Sunday, May 05, 2013

The Blackhole Hunt is On

Published on May 30, 2012

 See: NuSTAR to Hunt for Black Holes




NuSTAR



NASA contracted with Orbital Sciences Corporation to launch NuSTAR (mass 772 pounds (350 kg))[11] on a Pegasus XL rocket for 21 March 2012.[5] It had earlier been planned for 15 August 2011, 3 February 2012, 16 March 2012, and 14 March 2012.[12] After a launch meeting on 15 March 2012, the launch was pushed further back to allow time to review flight software used by the launch vehicle's flight computer.[13] The launch was conducted successfully at 16:00:37 UTC on 13 June 2012[1] about 117 nautical miles south of Kwajalein Atoll.[14] The Pegasus rocket was dropped from the L-1011 'Stargazer' aircraft.[11][15]
On 22 June 2012 it was confirmed that the 10 m mast was fully deployed.[16]



See Also:


Saturday, May 04, 2013

The LIGO and Virgo Gravitational-Wave Detectors

An artist's impression of two stars orbiting each other (left). The orbit shrinks as the system emits gravitational waves (middle). When the stars merge (right), there is a resulting powerful emission of gravitational waves. [Image: NASA]

The LIGO and Virgo gravitational-wave detectors have been hunting for signals from the collisions of neutron stars and black holes, which are dense objects formed from the remains of stars many times more massive than our Sun. When two of these objects orbit each other in a binary system, the emission of gravitational waves will gradually carry away some of their orbital energy, forcing them to get closer and closer together. This happens slowly at first, but as the orbit gets tighter the gravitational waves get stronger and the process accelerates until eventually the stars collide and merge, emitting in the last few seconds one of the most powerful outflows of energy in the Universe. See: What gravitational waves can tell us about colliding stars and black holes




The LIGO Hanford Control Room
LIGO's mission is to directly observe gravitational waves of cosmic origin. These waves were first predicted by Einstein's general theory of relativity in 1916, when the technology necessary for their detection did not yet exist. Gravitational waves were indirectly suggested to exist when observations were made of the binary pulsar PSR 1913+16, for which the Nobel Prize was awarded to Hulse and Taylor in 1993.
The Binary Pulsar PSR 1913+16:




See Also:



Friday, May 03, 2013

GRB 130427A: Highest-energy Light Ever Detected

The maps in this animation show how the sky looks at gamma-ray energies above 100 million electron volts (MeV) with a view centered on the north galactic pole. The first frame shows the sky during a three-hour interval prior to GRB 130427A. The second frame shows a three-hour interval starting 2.5 hours before the burst, and ending 30 minutes into the event. The Fermi team chose this interval to demonstrate how bright the burst was relative to the rest of the gamma-ray sky. This burst was bright enough that Fermi autonomously left its normal surveying mode to give the LAT instrument a better view, so the three-hour exposure following the burst does not cover the whole sky in the usual way.
Credit: NASA/DOE/Fermi LAT Collaboration See: NASA's Fermi, Swift See 'Shockingly Bright' Burst


See Also:

Generalizations on, It from Bit


I know there is an essay question going on and I thought it might quite the challenge indeed to wonder and construct from a layman standpoint some of the ideas that are emerging from the challenge.


The past century in fundamental physics has shown a steady progression away from thinking about physics, at its deepest level, as a description of material objects and their interactions, and towards physics as a description of the evolution of information about and in the physical world. Moreover, recent years have shown an explosion of interest at the nexus of physics and information, driven by the "information age" in which we live, and more importantly by developments in quantum information theory and computer science.

We must ask the question, though, is information truly fundamental or not? Can we realize John Wheeler's dream, or is it unattainable? We ask: "It From Bit or Bit From It?"

Possible topics or sub-questions include, but are not limited to:

What IS information? What is its relation to "Reality"?

How does nature (the universe and the things therein) "store" and "process" information?

How does understanding information help us understand physics, and vice-versa?
 See: It From Bit or Bit From It?


So maybe as I go along it will contrive into something tangible, worth considering. If I show it's production here and it eliminates any possibility of an entrance, then it"s nice that I will have learn something along the way.



