Sunday, October 29, 2006

The Higg's Boson and Memory?

While some like chocolate bars and the bubble nature of candy, some also like the molasses and ice cream? :)


If Plato Had thought "the new born" was not really such a "blank slate" then what did he mean exactly? If we could remember, "in what form" would these memories have manifested?

The origins of thought would have found that what existed before, had to make it's way into what we are doing today? So is it really "lost" since we cannot and do not remember what was before? Or, is it possible to remember?

Not many can see in this abstract way, or have considered how a photon might have traveled? Sure they have understood satellites and the travel through space, but have they consider this in context of CSL lensing? Sean put up a link yesterday that had me seeing how such a travel over distance might have had some photon's strange journies in context of such lensings.


So how does this lump of clay ever take with it all that was before. Is it just a slight shift in our tonal? What was "not apparent before" is now very much a a part of our views of nature now. Before, it was "very pleasing," and now, it is "still very pleasing" that our cosmological views have been extended some how? :)

Likewise, if the very fabric of the Universe is in a quantum-critical state, then the "stuff" that underlies reality is totally irrelevant-it could be anything, says Laughlin. Even if the string theorists show that strings can give rise to the matter and natural laws we know, they won't have proved that strings are the answer-merely one of the infinite number of possible answers. It could as well be pool balls or Lego bricks or drunk sergeant majors.


Of course we always look for directions as to which way we'll have to look for things to understand just what our perceptions reveal and what is the basis for our thoughts as to the nature of the universe?

For example, theory says that Higgs particles are matter particles, but in most respects the Higgs behaves more like a new force than like a particle. How can this be? In truth, the Higgs is neither matter nor force; the Higgs is just different.


So it is never easy for me to follow from one thought to the next.

Imagine, the "molasses" here for a minute. What gives mass it's shape while we cannot discern the very beginning as an asymmetrical valuation? Based on the notion, that there was a simpler time entropically, how do we know what is discretely measured?

Why the discrete measure and it's shape?



New measurements of top quark mass at Fermilab have revised estimates for the mass of the Higgs boson.
Scientists believe that the Higgs boson, named for Scottish physicist Peter Higgs, who first theorized its existence in 1964, is responsible for particle mass, the amount of matter in a particle. According to the theory, a particle acquires mass through its interaction with the Higgs field, which is believed to pervade all of space and has been compared to molasses that sticks to any particle rolling through it. The Higgs field would be carried by Higgs bosons, just as the electromagnetic field is carried by photons.

"In the Standard Model, the Higgs boson mass is correlated with top quark mass," says Madaras, "so an improved measurement of the top quark mass gives more information about the possible value of the Higgs boson mass."

According to the Standard Model, at the beginning of the universe there were six different types of quarks. Top quarks exist only for an instant before decaying into a bottom quark and a W boson, which means those created at the birth of the universe are long gone. However, at Fermilab's Tevatron, the most powerful collider in the world, collisions between billions of protons and antiprotons yield an occasional top quark. Despite their brief appearances, these top quarks can be detected and characterized by the D-Zero and CDF experiments.


So yes there are these experiments that lead us to think about how the universe came into being? All these things that we see in the universe, are they so very different from every other point in space. How is it's particle nature revealed and we have gained much from discerning the quantum dynamically nature of what, "just is."

What just "is?"

Physically, the effect can be interpreted as an object moving from the "false vacuum" (where = 0) to the more stable "true vacuum" (where = v). Gravitationally, it is similar to the more familiar case of moving from the hilltop to the valley. In the case of Higgs field, the transformation is accompanied with a "phase change", which endows mass to some of the particles.


I mean it's vague to me that such a memory could have been transferred to other things. The Universe has become very large, and entropically complex? Our universe of discrete things, have become complex in discretized values. How would we have ever seen the "purity of thought manifest" if we did not delve ever deeper into the nature of things?

In 2000 the same analogy was used to establish the robustness of the spectrum of primordial density fluctuations in inflationary models. This analogy is currently stimulating research for experimenting Hawking radiation. Finally it could also be a useful guide for going beyond the semi-classical description of black hole evaporation.

