Tuesday, October 17, 2006

A new LHC experiment is born!

The LHC experiments are mostly on a very grand scale, with huge detectors and collaborations of as many as 2000 people; however, LHCf, like TOTEM, is quite special. The detectors are much smaller and LHCf has an equally small collaboration of just 22 people. The collaboration led by Yasushi Muraki, with members from Japan, Italy and the US, has just finished testing its detectors.

The focus of the experiment is to study the forward moving particles in the proton-proton collisions at the LHC. This will be used to compare the various shower models widely used to estimate the primary energy of ultra high-energy cosmic rays, with energy in the region of 1019 eV (10 billion billion electronvolts). When the proton-proton collisions occur at the LHC pions are produced just as in a cosmic ray air shower. The amount of these secondary particles produced at the LHC can be measured accurately with the LHCf detectors, since the energy and direction of the primary beam is well known. The data will then be compared with the models used by the cosmic ray community.

Although discovered as long ago as 1912 by the Austrian physicist, Victor Hess, cosmic rays remain mysterious. In particular, physicists would like to know more about the origins of the very high energy cosmic rays, up to 1020 eV that have been observed during recent decades. Some important experiments, such as the Pierre Auger Cosmic Ray Observatory in Argentina (See CERN Courier, July/August 2006), the Telescope Array experiment in the US and the HESS experiment in Namibia are dedicated to this research (See CERN Courier, February 2005). The LHCf experiment aims to give some valuable data to input into these studies; many of the physicists participating in LHCf are also involved in these and other projects related to cosmic rays.

The detectors of LHCf will be placed on either side at 140 m from the ATLAS interaction point. This location will allow for observation of particles at nearly zero degrees to the proton beam direction. The detectors consist of two towers of sampling calorimeters designed by Katsuaki Kasahara from the Shibaura Institute of Technology. Each of them is made of tungsten plates and plastic scintillators of 3 mm thickness for sampling.

Many of the physicists from LHCf have reunited from the former SPS experiment UA7, which also focused on forward physics. The LHCf experiment will be simulating cosmic ray collisions nearly 1000 times more energetic than UA7 was able to access. The energy of proton collisions in the LHC will be equivalent to a cosmic ray of 1017 eV smashing into the atmosphere. Therefore, LHCf will use the LHC beams to test the interaction models of cosmic rays to higher accuracy.

Did you know?

Cosmic rays are charged particles, mainly protons, but also alpha particles (helium nuclei) or heavier nuclei that bombard the Earth's atmosphere from outer space. These nuclei collide with the nuclei in the upper atmosphere producing many secondary particles, which in turn collide with other nuclei in the lower atmosphere. This process continues in a cascade, producing a shower of billions of particles reaching the ground.

Cosmic rays show a wide range of energy. The low energy cosmic rays are plentiful (many thousand per square metre every second), many of which come from the sun. The highest energy cosmic rays, up to 1020 electronvolts, are very rare, arriving at a rate of one per square kilometre per century! The source of ultra high energy cosmic rays remains a mystery, as the primary ray seems to come from all directions.


This, when we had thought science was at an end?

Monday, October 16, 2006

Monster of the Milky Way

Lubos Motl, it does not have to be "ten billion souls" that we find of just one the same. How many scientists do you know that refer to Plato?

If enough is captured as "part of the original," then why not a view of what was the attempt to descibe "the very complex" of what nature has in store for us discretely?

But maybe, Plato had something more in mind, and not the protection of the "bloodline." :)


Campbell's Soup Can by A. Warhol


You see how this instigates the public to look behind the scenes, while, science was at work. Who understood the "Bekenstein bound" to assert that CFT would have some reason to be "the process" by which thermodynamic and entropic understanding would allow such views of the blackhole?

A "window" perhaps, on what science is doing? Glast's deeper look? So is there then more of the story to tell if any affront to the trouble of Physics is not considered here, while we debate how far our views have been taken?