Part 1

To my mind there must be, at the bottom of it all,
not an equation, but an utterly simple idea.
And to me that idea, when we finally discover it,
will be so compelling, so inevitable,
that we will say to one another,
“Oh, how beautiful !
How could it have been otherwise?”
From a personal notebook of Wheeler circa 1991

This symbol was used to demonstrate in a global sense that everything is derived from bits. Taken from a speech given by John Archibald Wheeler in 1999.  Also from, J. A. Wheeler: Journey into Gravity and Spacetime (Scientific American Library, Freeman, New York, 1990),  pg. 220


So the idea here while starting from a vague representation of something that could exist at of deeper region of reality is ever the question of where our perspective can go. So as if telling a story and reaching for some climax to be reached I ponder a approach. If one goes through the story it is to bring fastidiously a place in the future so as to see where John Archibald Wheeler took us now, in the form of his perspective on Information, Physics and Quantum.

So indeed I have open on a simplistic level so as to move this story into the forum of how one can might approach a description of the wold so as to say it's foundation has been purposeful and leading. So I will move forward and present a phenomenological approach considered and go backward in time.

Quantum gravity theory is untested experimentally. Could it be tested with tabletop experiments? While the common feeling is pessimistic, a detailed inquiry shows it possible to sidestep the onerous requirement of localization of a probe on Planck length scale. I suggest a tabletop experiment which, given state of the art ultrahigh vacuum and cryogenic technology, could already be sensitive enough to detect Planck scale signals. The experiment combines a single photon's degree of freedom with one of a macroscopic probe to test Wheeler's conception of "quantum foam", the assertion that on length scales of the order Planck's, spacetime is no longer a smooth manifold. The scheme makes few assumptions beyond energy and momentum conservations, and is not based on a specific quantum gravity scheme See:Is a tabletop search for Planck scale signals feasible? by Jacob D. Bekenstein-(Submitted on 16 Nov 2012 (v1), last revised 13 Dec 2012 (this version, v2))

The question of any such emergence is then to consider that such examples held in context of the digital world of physics. This is to say it can be used to grossly examine levels to take us to the quest of examining what exists as a basis of reality. So too then,  as to what can be described as purposeful examination of the interior of the black hole.

Jacob D. Bekenstein


Such examinations then ask whether such approaches will divide perspective views in science into relations that adopt some discrete or continuum view of the basis of reality. This then forces such division as to a category we devise with respect to the sciences as theoretical examinations and it's approach. So from this perspective we see where John Wheeler sought to seek such demonstration in which to raise the question of a basis of reality on such a discrete approach?

So such foundational methods are demonstrated then as to form from such developments in perspective. John Wheeler sought to seek a demonstration of the idea  of foundation as an end result by his students. To seek an explanation of the interior of the black hole as to demonstrate such a progeny in his students is to force this subject further along in history. So,  from this standpoint we go back in time.



See:

Generalizatons on:" It From Bit" Part 2

John Archibald Wheeler (born July 9, 1911) is an eminent American theoretical physicist. One of the later collaborators of Albert Einstein, he tried to achieve Einstein's vision of a unified field theory. He is also known as the coiner of the popular name of the well known space phenomenon, the black hole. 


There is always somebody who is the teacher and from them, their is a progeny. It would not be right not to mention John Archibald Wheeler. Or, not to mention some of his students.

Notable students

Demetrios Christodoulou
Richard Feynman
Jacob Bekenstein
Robert Geroch
Bei-Lok Hu
John R. Klauder
Charles Misner
Milton Plesset
Kip Thorne
Arthur Wightman
Hugh Everett
Bill Unruh

So it is with some respect that as we move back in time we see the names of those who have brought us forward ever closer to the understanding and ideal of some phenomenological approach so as to say such a course of events has indeed been fruitful. Also, to say that such branches that exist off of John Archibald Wheeler's work serve to remind us of the wide diversity of approaches to understanding and developing gravitational approaches to acceptance and development.

COSMIC SEARCH: How did you come up with the name "black hole"?

John Archibald Wheeler: It was an act of desperation, to force people to believe in it. It was in 1968, at the time of the discussion of whether pulsars were related to neutron stars or to these completely collapsed objects. I wanted a way of emphasizing that these objects were real. Thus, the name "black hole".

The Russians used the term frozen star—their point of attention was how it looked from the outside, where the material moves much more slowly until it comes to a horizon.* (*Or critical distance. From inside this distance there is no escape.) But, from the point of view of someone who's on the material itself, falling in, there's nothing special about the horizon. He keeps on going in. There's nothing frozen about what happens to him. So, I felt that that aspect of it needed more emphasis.

