Wednesday, January 04, 2006

KK Tower

Like many people who devote their time to understanding the nature of the cosmo and the micro perspective of the world around us, these things have their own motivational packages which move to further rquired comprehensions. In that, one needs to further educateas to what they are talking about.

It's definitiely not easy, but I am trying, and devote a lot of time to this regardless of what schooling is required, it is not my intent to send people down the wrong paths, or, no paths at all, before I have investigated the terrain as best I can.

Mountains can give persepctive where sitting in the valleys circumspect what the greater can be?

KK Tower

What is it?



Kaluza-Klein theory(Wiki 4 Jan 2006)

A splitting of five-dimensional spacetime into the Einstein equations and Maxwell equations in four dimensions was first discovered by Gunnar Nordström in 1914, in the context of his theory of gravity, but subsequently forgotten. In 1926, Oskar Klein proposed that the fourth spatial dimension is curled up in a circle of very small radius, so that a particle moving a short distance along that axis would return to where it began. The distance a particle can travel before reaching its initial position is said to be the size of the dimension. This extra dimension is a compact set, and the phenomenon of having a space-time with compact dimensions is referred to as compactification.



Kaluza-Klein theory is a model which unifies classical gravity and electromagnetism. It was discovered by the mathematician Theodor Kaluza that if general relativity is extended to a five-dimensional spacetime, the equations can be separated out into ordinary four-dimensional gravitation plus an extra set, which is equivalent to Maxwell's equations for the electromagnetic field, plus an extra scalar field known as the "dilaton". Oskar Klein proposed that the fourth spatial dimension is curled up with a very small radius, i.e. that a particle moving a short distance along that axis would return to where it began. The distance a particle can travel before reaching its initial position is said to be the size of the dimension. This, in fact, also gives rise to quantization of charge, as waves directed along a finite axis can only occupy discrete frequencies.

Kaluza-Klein theory can be extended to cover the other fundamental forces - namely, the weak and strong nuclear forces - but a straightforward approach, if done using an odd dimensional manifold runs into difficulties involving chirality. The problem is that all neutrinos appear to be left-handed, meaning that they are spinning in the direction of the fingers of the left hand when they are moving in the direction of the thumb. All anti-neutrinos appear to be right-handed. Somehow particle reactions are asymmetric when it comes to spin and it is not straightforward to build this into a Kaluza-Klein theory since the extra dimensions of physical space are symmetric with respect to left-hand spinning and r-hand spinning particles.


So in order to get to the summation, views of hidden dimenisons had to be mathematically described for us, so a generalization here would suffice in the following diagram.



Now, not having the room to explain, and having linked previous information on extension of KK theory, I wondered about the following. If we understood well, the leading perspective that lead us through to the dynamical realizations, then the road Gauss and Reimann lead us to would help us to understand the visualization materializing by the calorimeter disciptions of each energy placement harmonically describing each particle's value? Even in a empty space, there seems to be something of a harmonical consideration?


If one understood well enough about the direction of discernation of early universe consideration and microstates, then such questions would have been of value in the ideas of topological considerations?

Getting Ducks in a Row

Energising the quest for 'big theory'
By Paul Rincon

We are at a point where experiments must guide us, we cannot make progress without them," explains Jim Virdee, a particle physicist at Imperial College London


Good to see Joanne contributions here as well as Marks.

Even though Dissident throws up tidbits for the "unlikely scenario of Blackholes" that devour? These were early fears that were propogated by those of us who did not understand. Maybe the new TV show will make itself known here? What has our past shown in this regard?

Peter Steinberg

Unfortunately, all of this is overstated. At RHIC we don't make a "real" black hole, in the sense envisioned by Einstein's General Theory of Relativity. Rather, Nastase's point of view is that RHIC collisions can be described by a "dual" black hole. But what does "dual" mean in this context? It's not "two-ness" in any sense, but rather indicates that one can write down a theory which describes the collision as a black hole, but in a completely different world than that we see around us. To make his model work, he (and many other researchers who are exploring this direction) make a calculation of a black hole in 10 dimensions in order to describe difficult (but gravitationally benign) aspects of the strong interaction in 4 dimensions.



