Thursday, May 12, 2005

A recipe for making strings in the lab

All you educated people must forgive me here. I do not have the benefit, of the student and teacher relationship, yet I rely heavily on my intuitive processes. I cannot say whether for sure these are always right. IN this sense, I would not have been liked to call a Liar, or one who had ventured forth to spread illusionary tactics to screw up society.

On the contrary, my ideal is set in front of my mind, and all things seem to gather around it most appropriately. A place and time, where good educators have watched out for the spread and disemmination, that could lead society away from, good science? I will give credit to Peter Woit in this sense. Lubos Motl for staying the course. As to those who excell these views for us as well. We are your distant cousins in need of education and for those, in the backwoods of isolation.

Fixations on Objective Design

This is far from the truth of my goal, and "fixations on objective design" of reality, are not what I was hoping to reveal. More, the understandng, that to get there, there are some considerations to think about.

The idealization in theoretcial developement should show this. The physics must accompany the development of this lineage of mathematics, as well as the lineage of physics must lead mathematics? What is the true lineage? Could any mathematican tell me or are they limited to the branches they deal with in physics?

Now back to the topic of this thread.

When I was a kid, I liked to take buttons and place a thread through them. Watching Mom, while I prep the button, she got ready to sew. I would take both ends of the thread and pull it tightly. I liked the way the button could spin/thread depending on how hard I pull the thread.



Now for some of you who don't know, the pythagorean string tension was arrived at by placing gourds of water on strings, to dictated the harmonical value, "according to weight?"


It is said that the Greek philosopher and religious teacher Pythagoras (c. 550 BC) created a seven-tone scale from a series of consecutive 3:2 perfect fifths. The Pythagorean cult's preference for proportions involving whole numbers is evident in this scale's construction, as all of its tones may be derived from interval frequency ratios based on the first three counting numbers: 1, 2, and 3. This scale has historically been referred to as the Pythagorean scale, however, from the point of view of modern tuning theory, it is perhaps convenient to think of it as an alternative tuning system for our modern diatonic scale.


So we see the nature spoken too, in a much different way?

KakuIf strings are to be the harmony then what music do such laws of chemistry sing? What is the mind of God? Kaku saids,"According to this picture, the mind of God is Music resonanting through ten- or eleven dimensional hyperspace which of course begs the question, If the Universe is a symphony, then is there a composer to the symphony."

Simply put, superstring theory says all particles amf forces are manifestations of different resonances of tiny one dimenisonal strings(or possibly membranes) vibrating in ten dimensions.


Artist's impression of the setup.

The disks represent the bosonic condensate density and the blue balls in the vortex core represent the fermionic density. The black line is a guide to the eye to see the wiggling of the vortex line that corresponds to a so-called Kelvin mode, which provides the bosonic part of the superstring
(image and text: )arXiv.org/abs/cond-mat/0505055.

Now I will tell you why this elementary experiment is very good for fixing the mind around some potential idea? Now, when I look at it, and look at the ball placings on each disk ( are they in the same spot....hmmm yes this could be a problem), each disk will automatically spin according to the placement of the ball, in relation to it's edge. Now when you place this in line, like a one dimensional string, as if you see this string vibrate, imagine how you would get these waves to exemplify themself and the disk placement acccordingly.

Now it is most important that you see the tension of this string vibrate, in relation to how we see the disks spin. Pull tightly on the string and you get a wonderful view of a oscillatory nature, that is dictated by the respective placement of the balls on the disk. Good stuff!

In brackets above, the exploration of artistic rendition is very good, because it allows you to further play with this model and exhaust it's potential. Would it be incorrect to say, that ball placement and vibratory placement can be related to string harmonics? In this case, how would KK tower and circle allocation to disk identify this string, but to have some signature in the way these disks spin,,individually and as a whole(one string)

The link below was 2000 but it is effective in orientating thoughts?


To find extra dimensions of the type studied by the CERN group, experimenters are on the alert for what they call Kaluza-Klein towers, which are associated with carriers of the nongravitational forces, such as the photon of electromagnetism and the Z boson of the weak force. Excitations of energy within the extra dimensions would turn each of these carriers into a family of increasingly massive clones of the original particle—analogous to the harmonics of a musical note.


For me, nodal impressions at spots, serve me well to see the vibratory nature of the reality that we live in. Balloons with dyes spread around it, and sound application help us see where such nodal point considerations would settle themself to these distinctive notes. You take the sum(it harmical value, in order to distinctively classify the partcle/object?

Maybe we can have experts describe this in a most genaral way, where I might have complicated the picture:?) What I did want to say about artistic rendition, is like the work of Penrose. It is very important it culminates the vision, to real things? As I showed in Monte Carlo effect. Or, John Baez's view of Plato's God?