The Milky Way's light distorted at the event horizon of a black hole.
Deep in the heart of our galaxy lurks a monster of incomprehensible size and ferocity... a black hole. Two competing groups of astronomers -- one led by Andrea Ghez from UCLA, the other by Reinhart Genzel from Germany -- are racing to discern its true nature.

Monster of the Milky Way recounts the chain of discoveries these groups have made about our resident black hole. The program will follow each team in a major campaign to understand powerful pulses of energy rushing out of the monster daily.

The teams are competing to settle one of the hottest debates in all of science... how did supermassive black holes like the Monster of the Milky Way reach such incredible sizes -- from millions to billions of times the mass of our Sun? And how did they influence the evolution of their host galaxies... and worlds like ours?


While I had listed a link to a pdf file on strangelets and the number of people that worked on it, as well as the universities. The point here, is that out there in the public, the creative principle arises in the minds of that public, just as it does in any scientist. If any one individual is capable of extending their understanding and vision of the window of the universe then it is not so unlikely that the next step could have made it's way into their mind.

We are all repositories of the ideas/concepts/theories that can manifest?

The garden indeed may be an complex analysis. Yet, such freedom to gain access, seems unlimited, if, the flows just happen to be sparked in the right way and forthcoming, regarding all that you had learnt.

See:

  • New Non-geometrical Generalization of the Principles of CFT Found?
  • The Right Spin for a Neutrino Superfluid
  • Sunday, October 15, 2006

    Part of Facing the Trouble With Physics

    It might be that the laws change absolutely with time; that gravity for instance varies with time and that this inverse square law has a strength which depends on how long it is since the beginning of time. In other words, it's possible that in the future we'll have more understanding of everything and physics may be completed by some kind of statement of how things started which are external to the laws of physics. Richard Feynman


    Faced with the task of showing the connection between string theory and reductionistic consideration is quite a task, as I am sure in most eyes? To me it just seems that everytime we adjust our view and include new views, what shall we say of "gamma ray detection" when we look at high energy photons describing the early universe for us?



    Hey, it makes my heart jump too.

    Here is a case, with which I like to make my point. Having someone corrected makes it that much better now to make comparisons like I do. The simple point of "order" enlightened greatly the situation for us, in what I am exemplifying here. We wil not forget the paper offered up after, in that comment thread either. Thanks

    A realization 1; 2; 3 that QGP at RHIC is not a weakly coupled gas but rather a strongly coupled liquid has lead to a paradigm shift in the field. It was extensively debated at the “discovery” BNL workshop in 2004 4 (at which the abbreviation sQGP was established) and multiple other meetings since.

    In the intervening three years we had to learn a lot, some new some from other ranches of physics which happened to have some experience with strongly coupled systems. Those range from quantum gases to classical plasmas to string theory. In short, there seem to be not one but actually two difficult issues we are facing. One is to understand why QGP at T ∼ 2Tc is strongly coupled, and what exactly it means.


    In Extracting Beauty From Chaos I am recognizing this depth of perception enhancement that is supplied by JoAnne of Cosmic Variance. Would you rather look at "Seans moon" in gamma?

    CERN planned a global-warming experiment in 1998?

    Experimentalists at CERN will use a cloud chamber to mimic the Earth's atmosphere in order to try and determine whether cloud formation is influenced by solar activity. According to the Danish theory, charged particles from the Sun deflect galactic cosmic rays (streams of high-energy particles from outer space) that would otherwise have ionized the Earth's lower atmosphere and formed clouds.



    What shall I say to you as SNO investigated the "cerenkov effect" from the cosmos ray particle collisions? Shall I speak about the "weather predictions" that arise. This is a interference and a "weak measure" of what is fast becoming the thought in my mind of the diversity of global painting, to include, that blue light as each of the detectors "pick" the overall pattern of high energy exchanges in the detectors as inherent image understanding. It has been transcribed from the "sun's energy value" and applied to high energy considerations?

    "Atmospheric" neutrinos, produced by interactions of cosmic ray particles with the earth's atmosphere, might be useful for studying the properties of neutrinos. But if you're hunting sources of neutrinos in the universe, atmospheric neutrinos are nothing but noise.