Saturday, October 28, 2006

Bursting Bubbles of New Universes?



Aero chocolate bars are nicer then the "singularity bubble popping bubble blowing?" Say that fast three times.

The "boundary condition" is the very chocolate bar itself? The "bubbles explain the nature of the chocolate bar," or is it designed that way naturally?



Okay, so the idea of the bubble blown is constrained by the shape of your mouth and the air you push through these constraints (you suck in air through your nose)? "It's memory" is the constraint that you put on the bubble blowing, or will you be a bit more lofty about it, then just stretching your gums?:)



Imagine the metaphors we can use to explain the origins of the universe, in examples we have when we look at the Aurora's, rainbows, or something that we could derive from "quantum dynamic views," as if "Extracting Beauty from Chaos" might have been implied? Qui Non?



Such complexity in the results and it's uncertainty of each and very point in space becomes part of "a larger picture" that looks quite beautiful, and really not so chaotic at all??

While I had been showing some of the effects of the depth's of perception, imagine that the "final picture" is really quite illuminating when just talking about the sun.



So now should I get so abstract that I agree and take you to the bubble gum incident and show the the idea behind the transformation process? Why I would have thought the "Navier-stokes equation implication solved" from the Clay Institute would have thought this would have been worth a million? Maybe I was being to simplistic in my thinking?:)

Remembering is the "continuity and topologically thinking" and not the "discrete values" we assign each point in space? How would you explain what we are seeing naturally? A super computer? Or a Vast array detection system used in IceCube or searching for the effect asymmetrically valued from the sun/collider?

Friday, October 27, 2006

Probing the Perfect Liquid

If you learn to understand the relationship between QGP and the physics underlying hydrodynamic flows then what leads one to believe that the blackholes cannot also create the circumstances, for the process you may observe in the cosmos, "is" directly related to the effects of the "relativistic nature" of flows?

There is no further need from this point to refer to the big bang as a collision process. Focus on the energy and how cosmologically the QGP was gotten too, in a cosmological sense.

And that out of such issuances, "new particle creations" are ignited in possible new universes/physics?

While some like chocolate bars and the bubble nature of candy, some also like the molasses and ice cream? :)

Our work is about comparing the data we collect in the STAR detector with modern calculations, so that we can write down equations on paper that exactly describe how the quark-gluon plasma behaves," says Jerome Lauret from Brookhaven National Laboratory. "One of the most important assumptions we've made is that, for very intense collisions, the quark-gluon plasma behaves according to hydrodynamic calculations in which the matter is like a liquid that flows with no viscosity whatsoever."

Proving that under certain conditions the quark-gluon plasma behaves according to such calculations is an exciting discovery for physicists, as it brings them a little closer to understanding how matter behaves at very small scales. But the challenge remains to determine the properties of the plasma under other conditions.

"We want to measure when the quark-gluon plasma behaves like a perfect fluid with zero viscosity, and when it doesn't," says Lauret. "When it doesn't match our calculations, what parameters do we have to change? If we can put everything together, we might have a model that reproduces everything we see in our detector."


See:










Tuesday, October 24, 2006

Raphael the Painter



By 'dilating' and 'expanding' the scope of our attention we not only discover that 'form is emptiness' (the donut has a hole), but also that 'emptiness is form' (objects precipitate out of the larger 'space') - to use Buddhist terminology. The emptiness that we arrive at by narrowing our focus on the innermost is identical to the emptiness that we arrive at by expanding our focus to the outermost. The 'infinitely large' is identical to the 'infinitesimally small'.The Structure of Consciousness John Fudjack - September, 1999




Self-portrait by Raphael


While I am no great philosopher, the idea of truth was very important one to me. Finding some method by which to proceed was very difficult without the teachers handy. So I learned to trust my intuition as I was lead from one place to another. By it's own design, the correlation I termed in relation to cognition were very important discover about my own potential. I had to symbolically discribe the very actions of what goes in, and what comes out, turns through that channel in much the same way a electromagnetic field governs by analogy the principle of life around the human body, as information passes through the center.