Ultracold Superstrings byMichiel Snoek, Masudul Haque, S. Vandoren, H.T.C. Stoof

Supersymmetric string theory is widely believed to be the most promising candidate for a "theory of everything", i.e., a unified theory describing all existing particles and their interactions. Physically, superstring theory describes all particles as excitations of a single line-like object. Moreover, the bosonic and fermionic excitations are related by supersymmetry. A persistent problem of string theories is the lack of opportunity to study them experimentally. In this Letter, we propose and analyze a realistic condensed-matter system in which we can create a non-relativistic Green-Schwarz superstring in four space-time dimensions. To achieve this, we make use of the amazing tunability that is now possible with ultracold trapped atomic gases. In particular, for the creation of the superstring we consider a fermionic atomic gas that is trapped in the core of a vortex in a Bose-Einstein condensate. We explain the tuning of experimental parameters that is required to achieve supersymmetry between the fermionic atoms and the bosonic modes describing the oscillations in the vortex position.


Now what is very interesting to me is the way such harmonical value can be seen in in relation to particle identification. It is not always easy to see how such disks and toys could exemplify this for us, but I am trying. If we wanted to see the new toy and the relations that I will show how would this all relate to the disk and the ball on it?



I wanted to look at what you were saying to "try," and understand.


One of the most exciting predictions of Einstein's theory of general relativity is the existence of a new type of wave, known as a gravitational wave. Just as in electromagnetism, where accelerating charged particles emit electromagnetic radiation, so in general relativity accelerating masses can emit gravitational radiation. General relativity regards gravity as a curvature of spacetime, rather than as a force, so that these gravitational waves are sometimes described as `ripples in the curvature of spacetime'.





This mode is characteristic of a spin-2 massless graviton (the particle that mediates the force of gravity). This is one of the most attractive features of string theory. It naturally and inevitably includes gravity as one of the fundamental interactions.




By looking at the quantum mechanics of the relativistic string normal modes, one can deduce that the quantum modes of the string look just like the particles we see in spacetime, with mass that depends on the spin according to the formula




Remember that boundary conditions are important for string behavior. Strings can be open, with ends that travel at the speed of light, or closed, with their ends joined in a ring.


See:

  • Quantum Harmonic Oscillators


  • Distinctions of Holographical Sound
  • Wednesday, May 11, 2005

    Visualization: Changing Perspective

    I give some perspective on "image use and artistic expression." But such journeys are not limited to the "ideas of a book" or "a painting" in some form of geometric code.

    Some will remember Salvador Dali picture I posted. I thought it okay, to see beyond with words, or how one might see a painting and it's contribution to thoughts. Thoughts about a higher dimensional world that is being explained in ways, that we do not generally think about.

    So while it is not mysterious, there is some thought given to the ideas of moving within non-euclidean realms. In the one hand, "discrete forms" have us look at how such a model in terms of quantum gravity is built, and these images and paintings, accordingly?


    Arthur Miller
    Miller has since moved away from conventional history of science, having become interested in visual imagery through reading the German-language papers of Einstein, Heisenberg and Schrödinger - "people who were concerned with visualization and visualizability". Philosophy was an integral part of the German school system in the early 1900s, Miller explains, and German school pupils were thoroughly trained in the philosophy of Immanuel Kant.



    Click on image for a larger view

    On page 65 of Hyperspace by Michio Kaku, he writes, "Picasso's paintings are a splendid example, showing a clear rejection of the perspective, with woman's faces viewed from several angles. Instead of a single point of view, Picasso's paintings show multiple perspectives, as though they were painted by someone from the fourth dimension, able to see all perspectives simultaneous

    Talk of the Nation, August 20, 2004 · How did Leonardo da Vinci use math to influence the way we see the Mona Lisa? And how does our visual system affect our perception of that, and other, works of art? A look at math, biology and the science of viewing art.


    This idea of dimension seemed an appropriate response to what I see in the Monte Carlo effect. I mean here we are trying to dewscibe what dimenison might mean in terms of a gravity issue. Is there any relevance?

    What are Surfaces and Membranes?


    Surfaces are everywhere: the computer screen in front of you has a smooth surface; we walk on the surface of the earth; and people have even walked on the surface of the moon.

    By surface we mean something 2 dimensional (*). Clearly objects like a coffee cup or a pencil are 3 dimensional but their edges - their surfaces - are 2 dimensional. We can put this another way by seeing that the surface has no thickness - it is just the places where the coffee cup ends and the air or coffee begins.

    Surfaces can be flat, like a table top, or curved like the surface of a football, a balloon or a soap bubble. The surface of water can be either flat without ripples, or curved when it has ripples or waves on it.

    We use the word membrane to mean a sheet-like 2 dimensional object, an object with area but very little or no thickness. Good examples are sheets of paper or a piece of plastic food wrap. Just like surfaces, membranes can be flat or curved; rough or smooth.


    Quantum Gravity Simulation

    P. Picasso
    Portrait of Ambrose Vollard (1910)
    M. Duchamp
    Nude Descending a Staircase, No. 2 (1912)
    J. Metzinger
    Le Gouter/Teatime (1911)

    The appearance of figures in cubist art --- which are often viewed from several direction simultaneously --- has been linked to ideas concerning extra dimensions:


    Dimensionality


    Cubist Art: Picasso's painting 'Portrait of Dora Maar'

    Cubist art revolted against the restrictions that perspective imposed. Picasso's art shows a clear rejection of the perspective, with women's faces viewed simultaneously from several angles. Picasso's paintings show multiple perspectives, as though they were painted by someone from the 4th dimension, able to see all perspectives simultaneously.