I was equally dismayed by the understanding that this methods were not understood by dissident, as to the value of Pierre Auger's views containing the very ideas that we see in the enviroment around us. Is it an alternative to how we see particle interactions? Of course. John Ellis made this point very clear, as I have demonstrated through out this site, gaining perspective as spoken by Ellis on information given.

Plato:
The Fly's Eye and the Oh My God Particle John Ellis was instrumental in opening up perspective here. What is happening outside of collision reductionist processes of the colliders


I get a little philosophical myself sometimes, with the hope that "pure thought" can lead me to the very math structure that would be most appropriate. But like anything, there are so many maths in which to talk about the world in such an abstract way, one wonders if they are actually talking about reality? But they are are. :)

If conceived as a series of ever-wider experiential contexts, nested one within the other like a set of Chinese boxes, consciousness can be thought of as wrapping back around on itself in such a way that the outermost 'context' is indistinguishable from the innermost 'content' - a structure for which we coined the term 'liminocentric'.


The ideas around KK are also included, like most, I have a lot to learn. But the KK tower is explanatory about the a lot of things in relation to the energy values that are being assigned here? Just diffrent ways at looking at scattering amplitudes and counting might have looked if we took nature to gluonic perceptions? A granularaization? While at such levels then there are no geometries in which anything can emerge?

DumbBiologist:
There’s no other necessary connection to stringy physics except that it’s a KK theory (I guess the compactified dimensions can still be pretty big compared to the Planck length…perhaps they have to be?). It’s not obviously related to quantum gravity, anyway.



So how do you include such "weak field "manifestation in your global perspective(standard model). Some things are recorded, and some can't be seen? So what is the glue that binds:)

A collision had produced the "superfluid" has no place in quantum gravity issues?

He4 came from information the beginning, that a Giddings or a Steinberg might have given us about the nature of the "source" of this collision? How would such a thing from this place have figured, this was a place in which to begin to count? So we write it in and hope that such views in context of this "unitary nature" will have revealled all the tragetories of the scatterings, to have said this is a complete view?


Lubos Motl:
When you add a force that you want to treat perturbatively, which should be possible if the success of QED is reproduced by your quantum theory of gravity and electromagnetism, then you are expanding around "g=0" where "g" is the gauge coupling. In quantum gravity, there is a new ultraviolet cutoff "g.M_{Planck}" above which the effective theory breaks down. If "g" goes to zero, then this scale goes to zero, too. The theory therefore breaks down at all scales. You can't expand around the point where gravity is the strongest force because a quantum theory of gravity in which gravity is stronger than other forces is inconsistent.

Tuesday, January 03, 2006

The Lap Top of the Future?

I think technology is great, and some of the stories we can produce, equally as thought provoking. Ipod's and Mission Impossible?

Oh Clifford, where are you?

While some might of thought the analogy to the "blackgold" as a standard in a economic sense, I still try to think of the "gold reserves" as the true monitor of banks and money printed. Yet, we find that new indicators are setting the price of living, to standards that the few make towards cost of living realizations? US ruin where rerserves, China's gain? A worthy trading partner indeed.

Okay that's to political. On to the essence of the story.:)

My plan is not a incidious one, where I will try and convert you to "evil," but put into perspective the state of affairs. Not concieved to derail geometrical thinking at it's finest, but bring one in concert with the strumming of "good songs" as we ride the "river of life:)" Oh my, I am being bombarded by solitonic images of boats traveling channels, and all sort of things.

Written and directed by Kenneth Alan Taylor


I would rather think of the Goose that laid the Golden Egg, then eggs that could possibly hatch as the dumbest ideas of Rooster's:)

Okay, so I am struggling.

You have to remember the basis of this question is "held in light" of a thought experiment linked at the heading of this post. I know it's possibilties yet containment really makes it difficult to fathom. So I like to think of tall tails and sailing ships as possible stories that were created in fiction, have now made it possible for Jack to bring this Golden Egg, back for consideration. Or maybe the Princess's Pea as a measure of what would have been contained in the singularity, had drawn to delving all minds to consider this nagging question that we tend to sleep on? The "Beginning of the universe?"