If conceived as a series of ever-wider experiential contexts, nested one within the other like a set of Chinese boxes, consciousness can be thought of as wrapping back around on itself in such a way that the outermost 'context' is indistinguishable from the innermost 'content' - a structure for which we coined the term 'liminocentric'.


Will this become part of the greater complexity of the life form, as information becomes part of the larger context of the souls growth? How is that measured? How is t external world brought back in and then turned outward, and the "colors change" as the truth begins to dawn?

For me the story here starts with a painter and from the very painting itself, one can imagine a larger story unfolding, as one peers into the center of the School of Athens.

For now, the music is set aside, for the "foundational perspective" that issues forth from this blog.



I added this biography of the artist himself and "crunched" behind him is a speculation of a kind that becomes the basis of this bloggery. It is about observation and the search for truth as we look at the work of Raphael and the following information that I hold in consideration of this painting.

Our attempt to justify our beliefs logically by giving reasons results in the "regress of reasons." Since any reason can be further challenged, the regress of reasons threatens to be an infinite regress. However, since this is impossible, there must be reasons for which there do not need to be further reasons: reasons which do not need to be proven. By definition, these are "first principles." The "Problem of First Principles" arises when we ask Why such reasons would not need to be proven. Aristotle's answer was that first principles do not need to be proven because they are self-evident, i.e. they are known to be true simply by understanding them.


Do we know what Raphael was trying to impart through these images?

Inductive and Deductive

While holding the School of Athens by Raphael then picture in mind and consider the following?

Aristotle from a a posteriori leads perspective in one way, and Plato a prior?

PLato saids, "Look to the perfection of the heavens for truth," while Aristotle saids "look around you at what is, if you would know the truth"


So from that basis look at what is portrayed in the opening statement above with regards to Plato finger pointing up and Aristotle's hand sweeping pervasively?

So while I lead one through a vast maze of links here it is not without doing my own research that I could now point you to wikipedia for examination of the many things that we could learn of Plato. Imagine Plato continues to live through all this information?

Without Plato a a personification of the some of the ideals I have, I know who I am. The sun as a symbol of enlightenement? Then following, Plato's Cave Analogy?

As a beginning, you see I started to point out some of the more important features of the leadng perspective of Aristotle, and the link I see to Robert Laughlins building blocks of matter?

But before I jump so far ahead, maybe it is indeed useful to link wiki here so one gets the jest of what may be implied by an example?

Epistemology or theory of knowledge is the branch of philosophy that studies the nature and scope of knowledge. The term "epistemology" is based on the Greek words "επιστημη or episteme" (knowledge) and "λόγος or logos" (account/explanation); it is thought to have been coined by the Scottish philosopher James Frederick Ferrier.

Much of the debate in this field has focused on analyzing the nature of knowledge and how it relates to similar notions such as truth, belief, and justification. It also deals with the means of production of knowledge, as well as skepticism about different knowledge claims. In other words, epistemology primarily addresses the following questions: "What is knowledge?", "How is knowledge acquired?", and "What do people know?". Although approaches to answering any one of these questions frequently involve theories that are connected to others, there is enough particular to each that they may be examined separately.

There are many different topics, stances, and arguments in the field of epistemology. Recent studies have dramatically challenged centuries-old assumptions, and the discipline therefore continues to be vibrant and dynamic.



So while some would point to the very functions of perceiving aspects of the higher self, if there is such a thing accept in one conceptual framework, or messages from God, as Ramanujan received the equations in dream time. I think of this as a very dynamical process, that each of us possesses. If without the teacher to guide us, then the teacher most certainly makes it's way into the mind for observation?

Innatism

Innatism is a philosophical doctrine introduced by Plato in the socratic dialogue Meno which holds that the mind is born with ideas/knowledge, and that therefore the mind is not a tabula rasa at birth. It asserts therefore that not all knowledge is obtained from experience and the senses. Innatism is the opposite of empiricism.