    Art Mirrors Physics Mirrors Art, by Stephen G. Brush

    The French mathematician Henri Poincaré provided inspiration for both Einstein and Picasso. Einstein read Poincaré's Science and Hypothesis (French edition 1902, German translation 1904) and discussed it with his friends in Bern. He might also have read Poincaré's 1898 article on the measurement of time, in which the synchronization of clocks was discussed--a topic of professional interest to Einstein as a patent examiner. Picasso learned about Science and Hypothesis indirectly through Maurice Princet, an insurance actuary who explained the new geometry to Picasso and his friends in Paris. At that time there was considerable popular fascination with the idea of a fourth spatial dimension, thought by some to be the home of spirits, conceived by others as an "astral plane" where one can see all sides of an object at once. The British novelist H. G. Wells caused a sensation with his book The Time Machine (1895, French translation in a popular magazine 1898-99), where the fourth dimension was time, not space.


    Piece Depicts the Cycle of Birth, Life, and Death-Origin, Indentity, and Destiny by Gabriele Veneziano

    The Myth of the Beginning of Time

    The new willingness to consider what might have happened before the big bang is the latest swing of an intellectual pendulum that has rocked back and forth for millenia. In one form or another, the issue of the ultimate beginning has engaged philosophers and theologians in nearly every culture. It is entwined with a grand set of concerns, one famously encapsulated in a 1897 painting by Paul Gauguin: D'ou venons? Que sommes-nous? Ou allons-nous? Scientific America, The Time before Time, May 2004




    Sister Wendy's American Masterpieces"
    :


    "This is Gauguin's ultimate masterpiece - if all the Gauguins in the world, except one, were to be evaporated (perish the thought!), this would be the one to preserve. He claimed that he did not think of the long title until the work was finished, but he is known to have been creative with the truth. The picture is so superbly organized into three "scoops" - a circle to right and to left, and a great oval in the center - that I cannot but believe he had his questions in mind from the start. I am often tempted to forget that these are questions, and to think that he is suggesting answers, but there are no answers here; there are three fundamental questions, posed visually.

    "On the right (Where do we come from?), we see the baby, and three young women - those who are closest to that eternal mystery. In the center, Gauguin meditates on what we are. Here are two women, talking about destiny (or so he described them), a man looking puzzled and half-aggressive, and in the middle, a youth plucking the fruit of experience. This has nothing to do, I feel sure, with the Garden of Eden; it is humanity's innocent and natural desire to live and to search for more life. A child eats the fruit, overlooked by the remote presence of an idol - emblem of our need for the spiritual. There are women (one mysteriously curled up into a shell), and there are animals with whom we share the world: a goat, a cat, and kittens. In the final section (Where are we going?), a beautiful young woman broods, and an old woman prepares to die. Her pallor and gray hair tell us so, but the message is underscored by the presence of a strange white bird. I once described it as "a mutated puffin," and I do not think I can do better. It is Gauguin's symbol of the afterlife, of the unknown (just as the dog, on the far right, is his symbol of himself).

    "All this is set in a paradise of tropical beauty: the Tahiti of sunlight, freedom, and color that Gauguin left everything to find. A little river runs through the woods, and behind it is a great slash of brilliant blue sea, with the misty mountains of another island rising beyond Gauguin wanted to make it absolutely clear that this picture was his testament. He seems to have concocted a story that, being ill and unappreciated (that part was true enough), he determined on suicide - the great refusal. He wrote to a friend, describing his journey into the mountains with arsenic. Then he found himself still alive, and returned to paint more masterworks. It is sad that so great an artist felt he needed to manufacture a ploy to get people to appreciate his work. I wish he could see us now, looking with awe at this supreme painting.
    "

    The Unity of Mathematics


    Alain Connes

    Where a dictionary proceeds in a circular manner, defning a word by reference to another, the basic concepts of mathematics are infinitely closer to an indecomposable element", a kind of elementary particle" of thought with a minimal amount of ambiguity in their defnition.

    I think what intrigues me most, is that a world can be fabricated mathematically that is carefully constructed using models of math, to get to a desired visionary culmination? One had to have some culminative effect, from such model thinking, that a vision beocmes clear. In this sense I related Lenny Susskind here, for his developement and contributions to string theory.

    Now having spent time delving into parts of this world, the "tidbits" help me to see that such alignmenets of the world of physics have correlations in mathematical design. This has to have it basis set, "in the Rossetta stone you might say," about how we percieve the deveopement of those physics. The math must contrast the physics?

    So to set things straight here, in case I gave the wrong link, I thought I should attribute proper link to words in case this mistake was made.



    So too, information in blogs can be readily adapted too, where previous articles might have made some feel that the article not worth maintaining in their blog? That it might have been removed? I was thinking of the B-field topic that Lubos had written briefly on, that when I went to look for relevant information pertaining to this current entry, it was no where to be seen.

    A VIEW OF MATHEMATICS by Alain CONNES
    Most mathematicians adopt a pragmatic attitude and see themselves as the explorers of this mathematical world" whose existence they don't have any wish to question, and whose structure they uncover by a mixture of intuition, not so foreign from poetical desire", and of a great deal of rationality requiring intense periods of concentration.

