object with mass. You don't fly off Earth's surface because Earth has a gravitational pull on you. Gravity is thought to be carried by the graviton, though so far no one has found evidence for its existence.

The weak force is responsible for different types of particle decays, including a process called beta decay. This can occur when an atom's nucleus contains too many protons or too many neutrons -- a neutron that turns into a proton undergoes beta minus decay; a proton that changes into a neutron experiences beta plus decay. This weak force is mediated by the electri- cally charged W- and W+ force carrier particles and the neutral Z0 force carrier particle.




Reductionistic Views

Part of this discription is important from the understanding, that how we see, and talk about things that we do in let's say Q<-->Q measure and distance, have some relation to what we are talking about and discribing in collision states. So this entry here helps to this degree, to maintain some cohesion and understanding, while differences in model and experimental conceptions are explored.


Cosmic Rays


Conservatively the idealization, is the progression from the understanding of Unifying forces, and progression to conceptual understanding found and revealled in the world of natural processes. Who would have ever thought that platonic forms could have been capture in the mind of a Gellman, while a Feynman help to introduce us to the interactions?

Fig. 1. The four forces (or interactions) of Nature, their force carrying particles and the phenomena or particles affected by them. The three interactions that govern the microcosmos are all much stronger than gravity and have been unified through the Standard Model
.


This is what I like to do. Summations while they be ill time to a better comprehension demanded, I found this a wonderfiul idealization in moving intuitively perception to a clearer understanding, as I looked at ICECUBE. All that I am encountering through exploration of principles embued in experimental observations, according to what "new" physics might be revealled.

While the experimental situation has been set up( who determine what experiments would be challenged?) All the worker bees ready to do their parts. How well had they understood this process, to potentially reveal a better insight into what will come next?

There had to be evidence of your theoretical positions in nature.

Would you be so hesitant to just sit and wait, while the opportunity exists for you to unite these experimental procedures? Into a pciture of a complete scenario, as you understood it in nature. How energy of the particle collisons within our environ and the resulting particle dissipation, revealled as the neutrino base experiment given to signs as what?

So what is this unifying concept, that we could see the strong force, to the weak being explained, while we had paid attention and witness to many things going on with earth, as an observatory, in it's completeness?

At this moment then the division and valuation of experimental cross sectioning of fundamental forces( experiments respectively), would have been placement of "all aspects of the unifying forces" as it's measure. That we could have correlated across the map, all aspects united in some unique translation, as LIGO, or Pierre Auger, or Collider experiments, along with Ice CUbe, paints a extremely interesting picture for us.

What "new math" will be borne in the minds with "new concepts and models" to bring analogy into context as natures way?

See:

  • Mathematical Enlightenment
  • No comments:

    Post a Comment