Did you know Plato like the "idea of ideas?" While it might made one think of the emphemeral qualities of mind, I know that to be "grounded" would be a good thing, while we look at Jack in the Beanstalk's journey to fetch the Golden Egg.

Anthony A. on Jan 2nd, 2006 at 7:41 pm :
In an infinite universe, there appears to be, as I noted before, some interchangeability between the different branches of the wavefunction and the different copies that exist in the infinite universe. (In fact this is the basis for a new interpretation of quantum mechanics that I have been reading, and got me thinking about the whole matter.)


The thought provoked here, is contained in the structure of this statement, "different branches of the wavefunction" could lead to new quantum reality taken from the artifacts, and released into probable futures? This is a summation of how one might see all that can be contained in the outcome of heads or tails, and from such information, provide for model apprehensions that could have been emitted from the very beginning of this universe? Why not?

We punch in the probability of this reference of quantum perception with cosmological data and if 13.7 billions years could be contained in the model, then what says the limit of this universe could not be contained in what this universe might have become?

The amount of information that can be stored by the ultimate laptop, 10 to the 31st bits, is much higher than the 10 to the 10th bits stored on current laptops. This is because conventional laptops use many degrees of freedom to store a bit whereas the ultimate laptop uses just one. There are considerable advantages to using many degrees of freedom to store information, stability and controllability being perhaps the most important. Indeed, as the above calculation indicates, to take full advantage of the memory space available, the ultimate laptop must turn all its matter into energy. A typical state of the ultimate laptop's memory looks like a plasma at a billion degrees Kelvin — like a thermonuclear explosion or a little piece of the Big Bang! Clearly, packaging issues alone make it unlikely that this limit can be obtained, even setting aside the difficulties of stability and control.


But what's the point here in recognition?

That there are indeed outcomes from thinking of a certain point, could have manifested possibilities. The outcome here is present questions although contained in the article linked in from 2000, it points the mind to direction currently manifesting in our everyday lives, as we move to question the nature and geometry of this beginning of the universe and it's possible branches thereof?

But let's see this in contrast to early computation models. Rooms filled with equippment to have now found such levels atomized to current technological wonders?

Being part of this scenario in our past and witnessing the moves to such lenghts, bring perspectve to the nature of the colliders and the quest for perspctive held in contrast to quantum probabilites. Looking at this bold highlighrted statement of Seth Loyd brings th every nature of what is being pursued asa viable question about what we had hoped to conatin inthe LAPTOP, BUT SEEING THE COMPLEX QUESTION OF CONTAINMENT MAKES THIS QUITE UNLIKELY. It does not remove the question of probable outcomes and th every nature of geoemtries assigned, as this is a leading indicator to values held in contrast to the depth of pereception needed?

Danger, Phil Anderson by Sean Carroll

Looking for such a position, can be a fickled thing, so where would such things lead from a "flat spacetime" to have then gone either way in the speculations of the geometries?

Sorry, a layman dreaming. Is it a philosophical question, that the possibilties could have ever be increased from negative things(geoemtries in expression), heated up, to create new possibitlies?

Saturday, December 31, 2005

Quantum Experiments and the Foundations of Physics

For a more fundamental look at what I am looking for in guidance, follow this talk by Lubos. I most defintiely could be called a crackpot, but really, my heart and intentions are honourable and I will try to do justice to those things I am learning.

Dirac's Hidden Geometries

When one is doing mathematical work, there are essentially two different ways of thinking about the subject: the algebraic way, and the geometric way. With the algebraic way, one is all the time writing down equations and following rules of deduction, and interpreting these equations to get more equations. With the geometric way, one is thinking in terms of pictures; pictures which one imagines in space in some way, and one just tries to get a feeling for the relationships between the quantities occurring in those pictures. Now, a good mathematician has to be a master of both ways of those ways of thinking, but even so, he will have a preference for one or the other; I don't think he can avoid it. In my own case, my own preference is especially for the geometrical way.