    Each generation builds a mental picture" of their own understanding of this world and constructs more and more penetrating mental tools to explore previously hidden aspects of that reality.


    Now many would have to forgive my adventurous heart. I was somehow transported in my thoughts and converted? I don't know when, that such models of the mathematical structure had easily become discernable for me(it's result)? Not it's elemental structure(although I have seen areas of string theory design developed) from basic principals. It had it's culminative effect.

    Is my vision always right? Of course not. But I see where such discriptions are necessary. Solid, and in stone, so that such progression can be made. I respect this, and I respect the physics, and it's culminative approach in theoretical developement.

    Nature's Greastest Puzzle



    Alain Connes refers to "poetic design," much like I see beats to music:?), and artistic adventure, as the play ground of imagination. We hope such songs shared, lyrics or otherwise, will reveal what the most secluded and private individuals might have found in their own world. To seek out, good artistic drawers like Escher? Penrose, needed his help, and the ideas brought forth, interesting results.

    Now there is a reason for this post besides setting the record straight. It came up a long time ago with the question of whether mathematics was natural or created.

    This may seem simplistic thought to some, but to me, it forced me to consider whether mathematics and physics were directed connected to each other.:) Now as I have said it is not easy for me to follow the matheics of such abtract individuals, but once I catch sight of the world that they allude too, it is somehow easy for me to see the structure of the bubble, or a representative drawing correlated in nodes, and features of a world that is constained in the physics.

    This is why I refer back to Lubos and his B-field missing post, or I cannot simply find it. I refer to it, because I made links to mathematical design, that correlated dynkin diagram as shown above, and connects to other blog. Now it was important for me to see this correlation in the archetecture of the picture I linked to its prospective author, in relation to the dynkin diagram. Not the E11 asscoiation, but with that I had linked in image in comments to the B-field post.

    My whole blog is based on visionary developement, theoretically, as well as nurturing physics association as best as I can, to show that the envelope is being pushed theoretically.



    Interpretations of the magnetic field, in all its desgin is easily comprehensible once we align our thinking to hard fact and design reprsentation. Magnetic field lines on paper, is a child's toy, but easily experimetally done. Much more abstract then, that we see the field created, it's north and south, and a channel through which expression can flow?



    Now even this is contained, and a Gausssian representation, highly abtract, relates curvature in away that we would understand this force that nature has created for us.

    You must remember I do not have the luxury or life's abilty to move through the higher avenues that scholastic carreers have venture forth in. To preview this branch or that branch in physics, so I am bombarded with information from all angles:?)

    I like to wrap the gravitational field, much like we wrap the magnetic field. It's just the way I see, and in it's greater design, that vast gravitational field that is generate through our cosmos? Bubbles become very interesting whenyou wrap somehing and the inside is moving with the outside, and in the vast vacuum of space this is stretching the very fabric itself?

    I won't make the mistake of calling it the aether, yet continuity of expression seen in this abstract mode, does not see "tears" and such, so it is allocated to topological relevances. Holes, that look like swiss cheese in the cosmos? Yet I know well the events, that materialize in comsological expression, I wanted to push beyond these material things, to see the greater vision that has been moved by mathematcians.

    You can say the rogue man here who speaks, is a wolf cub. Has been raised in a foreign world, without the benefits of scholastic teachers to guide me. So I had to look for them who held sacred some of the vision that I see when this math leads to a comprehensive view.

    Reimann lead Einstein, and it was fortunate that Grossman was able to spot Einsteins deficiences. Help him move geoemtical principal beyond the euclidean coordinated world, to one manifested in spacetime, and a new dynamcial feature called gravity. It was beyond billiards and the sound related, and not the clasical discription that now beocmes the analogy of, that strange world we now see in gravitational thought.

    Was it enough to speak about theses things and theorectically develope thoughts, to describe ways, in which such sound could ring bars, or influence the flexible arms of LIGO We measure this abstract world mathematcially created, to realize, we are now engaged in something very unique about our visions developement? Kip Thorne progeny will be the new genration that sees in way that were new to bauss and Riemann and now as we see of Einstein. This has a geometrical expression and basis to it, and it leads into projective elements topologically described.

    Klein's Ordering of Geometries

    A theorem which is valid for a geometry in this sequence is automatically valid for the ones that follow. The theorems of projective geometry are automatically valid theorems of Euclidean geometry. We say that topological geometry is more abstract than projective geometry which is turn is more abstract than Euclidean geometry.


    Klien's ordering of geometries were specifc here?

    Tuesday, May 10, 2005

    Gamma Ray Detection

    A important point here is that there should be coincidental features in gamma ray detection, that should align with LIGO detectors?

    Why are two installations necessary?


    At least two detectors located at widely separated sites are essential for the unequivocal detection of gravitational waves. Local phenomena such as micro-earthquakes, acoustic noise, and laser fluctuations can cause a disturbance at one site, simulating a gravitational wave event, but such disturbances are unlikely to happen simultaneously at widely separated sites.


    Lubos said::
    The LIGO collaboration informed that the second science run did not detect any gravitational waves. The results follow from 10-day-long observations in early 2003 (two more science runs have been made ever since)


    A current blackhole has been detected and so should LIGO detect it. So how long should we wait if findings are only now being conisdered from 2003 run?