Plato claimed that humans are born with ideas/forms in the mind that are in a dormant state. He claimed that we have acquired these ideas prior to our birth when we existed as souls in the world of Forms. To access these, humans need to be reminded of them through proper education and experience.


While it is referred to the young born into this world, what said that any person could not become that "blank slate" that would allow the wider perspective of what has been lived, is not confined to this life, but is exposed as that channel is opened for the wider perspective about life?

I say,"
I mean really, if, each of us is born into this world with such a blank slate, then how is an idea incorporated into such a design of our blank slate. Especially, if there had not been some influence predisposed, to draw ideas into the appropriate environment for consideration?


While we provide for the nurturing aspect of creativity to express itself, we find that such freedoms are encouraged by observation of the introspective attitude we gain by learning about ourselves.

The Medicine Wheel as a Mandala



It is not so much that we learn about the very "drawing here for you" but that it is circular in nature, and by the very discription the mandala is pretty "clear cut" as to what manifested from a deeper level in my own mind.

Now what you do not understand is that the center is very important feature on what we focus on. While the "purity of thought" is presented here. It is the idea that the closer to the source you get, the purer the thought/idea that manifests into the theoretical world.

While I attempt to explain the process this does not disavow you from experimenting and testing, so that the advancement of knowledge and understanding reawakens you to the "nature" of one's being? What is this?

Sunday, October 22, 2006

The Radius of the Little Circle

Where a dictionary proceeds in a circular manner, defining a word by reference to another, the basic concepts of mathematics are infinitely closer to an indecomposable element", a kind of elementary particle" of thought with a minimal amount of ambiguity in their definition. Alain Connes


With such a statement, the "purity of thought," is speaking to a much more schematic understanding as we discuss the sociological thinking of mathematicians and the worlds they fantasize about? While deeper in reality the thought process(meditative) was engaged at a very subtle level, associated with the energy all pervasive.




Lee Smolin :
Another wonderful spin-off is that it turns out that the charge of the electron is related to the radius of the little circle. This should not be surprizing: If the electric field is just a manifestation of geometry, the electric charge should be, too.
THE TROUBLE WITH PHYSICS-Published by Houghton-Mifflin, Sep. 2006/Penguin (UK), Feb. 2007, Page 46


In "Star Shine," we start from a very large circle, but there is much to see from this circle, when we consider it's radius. We think "continuity" is somehow not involved, if we freeze this circle, and call it a discrete measure of the universe's age? Yet we know to well that the motivation of this universe from a "distant point" measure today entropically lives in the multitude of complexities?

Plato:
Model apprehension is part of the convergence that Lee Smolin and Brian Greene talk about, and without it, how could we look at nature and never consider that Einstein's world is a much more dynamical one then we had first learned from the lessons GR supplied, about gravity in our world?


On page 47 of the Trouble with Physics Lee goes on to say further down the page:

Lee Smolin:
Unfortunately, Einstein and the other enthusiasts were wrong. As with Nordstrom's theory, the idea of unification by adding a hidden dimension failed. It is important to understand why.


If all one had was the "cosmological view" one could be very happy about the way in which his observations have been deduced from the measures of our mechanical means, that we say that GR is very well suited.

Yet it has been through th efforts of reductionism that we have said, "hey there is indeed more depth to the views we have, that the mechanical measures are being tuned accordingly?"



Juan Maldacena:
The strings move in a five-dimensional curved space-time with a boundary. The boundary corresponds to the usual four dimensions, and the fifth dimension describes the motion away from this boundary into the interior of the curved space-time. In this five-dimensional space-time, there is a strong gravitational field pulling objects away from the boundary, and as a result time flows more slowly far away from the boundary than close to it. This also implies that an object that has a fixed proper size in the interior can appear to have a different size when viewed from the boundary (Fig. 1). Strings existing in the five-dimensional space-time can even look point-like when they are close to the boundary. Polchinski and Strassler1 show that when an energetic four-dimensional particle (such as an electron) is scattered from these strings (describing protons), the main contribution comes from a string that is close to the boundary and it is therefore seen as a point-like object. So a string-like interpretation of a proton is not at odds with the observation that there are point-like objects inside it.