For me the maths are not easy yet following experimental processes help me to direct my thinking. If we enage in philsophical talk then th eessence of this talk had to have a logic basis to it that is currently being expressed as far as I understood it. BUt even this logic take on new methods to expand and make room for the proceses for which we are engaging in talking about.

It is indeed a tuff struggle to remain current in thinking and stil embue our lives with the philosophies we hold in front of us?

The whole point is a comparison was made and reduced to philosophical idealizations, and was diverted from the math? There were consisent methods established that leads us to todays information. Is your philsophy based on what we now know?

Purity of thought around these issues, would have helped me to recognize that reducing these things to "philsophical debate" had to follow experimental processes, and that what I was trying to show, points towards the current work in scattering amplitudes(new models used?) to push perception.

How would our thinking change in how we percieve according to the new models we used for moving perception beyond what it currently houses?



Test of the Quantenteleportation over long distances in the duct system of Vienna Working group Quantity of experiment and the Foundations OF Physics Professor Anton Zeilinger


Quantum physics questions the classical physical conception of the world and also the everyday life understanding, which is based on our experiences, in principle. In addition, the experimental results lead to new future technologies, which a revolutionizing of communication and computer technologies, how we know them, promise.

In order to exhaust this technical innovation potential, the project "Quantenteleportation was brought over long distances" in a co-operation between WKA and the working group by Professor Anton Zeilinger into being. In this experiment photons in the duct system "are teleportiert" of Vienna, i.e. transferred, the characteristics of a photon to another, removed far. First results are to be expected in the late summer 2002.


Further research of Anton Zeilinger:Scientific Publications Prof. Anton Zeilinger

Quantum teleportation, step by step. Although the details of their experiments differ, both the NIST and Innsbruck teams have achieved deterministic teleportation of a quantum state between trapped ions:

First, an entangled state of ions A and B is generated, then the state to be teleported -- a coherent superposition of internal states -- is created in a third ion, P.

The third step is a joint measurement of P and A, with the result sent to the location of ion B, where it is used to transform the state of ion B (step 4).

The state created for P has then been teleported to B
(image and text credit: H J Kimble and S J van Enk Nature)

By taking advantage of quantum phenomena such as entanglement, teleportation and superposition, a quantum computer could, in principle, outperform a classical computer in certain computational tasks. Entanglement allows particles to have a much closer relationship than is possible in classical physics. For example, two photons can be entangled such that if one is horizontally polarized, the other is always vertically polarized, and vice versa, no matter how far apart they are. In quantum teleportation, complete information about the quantum state of a particle is instantaneously transferred by the sender, who is usually called Alice, to a receiver called Bob. Quantum superposition, meanwhile, allows a particle to be in two or more quantum states at the same time


The history contained in this post should direct any further perceptions I have, but you know, I still believe we will judge ourselves as to the constitutions with which we had choosen to exemplify in our continuing evolution of soul.

Scattering Amplitudes

So where has "experimentation" taken us to today?

Stanford Encyclopedia of Philosophy
Under the Heading of Bell's Theorem

Zeilinger:

The quantum state is exactly that representation of our knowledge of the complete situation which enables the maximal set of (probabilistic) predictions of any possible future observation. What comes new in quantum mechanics is that, instead of just listing the various experimental possibilities with the individual probabilities, we have to represent our knowledge of the situation by the quantum state using complex amplitudes. If we accept that the quantum state is no more than a representation of the information we have, then the spontaneous change of the state upon observation, the so-called collapse or reduction of the wave packet, is just a very natural consequence of the fact that, upon observation, our information changes and therefore we have to change our representation of the information, that is, the quantum state. (1999, p. S291).


Of course tryng infiltrate this undertanding inthose who have progressed before is the way in which we are lead to other ideas and works in progress.

Lubos Motl:
In the Minkowski space and de Sitter space, we can safely define the energies according to the strategy above, and we may also determine the time evolution, but only from -infinity to +infinity. If these infinities really appear in the far past and the far future, we call the evolution operator "S-matrix". String theory allows us to calculate the S-matrix (another example that we do call an "observable") for all particles in the spectrum which includes the scattering of gravitons. We don't have to insert our knowledge about the problematic "bulk" observables: string theory automatically tells us not only the right answers but also the right questions. "It is the S-matrix you should calculate, silly," she says. It also tells us what are the corresponding evolution observables for anti de Sitter space.