So as we go back in time we see where certain functions as a description and features of a reality has to suggest there was some beginning. It is also the realization that such a beginning sought to ask us to consider the function and reality of such new concepts so as to force us to deal with the fundamentals of that reality.

Dr. Kip Thorne, Caltech 13


So again, as we go back in time we see where such beginnings in sciences approach has to have it's beginning not only as a recognition of the black hole, but of where we have been lead toward today's approach to gravity in terms of what is discrete and what is considered, a continuum. These functions, as gravity, show a certain distinction then in terms of today's science as they exist from John Archibald Wheeler's approach so as to that question to his search for links to, Information, Physics and the Quantum began.

Thursday, May 02, 2013

NASA operates a system observatory of Heliophysics missions

The Heliophysics System Observatory (HSO) showing current operating missions, missions in development, and missions under study. Credit: NASA

NASA operates a system observatory of Heliophysics missions, utilizing the entire fleet of solar, heliospheric, and geospace spacecraft to discover the processes at work throughout the space environment. In addition to its science program, NASA’s Heliophysics Division routinely partners with other agencies to fulfill the space weather research or operational objectives of the nation. See: What are our current capabilities to predict space weather?



See Also:


Space Weather


Circular Coronal Mass Ejection A coronal mass ejection (CME) erupted from just around the edge of the sun on May 1, 2013, in a gigantic rolling wave. CMEs can shoot over a billion tons of particles into space at over a million miles per hour. This CME occurred on the sun’s limb and is not headed toward Earth. The video, taken in extreme ultraviolet light by NASA’s Solar Dynamics Observatory (SDO), covers about two and a half hours. Credit: NASA/SDO



Current Space Weather Conditions

Prepared jointly by the U.S. Dept. of Commerce, NOAA,
Space Weather Prediction Center and the U.S. Air Force.
Updated 2013 May 01 2200 UTC

Joint USAF/NOAA Solar Geophysical Activity Report and Forecast
SDF Number 121 Issued at 2200Z on 01 May 2013



Auroral Activity Extrapolated from NOAA POES

See Also:

Tuesday, April 30, 2013

Answers to Question-Interesting

It seems the opportune time when thinking about positions people adopt, that one realizes that one is not in a class of their own, but do definitely belong to a group of people in regard to a response from a survey. While not a part of that culture, can one say, this is a representative example of what appears in society, as a reflection?

Relax if you are a theoretical scientist or a physicist, because the issue of acceptance of any philosophical view comes into question for you?

So with a science thinking back ground, layman style, my bias definitely shows through, and I feel good about it. Not that I ever felt bad when learning from others and being respective of their idealizations as leaders in science.
Academics of all stripes enjoy conducting informal polls of their peers to gauge the popularity of different stances on controversial issues. But the philosophers — and in particular, David Bourget & David Chalmers — have decided to be more systematic about it. (Maybe they have more controversial issues to discuss?) See: What Do Philosophers Believe?



 Abstract objects: Platonism or nominalism?

Lean toward: nominalism 210 / 931 (22.6%)
Accept: Platonism 184 / 931 (19.8%)
Lean toward: Platonism 182 / 931 (19.5%)
Accept: nominalism 141 / 931 (15.1%)
Agnostic/undecided 47 / 931 (5.0%)
Accept another alternative 46 / 931 (4.9%)
Reject both 34 / 931 (3.7%)
Insufficiently familiar with the issue 26 / 931 (2.8%)
Accept an intermediate view 21 / 931 (2.3%)
The question is too unclear to answer 19 / 931 (2.0%)
Skip 9 / 931 (1.0%)
There is no fact of the matter 8 / 931 (0.9%)
Other 2 / 931 (0.2%)
Accept both 2 / 931 (0.2%)



"

James Robert Brown - Plato's Heaven: a User's Guide

Sunday, April 28, 2013

Getting Perspective on Time


Time has no independent existence apart from the order of events by which we measure it.Albert Einstein

Currently with the new book written by Lee Smolin about Time, to me, it is a fundamental question about what arises, and,  on how we use time to measure. Also for me,  to ask what relevance time means,  as an emergent product for any beginning.