    Scientists have detected a flash of light from across the Galaxy so powerful that it bounced off the Moon and lit up the Earth's upper atmosphere. The flash was brighter than anything ever detected from beyond our Solar System and lasted over a tenth of a second. NASA and European satellites and many radio telescopes detected the flash and its aftermath on December 27, 2004. Two science teams report about this event at a special press event today at NASA headquarters.


    Journey to a Black Hole

    A direct image of gravity at its extreme will be of fundamental importance to Physics. Yet imaging a black hole requires a million times improvement over Chandra. That's a big step. Over the next 20 years, the Cosmic Journeys missions will take us closer and closer to a black hole though the power of resolution. Each successive mission will further us in our journey by 10- or 100-fold increases in resolution, step by step as we approach our goal of zooming in a million times closer. And each stop along the way will bring us new understandings of the nature of matter and energy.

    GLAST is a gamma-ray observatory mission that will observe jets of particles that shoot away in opposite regions from a supermassive black hole at near the speed of light. We do not fully understand how a black hole, which is known for pulling matter in, can generate high-speed jets that stretch out for billions of miles. Galaxies that harbor black holes with a jet aimed in our direction are called blazars, as opposed to quasars, which have their jets aimed in other directions. GLAST, up to 50 times more sensitive than previous gamma-ray observatories, will stare down the barrel of these jets to unlock the mechanism of how the enigmatic jets form. The Constellation-X mission will probe the inner disk of matter swirling into a black hole, using spectroscopy to journey 1,000 times closer to a black hole than any other mission before it. With such resolution, Constellation-X will be able to measure the mass and spin of black holes, two key properties. This X-ray mission will also map the distortions of space-time predicted by Einstein. Constellation-X draws its superior resolution by pooling the resources of four X-ray satellites orbiting in unison into one massive X-ray telescope. The ARISE mission will produce radio-wave images from the base of supermassive black hole jets with resolution 100,000 times sharper than Hubble. Such unprecedented resolution can reveal how black holes are fed and how jets are created. ARISE will attain this resolution through interferometry. This technique is used today with land-based radio telescopes. Smaller radio telescopes spread out on land -- perhaps one mile apart -- can work together to generate a single, huge radio telescope with the collecting power of a one-mile radio dish. ARISE will utilize one large radio telescope in space with many other radio telescopes on Earth, bringing what is now a land-based technology to new heights
    .


    New NASA Satellite to Study Black Hole Birth and Gamma Ray Bursts


    The Swift observatory comprises three telescopes, which work in tandem to provide rapid identification and multi- wavelength follow-up of GRBs and their afterglows. Within 20 to 75 seconds of a detected GRB, the observatory will rotate autonomously, so the onboard X-ray and optical telescopes can view the burst. The afterglows will be monitored over their durations, and the data will be rapidly released to the public.


    See:
  • Longitudinal and Transverse Information about the Energy Deposition Pattern


  • The Calorimetric View?
  • Saturday, May 07, 2005

    The Use of Language, over Geometric Design?

    One must realize that to further develope scenarios for the mind had to consider, created conversation. To use this to formulate new steps and expansion of thought. One needs to create the situation?

    So what if, Plato in this case, is not real, and "the dialogues," using this figurative object, was used to create the dialogues? Can he have ever produced further thoughts for us to consider in dramas, without a bouncing board?

    So is the situation real below?

    Kansas Board Holds Evolution Hearings By JOHN HANNA

    TOPEKA, Kan. (AP) - As a State Board of Education subcommittee heard more testimony Friday on how evolution should be taught in Kansas classrooms, one member acknowledged that she hadn't read all of an evolution-friendly draft of science standards proposed by educators.

    Kathy Martin of Clay Center made the comment while attempting to reassure a witness who said he hadn't read the entire proposal, just parts of it. Russell Carlson, a biochemistry and molecular biology professor at the University of Georgia, said he had reviewed an alternate proposal from intelligent design advocates.


    Islamic Creationism In Turkey

    Sometime in the mid 1980s, the Turkish Minister of Education, Mr. Vehbi Dinçerler [. . .] placed a call to ICR. [. . .] he wanted to eliminate the secular-based, evolution-only teaching dominant in their schools and replace it with a curriculum teaching the two models[.] As a result, several ICR books which dealt with the scientific (not Biblical) evidence for creation were translated into Turkish and distributed to all Turkey's public school teachers.

    You have to wonder too, about thedistrust of and motivations seen in the Templeton foundation and the list of scientific personalities that contribute or those thinking of contributing?

    This mistrust is seen by some as instigating such concerns as revealled in the issues above? Motivating society with fasle idealizations? I do not quite understand this. This is not a position I take, but was one of observance that I witnessed and relay here.

    The whole issue around the Sokal Affair:
    The essay you have just seen is completely meaningless and was randomly generated by the Postmodernism Generator. To generate another essay, follow this link. If you like this particular essay and would like to return to it, follow this link for a bookmarkable page
    .


    Is it intentional, or are people easily fooled?

    Is there a greater design behind and leading people into falsehoods? Is this what everyone fears could happen to them?