Someone may therefore convince you that the S-matrix is the only meaningful observable that has any physical meaning in a quantum theory of gravity. This sentence is both deep, if an appropriate interpretation is adopted, as well as discouraging.


Plato:

It is indeed a struggle for me to be clear in this regard, but hopefully, recogizing the requirements of the physicist and the theoretician, that such scholar attributes can be waivered for the commoner?


Scattering Amplitudes?

SLAC E158: Measuring the Electron's WEAK Charge

At SLAC and elsewhere in the 1990s, precision measurements probing quantum effects from physics at higher energy scales were very successful. Precision electroweak measurements accurately predicted the mass of the top quark before it was discovered at the Tevatron at Fermilab, and they were cited in the awarding of the 1999 Nobel Prize to Veltmann and t'Hooft, which recognized their work in developing powerful mathematical tools for calculating quantum corrections and demonstrating that the Standard Model was a renormalizable theory. The discovery and mass measurement of the top quark at Fermilab's Tevatron and the precise Z0 boson mass measurement from CERN experiments added to well established values for other Standard Model parameters, to allow predictions for the only Standard Model parameter not yet measured, the Higgs mass.



Symmetry

asymmetric insight by Heather Rock Woods

Marciano agrees that the experiment contributes to the coming frontier-energy physics. "Perhaps just as important as its final result, E158 provides a clear demonstration that this technique can be employed at the proposed ILC by scattering its high-energy polarized electron beam off a fixed target of electrons. With the higher energy and much larger effective luminosity provided by that facility, unprecedented precision studies of polarized electron-electron scattering will be possible. These studies will probe deeply for virtual particles that pop in and out of existence and other signs of new physics."

In revealing the character of the symmetry-defying weak force, E158 has provided tools and exposed dead ends for the coming climb to higher peaks.

Friday, December 30, 2005

Special holonomy manifolds in string theory

So what instigated my topic today and Hypercharge make sits way for me to reconsider, so while doing this the idea of geoemtries and th eway in which we see this uiverse held to the nature of it's origination are moving me to consider how we see in ths geometrical sense.

The resurgence of ideas about the geometries taking place are intriguing models to me of those brought back for viewing in the Sylvester surfaces and B field relations held in context of the models found in the >Wunderkammern.

This paragraph above should orientate perception for us a bit around methods used to see in ways that we had not seen before. This is always very fascinating to me. What you see below for mind bending, helps one to orientate these same views on a surface.



Hw would you translate point on a two dimensional surface to such features on the items of interest on these models proposed?



Part of my efforts at comprehension require imaging that will help push perspective. In this way, better insight to such claims and model methods used, to create insight into how we might see those extra 10 dimensions, fold into the four we know and love.



G -> H -> ... -> SU(3) x SU(2) x U(1) -> SU(3) x U(1).

Here, each arrow represents a symmetry breaking phase transition where matter changes form and the groups - G, H, SU(3), etc. - represent the different types of matter, specifically the symmetries that the matter exhibits and they are associated with the different fundamental forces of nature



If one held such views from the expansitory revelation, that our universe implies at these subtle levels a quantum nature, then how well has our eyes focused not only on the larger issues cosmology plays, but also, on how little things become part and parcel of this wider view? That the quantum natures are very spread, out as ths expansion takes place, they collpase to comsic string models or a sinstantaneous lightning strikes across thei universe from bubbles states that arose from what?

So knowing that such features of "spherical relation" extended beyond the normal coordinates, and seeing this whole issue contained within a larger sphere of influence(our universe), gives meaning to the dynamical nature of what was once of value, as it arose from a supersymmetrical valuation from the origination of this universe? If Any symmetry breaking unfolds, how shall we see in context of spheres and rotations within this larger sphere, when we see how the dynamcial propertties of bubbles become one of the universes as it is today? Genus figures that arise in a geometrodynamcial sense? What are these dynacis within context of the sphere?