    Now, I may reference Glast indications here in the experimental validation of those high energy photons, gamma ray indication is a wonderful jesture to extending the depth of perception, as I have tried to do here by helping Q see the relevance of the quantum dynamical perception. From ,the beginning of this universe.

    So we see where the " Window of the universe" has helped me to see in ways that we were not accustomed. It is "the physics" that has taken us there.

    So, while the picture of JoAnnes is highlighted, the lesser of the views is the "gamma ray detection" while I have pointed to the neutrino here in experimentation.

    Should we loose sight of what the KK tower exemplifies?



    I am sorry about the "dead link picture to topology" but blogger does not go back to 2004 so that I can adjust it.

    Now why would I then reference "quantum gravity" behind the picture of the KK tower, and the information about topology? Possibly, that we have for the first time thought here that the Navier-Stokes equations could have been applied at a fundamental level while thinking of what the QGP has given us, as we witness "cerenkov radiation" from a long line of reductionistic reasoning? Is this worth a million from the Clay Instituted by generalization alone?:)

    If not, at least, if held in line with lagrangian views of gravitonic perceptions in the bulk as we phyically see the relation between the sun and earth?

    It is thus my mind has been held to the idea of the "conical flows[Volcanos, to jet engines in analogy of the laval nozzle]" as the energy is released for the dissemmination from the collider of nature enhanced, to all that follows from the cosmic particle interactions. Right to the neutrinos resulting from the fluidity of the QGP pertaining to viscosity?

    What was not present before? Muon detectors hmmmm..... and the road from muon neutrinos too?? What am I missing here?

    The muons are stopped by the rock. Impervious to all such obstacles, the muon neutrinos will leave the CERN tunnels and streak through the rock on their 732 kilometre journey to Italy.


    Hold that picture of JoAnnes, while you think of Glast. In the determinates of the gamma ray detection, we have therefor faced the "Trouble with Physics?":)

    Saturday, October 14, 2006

    "Lead by Physics," Faces the "Trouble With Physics"


    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around the world use RHIC to study what the universe may have looked like in the first few moments after its creation. RHIC drives two intersecting beams of gold ions head-on, in a subatomic collision. What physicists learn from these collisions may help us understand more about why the physical world works the way it does, from the smallest subatomic particles, to the largest stars



    Well I have to deal with first things first here. This article above correlates the one given by Stefan. This is not to contest what you are saying, just to show you the informtaion I myself had gone through to arrive at the conclusions I do.

    Ion-Smashing Yields New Knowledge, But Some Still Question Risk
    By Carolyn Weaver

    Seen from above, the Relativistic Heavy Ion Collider, or RHIC, at New York’s Brookhaven National Laboratory, looks like a racetrack. And it is a kind of race track: two “beam pipes” in a tunnel nearly four kilometers around, in which gold nuclei are accelerated to close to the speed of light, and are crashed into each other at intersecting points along the way. Out of the kinetic energy of those collisions, new matter is created for a brief instant: a shower of quarks and gluons, the smallest particles known – and at seven trillion degrees, hotter than anything now in the universe.



    Brookhaven physicist Peter Steinberg
    “It’s basically a living embodiment of E=mc squared,” says Brookhaven physicist Peter Steinberg. “Einstein’s theory told us a hundred years ago that you can trade off energy for mass, and vice versa. We’re essentially converting the kinetic energy, the energy from the motion of these nuclei, converting it into lots of particles.”

    The four detectors that bestride the collision points are massive machines, with “time projection chambers” that record the collisions and their after-moments. The latest results made big news last year when Brookhaven physicists reported that the quark-gluon plasma was not a gas as expected, but rather a very dense liquid.


    You say strangelets do not exist? And that no connection has been found between string theory, and strangelets. I have to then argue my case so you see it in light of what the reductionistic physics is actually doing, while string theory and it's energy values hover overhead of all these interactions. How th epaticle inclination must also include microstate blackhole creation.

    So bear with me if you can.