    It's strange, but this post of yours sets up a complex scenario. About shadows and light? :)

    That the tenable position would be, "the earth they stand on," some how intrudes on the surface of the moon, and from behind the earth, the sun.

    A classic Plato story? :)

    But lets say your post is about something else?

    Not just the plain ideals of observance.



    Might one believe beyond the scope of our scientific valuations? To see, that it might have some other answer to why life is the way it is. What is it's motivator? It's energy?



    A higher perspective on what we know about earth is summed up in an overview of the globe. Are not the intricacies of earth's design, much more complex, then it's mere shadow causing presence?

    The expansitory thinking beyond straight euclidean thinking, is much more versatile? Reveals geometrical design much more intricate then just two dimensional observances?

    Thought and observance, is now telling us to think beyond the hard fact realities? You can still be a scientist and believe in God. :)



    A tesserack or hypercube is a four dimensional analogue of a cube. See the figure on the left for a 2-D representation of this 4-D object. More information about these can be seen and found. Many people have difficulty believing such can exist which is why such books as Flatland (Abbott, 1884), Sphereland (Burgers, 1983), and Flatterland (Stewart, 2001) were written.


    I tried to show leading indicators in this trial, further expanding it's boundry into todays world. No less than, "climate exchanges on Kyoto," and scientist to scientist, "battle for supremacy of ideology?" Intelligent design?

    More abstract, the inclinations of the quote selected provided a opportunity. About what few people will ever understand? Are the roads leading to complex scenarios about the particle world.



    The way Arthur Miller quote might have sufficed might be to say, "that we need to think differently about reductionistic processes."

    These are all governed by geometrical consistancies although we rely on experimental process. The progression to topological forms, as abstract processes. These are relevant to our "dynamical way of thinking." If lead to fifth dimensional scenarios, you are beyond the limitations of our solid world, becasue it arose from some place else first?

    The "Calorimetric view," addresses this. We create the scenario of particle collisions and measure, particle production.

    None of you would know this, but the inherent "opera of image," leads you to ask, "what is a tesserack?" Non?

    The last two picture gaves views from a fifth dimensional element, where gravity and light have been joined. Dali's painting, and relation to the wonder of God's son. Are these related to these higher geometrical figures and wonder about God?

    We are not simple machines. As well, the computer screen is a work and play on fifth dimensional imagery. Some might assume a atheist approach to life and settle on proofs, and a s a scientist this is expected logic to validation.

    Yet there is still room for thinking that within the spaces of thought, the inherent suttleness of God might pervade all things? That such thoughts could lead us to higher pinnacles above the solid world, and what is present around us now?

    Why should we allocate such spiritual thinking to classes of religions like Islam and the Turkey scenario? You hurt the quest for theoretcial endeavors by limitations of ideology? When the world requires innovative thinking, "to push the boundaries of our envelope."

    Without leading to these realization of the electromagnetic principles, Gauss and Maxwell relations, might we ever understand the simple visionistic world of the magnetic field?

    Thursday, May 05, 2005

    "Centauro" event

    Gravity Wave Pulses From the Sun?

    Now what has happened here is that I am seeing from a purely gravitational consideration in light of the bulk. Our earth and in this space , considerations on the strengths and weaknessess of gravity in relation to the sun.



    We understand well the relationship in the cosmos, but have we taken this view and in recognition of cosmic particle collisions, understood the the microstate blackhole would have something to say in this weak field manifestation?

    For additional information on this process of cosmic particle collisions

  • The Fly's Eye and the Oh My God Particle


  • If some of physicists' favourite theories about extra dimensions are correct, it would also be possible for high-energy cosmic-ray particles from space to create black holes when they collide with molecules in the Earth's atmosphere. These black holes would be invisibly small, with a mass of only 10 micrograms or so. And they would be so unstable that they would explode in a burst of particles within around a billion-billion-billionth of a second.



    One of the mysterious "Centauro" events seen by the Brazil ­Japan collaboration operating X-ray emulsion chambers at an altitude of 5200 m on Mt Chacaltaya in the Bolivian Andes. Given the number of hadrons seen in the lower chamber (left) physicists are intrigued by the relative lack of corresponding electromagnetic effects in the upper chamber (right).


    Can Centauros or Chirons be the first observations
    of evaporating mini Black Holes?


    Among the various extensions of the Standard Model to energies beyond 1 TeV, one of the most attractive alternatives to the (Supersymmetric?) Great Desert Scenario is the TeV-gravity hypothesis with large extra dimensions [1]. According to it, matter particles and vector gauge bosons are open-string excitations, attached to a 3-brane (our world), which is embedded into compactified D-dimensional bulk space, where the closed-string excitations, including gravity, can propagate. This is the simplest possibility. Specific realizations of this idea and alternative scenaria may be found in [2]. Apart from a certain philosophic and aesthetic attraction of such models, they lead to the exciting possibility of experimental discovery of unification of the Standard Model with Quantum Gravity within the next few years, in the forthcoming accelerator, neutrino and cosmic-ray experiments [3, 4, 5].

    Moreover, one could even claim that Quantum Gravity phenomena are already present in existing cosmic-ray data [6]. In the present paper we shall argue that the long-known Centauro-like events (CLEs) may be due to the formation and subsequent evaporation of mini black holes (MBHs), predicted in TeV-gravity models.