So as I demonstrate the ways in which our vision is being prep for thinking, in relation to the models held in contrast to the nature of our universe, how are we seeing, if we are moving them to compact states of existance, all the while we are speaking to the very valuation of the origination of this same universe?



Holonomy (30 Dec 2005 Wiki)

Riemannian manifolds with special holonomy play an important role in string theory compactifications. This is because special holonomy manifolds admit covariantly constant (parallel) spinors and thus preserve some fraction of the original supersymmetry. Most important are compactifications on Calabi-Yau manifolds with SU(2) or SU(3) holonomy. Also important are compactifications on G2 manifolds.

Thursday, December 29, 2005

Wave Function and Summing over Histories

Dealing with a 5D World

A black hole is an object so massive that even light cannot escape from it. This requires the idea of a gravitational mass for a photon, which then allows the calculation of an escape energy for an object of that mass. When the escape energy is equal to the photon energy, the implication is that the object is a "black hole".



Paul Valletta:
Being that photons are the energy needed for observation by ‘observers’, what happens to a system when the limit of observation is at a minimum ie single photons?


Of course, I could be wrong?:)

"Which Way"? :)

Bohr's principle of complementarity predicts that in a welcher weg ("which-way") experiment, obtaining fully visible interference pattern should lead to the destruction of the path knowledge. Here I report a failure for this prediction in an optical interferometry experiment. Coherent laser light is passed through a dual pinhole and allowed to go through a converging lens, which forms well-resolved images of the respective pinholes, providing complete path knowledge.


Maybe comparative views can be held in context of the graviton as a force carrier as well, when thinking about your question above? There is a "certain influence" over top of your question?

Will this help us to move beyond the standard model?

Sometimes such a change in perception is necessary, to look to what is "contained" in the "wave function," yet there is something left over, that we had not analyzed yet?

How shall we describe this in context of the fifth force? Such a solution recognizes the advances made in GR with the encapsulation of Maxwell's equations and as well the leading indicators to such geometries, that we had witness in working to the Riemann sphere. BUt beyond this in compactive states of existance(quantum mechanics), how shall such views be encapsulated?

An Introduction to String Theory A Talk by Steuard Jensen, 11 Feb 2004

So how does all this come together into a physical theory? It turns out that the proper procedure is to construct every possible diagram allowed by the theory (for a given state of input and output particles and how they're moving) and add up the corresponding complex numbers. The result is essentially the "wave function" for that specific input-output state combination, and by squaring that number you can determine the probability that the given input will result in the given output. Doing that is how theorists at particle accelerators earn their keep.


Under these principals how shall a photon react to the enviroment in which it is moving? Moving, to encapsulate such views by moving to a fifth force is necessary.



While it is not always easy to see what is taking place, by perserverance I hope to one day understand the fullscope :)


Oskar Klein Collegiate Professorship Inaugural Lecture: "The World in Eleven Dimensions"by Michael Duff




Why?

Such a view of the photon held in context of the fifth force is the joining of gravity and light?


The least-action principle is an assertion about the nature of motion that provides an alternative approach to mechanics completely independent of Newton's laws. Not only does the least-action principle offer a means of formulating classical mechanics that is more flexible and powerful than Newtonian mechanics, [but also] variations on the least-action principle have proved useful in general relativity theory, quantum field theory, and particle physics. As a result, this principle lies at the core of much of contemporary theoretical physics.

Thomas A. Moore "Least-Action Principle" in Macmillan Encyclopedia of Physics, John Rigden, editor, Simon & Schuster Macmillan, 1996, Volume 2, page 840.

It is far better to understand the workings then just have wave a hand at it and said what a "crock of this or that"? What is worth while, that has been put into thinking here?

You just can't sweep it under the rug, and all is fine. Models, help in this regard, and if your comments were deleted becuase you didn't tow the party line, then should you have followed such orders and dismiss this model(your model?) which motivates to comprehension?