    Hi Plato,

    strange matter and strangelets are a very interesting topic, but, unfortunately, there has been no experimental evidence for them so far. They are not really connected to string theory either, besides the fact that it was an early paper of Witten that resuscitated interest in them with nuclear physicists, I think.

    Strangelets have been thought of as possible culprits for RHIC disaster scenarios (besides the ubiquitous black holes ;-), and as responsible for potential cosmic ray particles beyond the GZK cutoff.

    But as far as I know, there has been no experimental verification of any of these ideas (and the world still exists: RHIC has produced no greedy strangelets which would have eaten up the Earth).

    In the case of the potential quark star you cite, RX J185635-375, again, and unfortunately, as far as I remember, it came out that the radius determination was not completely safe. Bottomline was that this star could be well understood as a common neutron star. I am not completely sure, though, about the current status of this object, whether it is thought to be a quark star or not.

    Anyway, it is a good example for an exciting observation which is reported in the press, but which has to be partially revisd later - only that these revisions don't make in the press releases. I guess it would often be quite interesting to have a kind of follow-up reporting, where one could read what is, eventually, the fate of some discovery that has been announced in the press.

    The strange particles I was talking about are not strangelets, but the common hadrons with strangeness, especially the Ξs and the Ωs, with two and three strange quarks, respectively. These are the particles that I had mentioned in my earlier post, and whereof I should finish the second part, finally ;-). You typically find much more of these particles in nucleus-nucleus collisions than in (properly scaled) nucleon-nucleus collisions, which is a strong indication for an intermediate QGP state, where stange-antistrang quark pairs can easily be produced.

    Best, stefan



    One, as we know can make wide sweeping generalization about the physics and why is it that any position taken by any scientist would not have been one that becomes the point of departure for all scientists? An example her ei the rationship to the Heavy Ion collsions an dstringtheory and by this very nature to the strangelets as postulated.

    This article below is to correlate with the article you showed me of 2004, while I had made this ocnlusion myself early in 2006, lets not forget the number of people involved in the "ghost particle, and Pauli" through out the years and what we have seen theoretically of the strangelets as they had been related to the disaster scenario as consequential microstate blackholes created in the RHIC and LHC.

    Is this too drastic a scenario to have you think about what all these “particles in press” are saying about the science, that any one scientist themselves might be following to correct? You say, "just get it right?" Well there are many within the blogs who are writers for those articles? Why do you think they are amongst you?

    I had noticed the grouping and conversations between blogs that had been developing over the last year and half. I continue to see some of the same people. Some, that constantly referred to the reporting that goes on. So I had to address this or forever be banished to the realm of reporting as someone just profiled.

    Strangelet Search at RHIC by STAR Collaboration

    Three models of strangelet production in high-energy heavy-ion collisions have been proposed in the 1980s and 1990s: coalescence [10], thermal statistical production [11], and distillation from a Quark Gluon Plasma (QGP) [12, 13]. The first two models usually predict low strangelet production cross sections at mid-rapidity, as verified by measurements of the related processes of coalescence of nucleons into nuclei [14]. If a QGP is created in heavy ion collisions, it could cool down by distillation (kaon emission) and condense to strange-quark-rich matter in its ground state – a strangelet. However, this requires a net baryon excess and a non-explosive process in the collisions [12, 15]. Neither of these conditions is
    favored at mid-rapidity in ultra-high energy heavy ion collisions, as suggested by results from the Relativistic Heavy Ion Collider (RHIC) at BNL [16]. Recently a new mechanism for strangelet


    I want you to have a good look at the number of names listed in this Pdf file as well the universities involve.

    Clifford of Asymptotia made this point clear about the vast network of scientists even within the string theory network of people and about who knows whom? Can you possibly know everyone, or, like the paper whose citations are referred to more as we refer to any particular scientist? We then come to see the make up and nature as we hold our views to the particular few.

    So before I begin here I wanted to make it clear, that having spent considerable time as hobby and interest about science. It is not without my own motivations that the interest would be the memory of one’s childhood, or the magazine that we looked at, but the reality we are dealing with and what we call the “nature of things.”