While energy is being exemplified according to the nature of the particles we see in calorimetric design, what said that the energy here is not topologically smooth in it's orientations? Even we we move our views to the quantum regime.

Maybe having solved the "Continuum Hypothesis," we learned much about Einstein's inclinations?

The surface of a marble table is spread out in front of me. I can get from any one point on this table to any other point by passing continuously from one point to a "neighboring" one, and repeating this process a (large) number of times, or, in other words, by going from point to point without executing "jumps." I am sure the reader will appreciate with sufficient clearness what I mean here by "neighbouring" and by "jumps" (if he is not too pedantic). We express this property of the surface by describing the latter as a continuum.Albert Einstein p. 83 of his Relativity: The Special and the General Theory



Even Einstein had to add the "extra dimension" so we understood what non-euclidean views meant in a geometrical sense. I again refer here to Klein's Ordering of Geometries so one understands the schematics and evolution of that geometry.

Saturday, October 21, 2006

The History of "Star Shine to Now"

In "The String Saga of Star Shine" I gave a distant measure of how we might seen any event from that time to now.

But before I begin I wanted to link Lubos's mention of article from David G to him, to point out the method and determinacy with which I gave the "String Saga Star Shine" it's inital point of measure "from" to our currrent infomration present in this universe now.

The Universe on a String By BRIAN GREENE

This striking pattern of convergence, linking concepts once thought unrelated, inspired Einstein to dream of the next and possibly final move: merging gravity and electromagnetism into a single, overarching theory of nature's forces.

In hindsight, there was almost no way he could have succeeded. He was barely aware that there were two other forces he was neglecting — the strong and weak forces acting within atomic nuclei. Furthermore, he willfully ignored quantum mechanics, the new theory of the microworld that was receiving voluminous experimental support, but whose probabilistic framework struck him as deeply misguided. Einstein stayed the course, but by his final years he had drifted to the fringe of a subject he had once dominated.


Low and behold we measure the "high energy in our sun" but least we remember the lower ends of the spectrum how shall we ascertain the images of the Sun if we did not include the lower measures in what we discern of the "sterile neutrino?"

Lest we forget about the "idea of convergence here" we might again refer to Lee Smolin's Book, The Trouble with Physics." Might Brian Greene be referring to the "latest debate?"

The relationship here being expounded upon, holds this principal that Lee Smolin talks about in what a new theory can do. Pastes it in our heads as I have shown the historical value of what began with "Pauli's Ghost particle" as the "now" of today, askes us to consider the value of the "sterile Neutrino" as a value in the discernation of that weak gravitational field?

Arrow of Time?

Let's look at Kip Thornes definition of the "timeline(star shine's) history" shall we?


Dr. Kip Thorne, Caltech 01-Relativity-The First 20th Century Revolution


So here we are, fully appreciating and understanding the "measure of distance" as we look at the "new image" of the sun?



Yes, we are to include now not only the valuation of high energy dissertations here but what value we have of the immediate presence of the neutrinos from the sun. We now have a much more comprehensive view of what the sun saids to us over "this distance of time?" How we may look at the image as we look at the way the sun looks in that picture shown by JoAnne of Cosmic Variance above.

A lot of people do not understand that if you look to the cosmo, you do not just look at what is evident from observation, but that your observation is increased, as you enhance your perceptions about the "real depth" of that universe.


So the lesson here, is that the mathematics "first born to mind" is a very suttle thing, as we peer deeper into the very beginning of this universe. While Einstein did not see in the way we do now, the relevance of that distance in time, is still held to every mind to consider in GR, that the depth of perception s still needed on a quantum level.