Some seem to think so, while they are held in the "same regardas arvix?" to which they themselves have handed out their criticisms and deletions. People who understand this statement, will know exactly what I mean. Those that don't. It wasn't meant for you :)

Wednesday, December 28, 2005

Laval Nozzle and the Blackhole

Often times model changes help perspective, where previously idealization will be contained. Moving beyond the experimental grasp for new ways in which to interpret, require a mode and offensive into producing new variations of ole thngs held in context? Ths is why such models like string that began in one mode in terms of quark confinement have now bloossomed into modes cocnerned with quantum gravity.



Discovering new dimensions at LHC

More dramatically still, the LHC could produce fundamental string relations of our familiar particles, such as higher-spin relatives of electrons or photons. There is also a possibility that, owing to the now much stronger gravitational interactions, microscopically tiny black holes could be produced with striking signals.


Once idealization and understanding developed in quark Confinement, it is understood the shift to the metric and the idealization of that measure became a property I found in the way we now deal with the perceptions containing dimensional significance? Strng Theory, that had graduade from the model apprehensions early on, here to a more fundamental pursuate of how we see in those extra dimensions, compact as they may be?

Acoustic Metric (29 Dec 2005 Wiki)

In mathematical physics, a metric (mathematics) describes the arrangement of relative distances within a surface or volume, usually measured by signals passing through the region – essentially describing the intrinsic geometry of the region. An acoustic metric will describe the signal-carrying properties characteristic of a given particulate medium in acoustics, or in fluid dynamics. Other descriptive names such as sonic metric are also sometimes used, interchangeably.

Since "acoustic" behaviour is intuitively familiar from everyday experience, many complex "acoustic" effects can be confidently described without recourse to advanced mathematics. The rest of this article contrasts the "everyday" properties of an acoustic metric with the more intensely studied and better-documented "gravitational" behaviour of general relativity


On the Universality of the Hawking Effectby William G. Unruh and Ralf Schutzhold

Addressing the question of whether the Hawking effect depends on degrees of freedom at ultra-high (e.g., Planckian) energies/momenta, we propose three rather general conditions on these degrees of freedom under which the Hawking effect is reproduced to lowest order. As a generalization of Corley’s results, we present a rather general model based on non-linear dispersion relations satisfying these conditions together with a derivation of the Hawking effect for that model. However, we also demonstrate counter-examples, which do not appear to be unphysical or artificial, displaying strong deviations from Hawking’s result. Therefore, whether real black holes emit Hawking radiation remains an open question and could give non-trivial information about Planckian physics.


It is important that when thinking about this universality that the derivations of such thinking is understood by me so I ahve to lay it out in a sequence that suports the end part of this post so that it is brought togher in a nice way. I bold mark thos epoints that help greatly in my understanding.

Acoustic_theory(28 Dec 2005 Wiki)

Acoustic theory is the field relating to mathematical description of sound waves. It is derived from fluid dynamics. See acoustics for the engineering approach.

The propagation of sound waves in air can be modeled by an equation of motion (conservation of momentum) and an equation of continuity (conservation of mass). With some simplifications, in particular constant density, they can be given as follows:


where is the acoustic pressure and is the acoustic fluid velocity vector, is the vector of spatial coordinates x,y,z, t is the time, ρ0 is the static density of air and c is the speed of sound in air.



Fluid Dynamics (28 Dec 2005 Wiki)

Fluid dynamics offers a mathematical structure, which underlies these practical discipines, that embraces empirical and semi-empirical laws, derived from flow measurement, used to solve practical problems. The solution of a fluid dynamics problem typically involves calculating for various properties of the fluid, such as velocity, pressure, density, and temperature, as functions of space and time


So these ideas in terms of analogies help to push forarwd understanding where we might have been limited in our views before. I know, they certainly help me.

"Analogue Gravity"
by Carlos Barceló and Stefano Liberati and Matt Visser

Abstract

Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).


and here......


Parentani showed that the effects of the fluctuations of the metric (due to the in-going flux of energy at the horizon) on the out-going radiation led to a description of Hawking radiation similar to that obtained with analogue models. It would be interesting to develop the equivalent formalism for quantum analogue models and to investigate the different emerging approximate regimes.


I am always interested in how science might take these analogies in concert with how we understand blackhole horizon abilites. To exemplify the understanding of where "this place of virtual reality might issue from such a ground state" might be, in terms of what might flow one way, and what will flow in another, as photon pairs do from around the blackhole.