    An anomaly that cannot be explained nor shall it be removed because of the lack of evidence. It’s just one of those things that you cannot change in the person’s make up who has seen the world in a different way then normal. So shall he endeavor to accumulate all the things that are wrong to destabilization the view of truth of the world just so he can corrupt all those around him?

    I ask myself the question about "what is natural" because I seen what scientists were doing to each other about the theoretical/concepts/ideas models that they were adopting in their research, that I wanted to make sure that what I had been researching had been as up to date.

    Would one "leave out information that I had assembled" as they deal with me?

    As I have said before while the students have been engaged in the classroom I had been following the physics development as best I could. Spent years watching and learning

    So here's the thing.

    If I did not answer Stefan at Backreaction about the information about strangelets then it might have been left off where Stefan decided too as he continues to show his elementary particle thinking( finish the second part Stefan).

    Continued reference to strangelets might everyone think the conclusion as written I the way Stefan has shown it? Would information I had been developing have been less than the standard of what scientists hold as standard. How could anyone know it all? Hold the badge over the trial of LHC or RHIC and say I had broken the law with my insolence and corruptible behavior?:) Non! Qui?

    So here again is the conundrum I had placed in front of me as I looked and interacted with the various blogs who have commented on Lee Smolin’s book, “The trouble With Physics.”

    But first let me then deal with Stefan at Backreaction.

    Lubos Motl:
    Well, I think that even if someone believes that theoretical physics can't be trusted - and many people clearly do - there exists a less scientific argument why the accelerator won't lead to such a catastrophe: the Earth is bombed by a lot of very high-energy cosmic rays and the center-of-mass energy of the collisions is comparable to the LHC energies. So far, these collisions haven't destroyed the Earth, so it is reasonable that some additional collisions we create won't be able to do so either.


    While I had these similar thoughts it was not wothpt some basis the Blogett would have pointe dyou to think about strnagelets and then in my own assumptions, the comic particle collsions from what Ellis had taught us to think about. Yes, it was the natural collider in space for sure, and it's "energy values" well beyond what is availiable at LHC.

    So yes "Microstate creation of blackholes in space"

    In strangelets do not exist, I had come to the same conclusion Stefan did about what is "theoretically challenged" might have engaged the thinking mind as to the relationship to what the neutrino may have been in that exercise of the QGP, compared to this one on strangelets.

    So I gathered information to help me see the direction the physics was going. Least it escaped the mantra that I had been hearing exemplified in my dealings as best I can.

    “Lead by the Physics.” Now I face, "the trouble with Physics."

    See:

  • Strangelets Do Not Exist?
  • The Fate of our Planet?
  • Are Strangelets Natural?-Saturday, September 30, 2006
  • Thursday, October 12, 2006

    George Gabriel Stokes

    Sir George Gabriel Stokes, 1st Baronet (13 August 1819–1 February 1903) was an Irish mathematician and physicist, who at Cambridge made important contributions to fluid dynamics (including the Navier-Stokes equations), optics, and mathematical physics (including Stokes' theorem). He was secretary, then president of the Royal Society.

    I mean this discourse on the nature of viscosity is leading in the sense that what has been currently going in terms of RHIC "is the physics" and understanding that came about by the pursuate of elementary considerations.

    Physicists Andrew Strominger and Cumrin Vafa, showed that this exact entropy formula can be derived microscopically (including the factor of 1/4) by counting the degeneracy of quantum states of configurations of strings and D-branes which correspond to black holes in string theory. This is compelling evidence that D-branes can provide a short distance weak coupling description of certain black holes! For example, the class of black holes studied by Strominger and Vafa are described by 5-branes, 1-branes and open strings traveling down the 1-brane all wrapped on a 5-dimensional torus, which gives an effective one dimensional object -- a black hole.


    This is part of the understanding that with those who try to diminish the substance of this avenue of research have missed in their wide sweeping generalizations, less then adequate of string theory. You do not dismiss Strominger lightly as part of that generalization.