    Wednesday, May 04, 2005

    Developing Character in Rhetoric and Composition


    Francis Bacon (1561 - 1626)
    -----although not a rhetorician, contributed to the field in his writings. One of the concerns of the age was to find a suitable style for the discussion of scientific topics, which needed above all a clear exposition of facts and arguments, rather than the ornate style favored at the time. Bacon in his The Advancement of Learning criticized those who are preoccupied with style rather than "the weight of matter, worth of subject, soundness of argument, life of invention, or depth of judgment." On matters of style, he proposed that the style conform to the subject matter and to the audience, that simple words be employed whenever possible, and that the style should be agreeable.

    Heck I am still learning. But if I only said what you wanted to hear, then would you have heard anything different? :) You try and incorporate the logic into the statement? Here in this case, there is no arguement, because the logic can not be further reduced?

    Word Play

    Word play is a literary technique in which the nature of the words used themselves become part of the subject of the work. Puns, obscure words and meanings, clever rhetorical excursions, oddly formed sentences, and telling character names are common examples of word play.

    All writers engage in word play to some extent, but certain writers are particularly adept or committed to word play. Shakespeare was a noted punster. James Joyce, whose Ulysses, and even more so, his Finnegans Wake, are filled with brilliant writing and brilliant word play is another noted word-player. For example, Joyce's phrase "they were yung and easily freudened" clearly conveys the meaning "young and easily frightened", but it also makes puns on the names of two famous psychoanalysts, Jung and Freud.


    But here is another context of character masking that was revealled? Thinking about Francis Bacon, that one wonders, who was Shakespeare?

    THE SHAKESPEARE/BACON CONTROVERSYFAUSTIN BRAY: Do you think that academia will eventually recognize this?


    Who Is Arthur Young





    We know well that some writers take pen names before they become established? Or hide amidst the current dealings of society. To not call attention to their positions in life, while they strive to delve into the deeper meanings or hide a message for others?:)

    I learnt this early, to not complicate life, while I could have free roam, to delve into all aspects of our human natures. Struggle for, the ideals that we develope in life. Rote systemic appearances constituted from our early histories, as well shape our perceptions of society. I knew well, that if we think a certain way, whether we like it or not, we desemminate thoses principals into society, how ever it materialized, might be perceived in different ways.

    So can we be artistic about it? I am, in choosing my characters becuase I saw in rhetoric and dialogue, past performaces by independant scientific researchers, this incination to go back in time, and then move forward.

    Plato's cave might have seem ole fashion and constantly wornout and used, but in the scientific mind of Gerard Hooft, and his explanation of Holographical design, he wanted to push other minds to consider?

    And one in which I like to consider, that a three dimensional frame work, can be arrived at from higher perception abilities. In science, four dimensional characteristics here would have understood dynamcial feature to the nature of reality, yet pinning it down to coordinates, it becomes realizstic in our minds, as a object of perception.

    Heisenberg made similar use of such inclination for historical reference. His uncertainty in movement became interesting references, once we assumed a position?:)

    This logic has underpinnings in how we see what can be consittuted in life. How we choose to display our positions with clarity.

    That we should then find ourselves engaged because of the inhernet dialogue and espressions between each other on the internet, then we know that progression and learning, the desire, and not flaws of character dispositon should reign.

    But now onto some more references for consideration here to help people digest, what could have ever arrive in our coordinated frames of reference. That we saw, other means to arrive at this conclusion. One of these means, is a Calormetric view? I use this while I think about the space between the earth and the sun. While looking at insightful ways to generate more possiblities, in the minds, that are resistant to change.

    Standard particle reductionist methods have detailed how we shall see these energy considerations. So to apply a global perspectve to energy valuations, we are left to consider simpler model reductionist figures here in our talks, about climate change? Visions of non-euclidean world that few will take hold of in our consverstions. etc.

    Resistance to character, should be statistics or better information?

    See also,
  • Rhetoric and Composition
  • Thursday, April 28, 2005

    String theorist explores dark energy and our unique 'pocket' of the universe


    Stanford physics Professor Leonard Susskind, who is currently on sabbatical and writing a popular book titled The Cosmic Landscape. (Photo courtesy of Stanford University)


    Dawn Levy:The dust isn't likely to settle soon. Says Susskind: "More and more as time goes on, the opponents of the idea admit that they are simply in a state of depression and desperation. More and more people are starting to think about this possibility. But it's been a major sea change in the attitudes of theoretical physicists. Â… It means we have a mathematical framework to think about it. We have a basic set of precise concepts to think about it, and it means that in time we will know the truth."

    Quantum Entanglement: Do We Need a Radically New Spacetime/Quantum Worldview

    I have been thinking hard and heavy about how such information could have been translated from the horizon of a blackhole.

    IN post previous post this interaction and thinking has been directed in Gerard 't Hooft focus. In light of Penrose picture below we see where this focus can point our attention on principles of entanglement? Might we have said that there can be such a thing as the calorimetric view within context of the larger picture of relativity, as well as, incorporating this quantum view?

    We needed to start from some place and all seem to be happy here as long as we slowly chart this progress, to describing this visual expression of the reality we are moving into. Now we are at the horizon? Particle production and it's inception?