How far can this be taken as we look to understand Hawking radiation? How would such constrictions pave the way for sound emitted and held in context of Hawking Radiation, flowing through a pipe? We've had our lessons from Cosmic Variance on this, but would it have ever been taken this far?

Well, I still like to think about the gravitational comparisons here, so I would be very happy to have found some geometrical propensities towards how the horizon would have given us a good picture of what "first principle" might be as we look at the nature of hawking radiation, and how the standard model is featured from that horizon. So of course I am thinking deeply about all the things I have been learning.

I hope one day a comprehensive picture forms so that I can finally understand what is going on?

Further "Analogy" sought by me to help my perspective.

  • Bubble World and Geometrodynamics

  • Tiny Bubbles
  • Making Sense of the Nonsensical

    From this experiment it is apparent that interference is destroyed by a "which-way" marker and that it can be restored through erasure of the marker, accomplished by making the appropriate measurement on the entangled partner photon p.

    In this set up, the "which-way" measurement does not alter the momentum or position of the photons to cause destruction of the interference pattern. We can think of the loss of interference as being due only to the fact that the photons are entangled and that the presence of the quarter wave plates changes this entanglement. The interference pattern can be brought back through the erasure measurement because of the entanglement of the photons, and the way that the presence of the quarter wave plates and polarizer changes the entanglement.


    It is very obvious I need some time to digest and listen carefully here. Of course I draw from Wiki quite regularly and I hate to think such efforts to destroy a concerted effort by those whose hearts are pure, for leading others into the correct methods, would not resort ot the efforts and likes of those Lubos has brought to our attention.

    ON the note below taken from Lubos update, it is without thinking that I might have lured others into the state of complacency without fully understanding, and hence my part in this effort less than kind? So I'll draw back for a bit here and try and digest what I learnt and see if I can get it together.

    Lubos Motl:
    Note added later: let me mention that Kastner has submitted another paper criticizing Afshar's conclusions. In my opinion both Unruh as well as Kastner replace Afshar's experiment by a completely different experiment that does not capture the main flaw of Afshar's reasoning. The main flaw is that Afshar does not realize that for a tiny grid, only a very tiny percentage of photons is used to observe the wave-like properties of light; these are essentially the photons for which the which-way information is completely lost. Because most photons go through the lens without any interactions and interference, Afshar is not allowed to say that he observes the wave-like phenomena with visibility close to one. In fact, it is close to zero if a consistent set of photons is used to define both V and K.


    Here is the paper >Kastner talks too in regards to the content of Afshar experiment.

    Why the Afshar Experiment Does Not Refute ComplementarityR. E. Kastner

    ABSTRACT. A modified version of Young’s experiment by Shahriar Afshar demonstrates that, prior to what appears to be a “which-way” measurement, an interference pattern exists. Afshar has claimed that this result constitutes a violation of the Principle of Complementarity. This paper discusses the implications of this experiment and considers how Cramer’s Transactional Interpretation easily accomodates the result. It is also shown that the Afshar experiment is analogous in key respects to a spin one-half particle prepared as “spin up along x”, subjected to a nondestructive confirmation of that preparation, and post-selected in a specific state of spin along z. The terminology “which-way” or “which-slit” is critiqued; it is argued that this usage by both Afshar and his critics is misleading and has contributed to confusion surrounding the interpretation of the experiment. Nevertheless, it is concluded that Bohr would have had no more problem accounting for the Afshar result than he would in accounting for the aforementioned pre- and
    post-selection spin experiment, in which the particle’s preparation state is
    confirmed by a nondestructive measurement prior to post-selection. In addition,
    some new inferences about the interpretation of delayed choice experiments are
    drawn from the analysis.

    1. Introduction.The Young two-slit experiment is a famous illustration of wave-particle duality: a quantum particle emitted toward a screen with two small slits will produce an interference pattern on a detecting screen downstream from the slits. On the other hand, as has been repeatedly demonstrated, if one tries to obtain “which-way” or “which slit” information, the downstream interference