    So in regard to multiplicities, should we dismiss the substance of the viscosity nature here while those who are less then kind about the avenue of research regarding the model string theory, find that people like Lee Smolin have decided to work with people like Clifford to deal with these physic's issues. Although he is not changing his tune in regards to the substance of this theoretical/concept/idea model, he does appreciate the science behind it.

    For those who up hold the laws, and I mean the badge of the peace officer here at Backreaction. It is nice that we understand this history as it is being explained. Shall we succumb to the mechanical modes of being and we disavow "creativity" according to the limits of the law, or must we push ahead in the "greater courts" of theoretics and challenges to these laws.

    Again I am reminded of Einstein's quote here.

    ...the creative principle resides in mathematics. In a certain sense therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed.Albert Einstein


    Some would have you believe that you have acted irresponsibly in regards to model apprehsnsion about nature? Don't let them fool you or coierce you into thinking that you have disvorced yoruself from reality. If "pure thought" resides in the essence of these "mathematical forms," then where do these ensue from?


    See:

  • Navier-Stokes equations
  • Wednesday, October 11, 2006

    What is Cerenkov Radiation?

    ...the creative principle resides in mathematics. In a certain sense therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed.Albert Einstein


    Many do not recognize the process that unfolds in the developing perspectives about theoretics? Does one think it is divorced from reality that you could say, "hey this idea of course has no attachment to what exists and what we know exists and asks that you move forward with it."

    Often you hear the "dreaded reference" to the AEther, and who can help but see where such revisions in thinking changed the society of scientists to put them on a new course?

    Do you think the title was changed from the aether to the valuation of strings and the boson production evident in the bulk just to replay itself in the developing scenarios of our historical past? The past included a revision to the way we view that concept? That is it's effect in today's world. "The correction?"

    As we know from Einstein’s theory of special relativity, nothing can travel faster than c, the velocity of light in a vacuum. The speed of the light that we see generally travels with a slower velocity c/n where n is the refractive index of the medium through which we view the light (in air at sea level, n is approximately 1.00029 whereas in water n is 1.33). Highly energetic, charged particles (which are only constrained to travel slower than c) tend to radiate photons when they pass through a medium and, consequently, can suddenly find themselves in the embarrassing position of actually travelling faster than the light they produce!

    The result of this can be illustrated by considering a moving particle which emits pulses of light that expand like ripples on a pond, as shown in the Figure (right). By the time the particle is at the position indicated by the purple spot, the spherical shell of light emitted when the particle was in the blue position will have expanded to the radius indicated by the open blue circle. Likewise, the light emitted when the particle was in the green position will have expanded to the radius indicated by the open green circle, and so on. Notice that these ripples overlap with each other to form an enhanced cone of light indicated by the dotted lines. This is analogous to the idea that leads to a sonic boom when planes such as Concorde travel faster than the speed of sound in air


    But we have to go back in history here to see where such influences have taken hold of the mind, from what was instituted in the neutrino search, to have the ideas swirl around and form new prospect researches, based on the ideas of women/men?



    The story will follow here shortly. I would like to thank Paul on his early recognition of the bubble chamber events as they encourage research in 1998 to ponder the experiments in Cern to say?

    Add your story so that this can be completed. I will add mine for a wonderful view of what research and developement does in regards to the way of "modelling to experiment."

    Well since starting this blog entry there has only been two other examples that may be added to this entry as of today, yet, one by Commentor NC at Cosmic Variance while the other materialized over at Backreaction on the post done by Bee and Stefan.

    A Look Back

    Have a look at this image below first.



    Variation of Cosmic ray flux and Global cloud coverage-a missing link in Solar-climate relationshipsby Henri Svensmark and Eigil Friis-Christensen, 26 NOvember 1996

    So this is wonderful that in one way, where my mind rebukes the lashing out of Peter Woit by evidence of ICECUBe and my ir/relevant comments, could have found sustenance in how things are to be explained further? More physics ...wonderful.

    But I want to go back historically to view, so that one sees what was a picture "written by Paul" and his trip to Canada, held an observation that sends us back in time experimentally to look at, to find out, what Cern was doing in 1998. Thanks Paul

    You ready?