While the point made here is "gravitational in nature," the issuance is from the "other dimensions" to now. Quantum dynamcically this has been revealled while the discrete notion has been applied to our thinking as the "oscillation factor" has been understood in the muon to electron neutrino?

So should I point to the nature spread out before us, as you look at the effect of the neutrinos on the Kamiokande screen? Other ways, that I have shown, as we look at the aurora borealis, or the rainbow in our skies?



The effect of "our reason" for such processes in physics are extremely versatile on a sociological level, that one might question indeed where such "pure thoughts in mathematics" could arise to the "symbolistic nature predating( monte carlo methods of computerization)" of that physics?

Model apprehension is part of the convergence that Lee Smolin and Brian Greene talk about, and without it, how could we look at nature and never consider that Einstein's world is a much more dyamical one then we had first learnt from the lessons GR supplied about gravity in our world?

Yes GR is still a theory, but with experimental consequences, much as the model string theory offers you, as we look at the oscillatory nature of what asymmetry provides for us, from that pure "high energy state?" Gravity, very strong, to what is weak in the measures of the neutrino characters?

I gave some pictures to consider while I continue. Some may move ahead of me if they like:) Maybe Stefan and Bee of Backreaction?

Friday, October 20, 2006

Doppelgänger Favors Oscillate

"Observations always involve theory."Edwin Hubble


Of course I relate the "Ghost Particle to Pauli" here so that people would recognize the faint discerning image in "mirror world," as some calculation that paved the way for some future spoken from Feynman's point of view, to John Bahcall. Imagine what began as a theory/concept/idea, could have brought on this whole subject of neutrinos.

Of course here I could relate the story of "Alice in Wonderland" and Ivars Peterson may have some thoguhts on this as well. About fantasy, and what a good mathematcian should have in her/his arsenal for future prospects which will manifest as Nikolai Lobachevsky relates in quote below.

So the idea here is of course that we are looking at the neutrinos as a mechanism responsible for the matter/anti-matter asymmetry. But hold this thought while we continue through here at the unimaginable, to the manageable in testing theory.

There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world.Nikolai Lobachevsky


I couldn't help but think of the new TV series "Heroes" that is now playing. Of course there are intriguing ideas here about time travel, regeneration, and what do you know, the "Doppelgänger," of mirror world.

Niki Sanders, a 33-year-old Las Vegas showgirl who can do incredible things with mirrors


Well under that pretense the idea is one of the dark side being show in mirror world, while the unconsicous stae of mind is somehow dropped in place of it's dark resurgence? How do you ever calculate something like that? Imagine, "Angels and Demons" as some sphere related by Escher as the revolving sphere of understanding?


All M.C. Escher works (c) 2001 Cordon Art BV - Baarn - the Netherlands. All rights reserved. www.mcescher.com


A doppelgänger (pronunciation (help·info)) is the ghostly double of a living person. The word doppelgänger is a loanword from German, written there (as any noun) with an initial capital letter Doppelgänger, composed from doppel, meaning "double", and gänger, as "walker". In English, the word is conventionally not capitalized, and it is also common to drop the German diacritic umlaut on the letter "a" and write "doppelganger", although the correct spelling without umlaut would be "doppelgaenger".


Right Handed Neutrino

Anyway there is this idea/concept/theory that refers to the combining gravity with the other forces. They call this supersymmetry. This requires that each particle to have a supermassive shadow particle?

Like many detectors, this experiment at the Fermi National Accelerator in Batavia, Illinois investigates the oscillation of neutrinos from one type to another. Since 2003, it has observed neutrinos created from protons in Fermilab's particle booster, part of the system that the lab normally employs to accelerate protons to higher energies for other experiments. MiniBooNE is a 40-foot-in-diameter spherical steel tank filled with 800 tons of mineral oil and lined with 1,280 phototubes (some of which are being adjusted in this image) that produce a flash of light when charged particles travel through them. Analyses of these light flashes are already providing tantalizing information


So if the assumption is that the "sterile neutrino" could roam in higher dimensions being undetected by us, and make it's presence felt through the influence of gravity, what does this say about grvaity currently measure at this time in the universe?