LEE SMOLIN- Physicist, Perimeter Institute; Author, The Trouble With Physics

Thinking In Time Versus Thinking Outside Of Time

One very old and pervasive habit of thought is to imagine that the true answer to whatever question we are wondering about lies out there in some eternal domain of "timeless truths." The aim of re-search is then to "discover" the answer or solution in that already existing timeless domain. For example, physicists often speak as if the final theory of everything already exists in a vast timeless Platonic space of mathematical objects. This is thinking outside of time. See: WHAT SCIENTIFIC CONCEPT WOULD IMPROVE EVERYBODY'S COGNITIVE TOOLKIT?
 A "scientific concept" may come from philosophy, logic, economics, jurisprudence, or other analytic enterprises, as long as it is a rigorous conceptual tool that may be summed up succinctly (or "in a phrase") but has broad application to understanding the world.

What ignited this question for me goes to a comment I wrote as to what I saw as a precursor to this question for Lee Smolin and others. Further to this, the lessons and explanation Sean Carroll gave toward how we look at time.

Darwinian evolutionary biology is the prototype for thinking in time because at its heart is the realization that natural processes developing in time can lead to the creation of genuinely novel structures. Even novel laws can emerge when the structures to which they apply come to exist. Evolutionary dynamics has no need of abstract and vast spaces like all the possible viable animals, DNA sequences, sets of proteins, or biological laws. Exaptations are too unpredictable and too dependent on the whole suite of living creatures to be analyzed and coded into properties of DNA sequences. Better, as Stuart Kauffman proposes, to think of evolutionary dynamics as the exploration, in time, by the biosphere, of the adjacent possible. See: Thinking In Time Versus Thinking Outside Of Time
While we then become cognoscente of the rules around which parameters have meaning in relation to Time, it was also important to understand that the idea of cross pollination of the sciences recognizes what is brought to the table.

"It is very good that Stu Kauffman and Lee are making this serious attempt to save a notion of time, since I think the issue of timelessness is central to the unification of general relativity with quantum mechanics. The notion of time capsules is still certainly only a conjecture. However, as Lee admits, it has proven very hard to show that the idea is definitely wrong. Moreover, the history of physics has shown that it is often worth taking disconcerting ideas seriously, and I think timelessness is such a one. At the moment, I do not find Lee and Stu's arguments for time threaten my position too strongly."- Julian Barbour

In regard to The Adjacent Possible I was well aware of the implication and parameters  around such thinking to realize that even while applying the trade,  Stuart, was traveling new ground. His thinking is encouraging the flexibility that I am talking about with regard the restrictions one places on them self. I encourage this kind of thinking so as to bolster the lull in scientific advancement to stimulate and foster the idealization of creativity that I think has become stagnate while  moving from one point in the measure to the next. Why Murray Gell-Mann's  move and his expertise is understood in context of new approaches. Simplicity and complexity.




Setting Time Aright



See Also:

Friday, April 26, 2013

Origins of Life Question?



Is it more astonishing that a God created all that exists in six days, or that the natural processes of the creative universe have yielded galaxies, chemistry, life, agency, meaning, value, consciousness, culture without a Creator. In my mind and heart, the overwhelming answer is that the truth as best we know it, that all arose with no Creator agent, all on its wondrous own, is so awesome and stunning that it is God enough for me and I hope much of humankind.
BEYOND REDUCTIONISM: REINVENTING THE SACRED

The COOL EDGE Workshop was the brainchild of American theoretical biologist and expert in the complexity of biological systems and organisms, Stuart Kauffman. “If we do not organize our field we are in danger of drifting into scattered, uncoordinated groups that make little progress,” said Kauffman in an interview with the CERN Bulletin after the first meeting in 2011. “By coordinating our efforts, we believe we can make more rapid strides.”

“We are happy to share our experience with large-scale collaborations with the life scientists participating in the COOL EDGE Workshop 2013,” says Sergio Bertolucci, director for research and computing who opened the meeting on Tuesday. “The CERN model is an example (and a successful one!) of how large international collaborations can actually work. We are happy if we can also be of help to other communities.” See:
CERN, life science and the origins of life



See Also:

The workshop at the CERN meeting focused attention on the metabolism first approach. Both it and the RNA world need exploration. The meeting ended with a proposal to get the research community organized behind a common effort, hopefully benefiting from the experience of CERN in fostering international collaboration.