    CERN plans global-warming experiment(1998)

    A controversial theory proposing that cosmic rays are responsible for global warming is to be put to the test at CERN, the European laboratory for particle physics. Put forward two years ago by two Danish scientists, Henrik Svensmark and Eigil Friis-Christensen, the theory suggests that it is changes in the Sun's magnetic field, and not the emission of greenhouse gases, that has led to recent rises in global temperatures.

    Experimentalists at CERN will use a cloud chamber to mimic the Earth's atmosphere in order to try and determine whether cloud formation is influenced by solar activity. According to the Danish theory, charged particles from the Sun deflect galactic cosmic rays (streams of high-energy particles from outer space) that would otherwise have ionized the Earth's lower atmosphere and formed clouds.


    So what is this science based on?

    The production of a high-intensity neutrino beam at CERN requires a complex facility. A proton beam produced and accelerated by the CERN accelerators is directed onto a graphite target to give birth to other particles called pions and kaons. These particles are then fed into a system comprising two magnetic horns which focus them into a parallel beam that is directed towards Gran Sasso. Next, in a 1000 metre-long tunnel, the pions and kaons decay into muons and muon neutrinos. At the end of this decay tunnel, an 18 metre thick block of graphite and metal absorbs the protons, pions and kaons that did not decay. The muons are stopped by the rock. Impervious to all such obstacles, the muon neutrinos will leave the CERN tunnels and streak through the rock on their 732 kilometre journey to Italy.


    Now what does this have to do with Cerenkov radiation? Okay. I'm scratching my head now.

    “CERN has a tradition of neutrino physics stretching back to the early 1960s,” said Dr Aymar, “this new project builds on that tradition, and is set to open a new and exciting phase in our understanding of these elusive particles.”


    From the 1960's. Wow!

    Imagine that someone might say to you that this is a "Rube Goldberg Machine" analogy as to what was the road leading to the understanding and the inclusiveness of microstate blackhole creation from particle collisions, as part of the continued story of the neutrino in action?

    See:

  • So What Did I mean By Olympics?
  • Pulsars and Cerenkov Radiation
  • Evidence for Extra Dimensions and IceCube
  • Monday, October 09, 2006

    Earth's Future in Planetary Observation

    On March 31, 2006 the high-resolution gravity field model EIGEN-GL04C has been released. This model is a combination of GRACE and LAGEOS mission plus 0.5 x 0.5 degrees gravimetry and altimetry surface data and is complete to degree and order 360 in terms of spherical harmonic coefficients.

    High-resolution combination gravity models are essential for all applications where a precise knowledge of the static gravity potential and its gradients is needed in the medium and short wavelength spectrum. Typical examples are precise orbit determination of geodetic and altimeter satellites or the study of the Earth's crust and mantle mass distribution.

    But, various geodetic and altimeter applications request also a pure satellite-only gravity model. As an example, the ocean dynamic topography and the derived geostrophic surface currents, both derived from altimeter measurements and an oceanic geoid, would be strongly correlated with the mean sea surface height model used to derive terrestrial gravity data for the combination model.

    Therefore, the satellite-only part of EIGEN-GL04C is provided here as EIGEN-GL04S1. The contributing GRACE and Lageos data are already described in the EIGEN-GL04C description. The satellite-only model has been derived from EIGEN-GL04C by reduction of the terrestrial normal equation system and is complete up to degree and order 150.


    Many if interested just have to do a search on Grace in this Bloggery to know the efforts gravitational research has gone to develope the views we have of earth from that magnificent pearl to the dramatic realizations of it's covering above.



    ArcGP grid, January 2006 (mGal). Some ERS and ICESat altimetry has been used to fill in some data gaps/errors in the original compilation. (units mGal).Credits: ArcGICE Study Group
    A combination of new satellite-derived datasets is providing an exciting opportunity to peer through the sea-ice cover to study circulation patterns in the Arctic Ocean (Forsberg et al., 2006). A better understanding of what's going on beneath the ice will, in turn, lead to a more accurate interpretation of sea-ice thickness data from CryoSat-2.