    What are the limitations of these views?



  • Penrose and Quanglement

  • Entanglement and the New Physics




  • In the past, teleportation has only been possible with particles of light Image: Rainer Blatt



    By taking advantage of quantum phenomena such as entanglement, teleportation and superposition, a quantum computer could, in principle, outperform a classical computer in certain computational tasks. Entanglement allows particles to have a much closer relationship than is possible in classical physics. For example, two photons can be entangled such that if one is horizontally polarized, the other is always vertically polarized, and vice versa, no matter how far apart they are. In quantum teleportation, complete information about the quantum state of a particle is instantaneously transferred by the sender, who is usually called Alice, to a receiver called Bob. Quantum superposition, meanwhile, allows a particle to be in two or more quantum states at the same time





    Whether such a "quantum computer" can realistically be built with a value of L that is large enough to be of practical use is a topic of much debate. However, the mere possibility has led to an explosive renaissance of interest in the host of curious




    Issues of Entanglement

    Wednesday, April 27, 2005

    The Calorimetric View?



    The Title, might seem somewhat strange, but a issue has developed for me that I see raised in the scourge of other intellectuals, who disavow the extra dimension scenario.

    So you have this view and you have this idea of missing energy? Where did it go and where did it come from? Pierre Auger linked previously and the Oh my god particle, raise this idea more in line with the vaster layout of this possibilty.

    You see these things are happening around us now, and you needed a much comprehensive view of this compacted dynamcial world? So the methods seen for determination help us to see what is happening in relation not only to particle reductionistic views, but of the relationship happening with Earth and the Sun. Our other Cosmic relations, that move here in the vast network of spacetime contortions that signal informative views from earlier times


    ATLAS and the LHC
    Describing the strong, weak and electromagnetic interactions in terms of gauge theories, the Standard Model (SM) of fundamental particles and their interactions has successfully explained and predicted many aspects of high-energy particle interactions. However, despite its tremendous successes, it remains theoretically unsatisfactory. The SM cannot answer what is the origin of particle masses, contains a large number of arbitrary parameters, and does not explain why there are so many types of quarks and leptons, among other questions. Perhaps as much as theoretical breakthroughs are needed in order to improve the SM, so are experimental observations on phenomena which can further constrain the SM or may reveal physics beyond it.


    The question I raised was in looking at where the missing energy had gone? This is a important question, becuase it speaks to what energy gone in/out, as not being equal? I take it, that all particle reductionistic interpretations would have surmized it's energy value, and then, had something left over that is accoutable? How would you know it's missing?

    Now I was looking a Cabi's ole post and from it, this lead me to look at the title of the connected paper for consideration.


    A Toroidal LHC ApparatuS


    Part of the counterpart of looking at particle creation would have been able to understand the part of the calorimeters that are used to measure the evidence produced. IN this context, it lead me to the Atlas information held at CERN. It also made me think of Glast determinations of early universe indications from the calorimeter located in the Glast satelitte. See the Looking Glast


    A Higgs Mechanism for Gravity, by Ingo Kirsch

    In this paper we elaborate on the idea of an emergent spacetime which arises due to the dynamical breaking of diffeomorphism invariance in the early universe. In preparation for an explicit symmetry breaking scenario, we consider nonlinear realizations of the group of analytical diffeomorphisms which provide a unified description of spacetime structures. We find that gravitational fields, such as the affine connection, metric and coordinates, can all be interpreted as Goldstone fields of the diffeomorphism group. We then construct a Higgs mechanism for gravity in which an affine spacetime evolves into a Riemannian one by the condensation of a metric. The symmetry breaking potential is identical to that of hybrid inflation but with the non-inflaton scalar extended to a symmetric second rank tensor. This tensor is required for the realization of the metric as a Higgs field. We finally comment on the role of Goldstone coordinates as a dynamical fluid of reference.


    Now I have not gone into in detail because I am somewhat slow and a bottom feeder trying very hard to gain perspective of the world these fellows like to deal with.

    So the water symbolically speaking, sound manifest, with those inhabiting a dynamical world, speak about the nature of matter constitutions. That come from some state of existance? Here the idea, that it could emerse from nothing (where do the graviton perceptions reside?), is again hard to swallow becuase, "preconstitutional states," had allowed such manifestations to emerge from something? It just seemed logical? Non!

    When you think this is going to be the end of it, I thought, I would recap, because I have given the containment(calorimetric) that such particle views, or early universe connections, might have brought forward in detectors methods?

    This would have satisfied Peter Woit I am sure, but this view is far from over. The rules have defined a greater context to the issue that points us to the deeper issue of what Gerard 't Hooft might have said was comprehensible features of computerized information consistancies. This would have been far from the truth. Blackhole particle production, would have said hold on? To have this comprehensive view, you needed to include a completed version of the standard model? Without the grvaiton in cvomputerized versions you see where the picture is far completed and you se where the extra dimensiona would have certain features that would have incorporated graviton perceptions in the bulk?



    The horizon would have been far from complete had the standard model not included this into the the energy in/out version. This would have been the thread(string) that connected the innner space of the blackhole with the particle production that would have dissipated/exploded in view? How would computerization meet this demand? LIGO?