Might it mean that when only measuring high energy collidial events, that we have within the presence of the cosmo, also the the effect of weak grvaitation measures allotted to the sterile neutino, then what does this say to us about the extension of the standard model as new physics?

Current evidence shows that neutrinos do oscillate, which indicates that neutrinos do have mass. The Los Alamos data revealed a muon anti-neutrino cross over to an electron neutrino. This type of oscillation is difficult to explain using only the three known types of neutrinos. Therefore, there might be a fourth neutrino, which is currently being called a "sterile" neutrino, which interacts more weakly than the other three neutrinos.

BooNE will determine the oscillation parameters and possibly yield further information about the mass of a neutrino


See:
  • The Right Spin for a Neutrino Superfluid
  • Thursday, October 19, 2006

    The String Saga of Star Shine?

    So lets say that the universe has always existed? Imagine approximately 13 billion years as a length of time measured?


    The Distant Gamma-Ray Burst GRB 050904. Image credit: ESO
    Mon, 12 Sep 2005 - An Italian team of astronomers have found a gamma ray burst that blew up 12.7 billion light-years away - the most distant ever seen. Astronomers have calculated that it exploded with 300 times more energy than our Sun will put out in its entire 10+ billion year lifespan. The blast was discovered by NASA's Swift satellite, which is dedicated to discovering these powerful explosions.


    We just want to know what motivates any "inflationary idea" to have it consider in all the entropic states that we recognize today, may have arisen from a simpler time. We may be talking about the beginning of the universe here, but also the the birth of blackholes. So, if we can see that far back, what remnants of the explosion sits with us today?

    Well I looked at our sun as an example.

    How were Sun's formed?


    Source: Image Credit: Nicolle Rager Fuller/NSFStars shine by burning hydrogen. The process is called nuclear fusion. Hydrogen burning produces helium "ash." As the star runs out of hydrogen (and nears the end of its life), it begins burning helium. The ashes of helium burning, such as carbon and oxygen, also get burned. The end result of this fusion is iron. Iron cannot be used for nuclear fuel. Without fuel, the star no longer has the energy to support its weight. The core collapses. If the star is massive enough, the core will collapse into a black hole. The black hole quickly forms jets; and shock waves reverberating through the star ultimately blow apart the outer shells. Gamma-ray bursts are the beacons of star death and black hole birth.

    The Continuing Saga?

    It was Socrates' turn to look puzzled. Oh, wake up. You know what chaos is. Simple deterministic dynamics leading to irregular, random-looking behavior. Butterfly effect. That stuff. Of course, I know that, Socrates said in irritation. No, it was the idea of dynamic logic that was puzzling me. How can logic be dynamic


    So in the post before this one, I left "the thought" about the continuing Saga.



    Is it so hard that we may not understand what "reductionistic physics" has done for us that we may not look ahead to how this physics will outlay itself in the future?

    While I know in my own head how the end of science is not really the end, it is why the continuing saga has yet to be written. That's where I come in? :)

    This has been my lesson after spending time with those involved in string theory, that my generalizations may have a deeper insight then what those who live at the same fundamental level, and look at the cosmo in a very ordinary way.

    Bee 's thought about the direction of science is not a new one, and having spent considerable time letting those who look at the cosmo, must include, "reductionism," it is not without understanding this "particle shower in nature," that we learnt to appreciate the things of nature as they have been extoll to us from the forbears of research and developement.

    How ancient these notions on the "ray of creation that you might add other views here. It must be the one of physics developing. Even though I hold such "ancient views" I am reminded, that the things of nature already exist out there. We just had to recognize them.

    On the most fundamental level, I showed the rainbow, yet as mankind moved into space we now see where the space shuttle has an enormous advantage to see these interactions from the sun on our bio-sphere.

    So back to the continuing Saga.

    I gave some indicaton of this in posts delivered at cosmic variance in terms of how we look to the very nature of the sun/star and what it has sent to us for examination.