    The new estimates of Arctic Ocean mean dynamic topography have been compiled through a combination of satellite altimetry data from ERS, Envisat and ICESat, and a revised geoid model based on surface, submarine, airborne and satellite gravity field data from the US-German GRACE mission.

    Box Counting or "Points" on the Strings Length?

    The jump from conventional field theories of point-like objects to a theory of one-dimensional objects has striking implications. The vibration spectrum of the string contains a massless spin-2 particle: the graviton. Its long wavelength interactions are described by Einstein's theory of General Relativity. Thus General Relativity may be viewed as a prediction of string theory! Author Unknown


    We understand I think the relevance in regards ot the cosmological views that GR helps us understand in the curvatures inherent as an expression of the cosmos.

    What we may have trouble with is the value we may assign such curvatures taken down to the quantum regime. This may seem incompatible, yet, the dynamical nature of the energy is never really that far from speaking from the particle/energy inhernet in nature, as a energy determinant value?

    Why would you treat the quantum realm any different then you would the cosmological one, if the assumption is that GR is predicted?



    Fractal Dimenison-Tree Silhoutte

    I like to think of the "roots and the rings of history" here so that you may see the comparative value of thinking of the "building blocks" not so much as "boxes" but as energy values related to the circle.




    There really was a reason to fear pathological entities like the Koch coastline and Peano's monster curve. Here were creations so twisted and distorted that they did not fit into the box of contemporary mathematics. Luckily, mathematics was fortified by the study of the monsters and not destroyed by them. Whatever doesn't kill you only makes you stronger.

    Take the Koch coastline and examine it through a badly focused lens. It appears to have a certain length. Let's call it 1 unit. Sharpen the focus a bit so that you can resolve details that are ⅓ as big as those seen with the first approximation. The curve is now four times longer or 4 units. Double the resolution by the same factor. Using a focus that reveals details 1/9 the first focus gives us a coastline 16 times longer and so on. Such an activity hints at the existence of a quantifiable characteristic.

    To be a bit more precise, every space that feels "real" has associated with it a sense of distance between any two points. On a line segment like the Koch coastline, we arbitrarily chose the length of one side of the first iterate as a unit length. On the Euclidean coordinate plane the distance between any two points is given by the Pythagorean theorem


    Planck time and what new physics would we have shown once we got down to these lengths? The energy of discernation has deluded us into what was once uncertainty has now QGP idealizations and the inherency of the thinking along side of high energy considerations.

    Discretium and continuity are not at odds here just that the "realm of thinking" is limited to the GR suppositons about what the world is in cosmological discretium views? Yet, we know at such levels, the "continuity" of the energy has taken over. The coast lines appear fuzzy, yet in "box counting" it doesn't seem that way. What are it's limitations then, when our views meet uncertainty about what discribes the coast line? Shall we now refer to the days, weeks, months, as an energy valuation of the circle, in the trees root and the history it contains?

    Pick a "ring/circle" of the tree and tell me what happen during that time?

    Saturday, October 07, 2006

    From Modelling to Experimentation?


    Moving to higher energies, the expected fluxes of neutrinos become smaller, that even a cubic kilometer detector is not able to detect them. Larger volumes can be achieved by replacing optical sensors by acoustic detection. The reason is that acoustic waves can propagate over larger distances than light and allow wide spacing of detectors, and therefore larger detector volumes.


    From Modelling to new thoughts on experimental processes and approach to the physics involved, it is important that one understands how this approach is considered. Not to loose sight of the relationship to high energy consideration and it's particle shower effect from such interactions.

    Without some comprehension of RHIC valuation in production uses what was to be gained from cosmic particle collisions? What future in LHC inclusion of microstate with out some association to particle entities as a result of those collisions?

    Reductionist processes leads to comprehension values that if let unnurtured, would not have allowed such model comprehension to exceed current limitation of thinking?

    "String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap. This increases the number of 'down' neutrinos detected. At the same time, the creation of black holes causes 'up' neutrinos to be caught in the Earth's crust, reducing the number of 'up' neutrinos. The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."