    All of these effects "unified" helps us to understand somethng very profound about our dealings with nature, and that Is where I am headed in terms of the continung saga.

    Can I call it "the prediction," that every step I outlay from this point on is the culmination of science and physics developing an attitude and comprehension about how nature has embued us with more insights/ideas/concepts/theoretics, that we just did not recognize it?? It was always there, and that we just had to recognize it?

    So if you think this too "generalized," then think about what happens at the very core of the sun/star, and then you tell me if the examples I have given are not worth thinking about, that science indeed has more to offer?

    Central Theme is the Sun



    A lot of times people do not understand the effects something can have and after we see these effects, we wonder how did we ever miss the importance of what layed underneath this process in Physics.


    Richard Feynman-Dancing With Neutrinos-Nova



    Much as we looked at the stars above, the views became much clearer with hubble and such, that we see the depth is necessary as we quantum dynamically learn to see with a greater comprehension.

    481 MeV muon neutrino (MC) produces 394 MeV muon which later decays at rest into 52 MeV electron. The ring fit to the muon is outlined. Fuzzy electron ring is seen in yellow-green in lower right corner. This is perspective projection with 110 degrees opening angle, looking from a corner of the Super-Kamiokande detector (not from the event vertex). Option -show_non_hit was used to show all PMTs. Color corresponds to time PMT was hit by Cerenkov photon from the ring. Color scale is time from 830 to 1816 ns with 15.9 ns step. The time window was widened from default to clearly show the muon decay electron in different color. In the charge weighted time histogram to the right two peaks are clearly seen, one from the muon, and second one from the delayed electron from the muon decay. Size of PMT corresponds to amount of light seen by the PMT. PMTs are drawn as a flat squares even though in reality they look more like huge flattened golden light bulbs.


    Now it is important to me that when I seen the relationships of physics extolling itself in nature, I wanted to understand how this evidence came to be. But, before I lay what nature has shown me, I wanted to explain a little further what I am starting put together in my head, about what has become common in our understanding, was not easily so from a theoretical/concept/idea standpoint. That it was indeed "progressive/reductionistic" as our views became ever more progressive as we see the same picture of the cosmo(astrophysics) in an ever widening view of understanding.

    The neutrino detector for the Super-Kamiokande experiment in Japan contains ultrapure water surrounded by an array of thousands of photo-tubes, arranged to catch the flashes of light from neutrino interactions in the water. In 1998, researchers at "Super-K" found evidence for a small mass for neutrinos coming to earth from particle interactions in cosmic rays. If neutrinos, until recently thought to be massless, actually do have a mass, the implications will be profound, not only for particle physics but for astronomy and cosmology. At right is the MINOS collaboration at the Department of Energy’s Fermilab, before a slice of the 10,000-ton detector they will build to capture neutrino interactions. The MINOS experiment will use beams of accelerator-produced neutrinos by Fermilab's Tevatron to investigate neutrino mass.


    Now the lesson above is quite simplistic in the sense that what was once held in theoretical views could/would have made it's way into the depths of how we see things now in nature. So in having understood that process, I wanted to show two more that you might be interested in?


    Astronaut's view of the Aurora Australis, or southern lights, from aboard Space Shuttle Discovery 1991 (Courtesy: NASA)


    The picture below here is what I see from my backyard when mist and rain has fallen.



    So here you have it. A couple of views of nature that have been exemplifed in our search for understanding. What does this all reveal to you? Well, that's the continung saga of what the depth of perception has endowed all us human beings, as we look ever deeper into the nature of the cosmo, and the beginning of this universe.

    While we had been given the Sun to look at in one of it's diverse ways, I wanted and did show that meeting the views of how we look at things. That it had been extended, by understanding the "valuation of the energy" as it has ensued from the very heart of what that burning sun is. How we gain immediate results, not ony in the particle showers, but of what evidence we have lain before us, as the physical outcome, as we look from space, and how, we look from earth.

    See:

  • SOLAR B and Van Ellen Belts