Now what has happened here is that I am seeing from a purely gravitational consideration in light of the bulk. Our earth and in this space , considerations on the strengths and weaknessess of gravity in relation to the sun.
We understand well the relationship in the cosmos, but have we taken this view and in recognition of cosmic particle collisions, understood the the microstate blackhole would have something to say in this weak field manifestation?
For additional information on this process of cosmic particle collisions
If some of physicists' favourite theories about extra dimensions are correct, it would also be possible for high-energy cosmic-ray particles from space to create black holes when they collide with molecules in the Earth's atmosphere. These black holes would be invisibly small, with a mass of only 10 micrograms or so. And they would be so unstable that they would explode in a burst of particles within around a billion-billion-billionth of a second.
One of the mysterious "Centauro" events seen by the Brazil Japan collaboration operating X-ray emulsion chambers at an altitude of 5200 m on Mt Chacaltaya in the Bolivian Andes. Given the number of hadrons seen in the lower chamber (left) physicists are intrigued by the relative lack of corresponding electromagnetic effects in the upper chamber (right).
Can Centauros or Chirons be the first observations
of evaporating mini Black Holes?
Among the various extensions of the Standard Model to energies beyond 1 TeV, one of the most attractive alternatives to the (Supersymmetric?) Great Desert Scenario is the TeV-gravity hypothesis with large extra dimensions [1]. According to it, matter particles and vector gauge bosons are open-string excitations, attached to a 3-brane (our world), which is embedded into compactified D-dimensional bulk space, where the closed-string excitations, including gravity, can propagate. This is the simplest possibility. Specific realizations of this idea and alternative scenaria may be found in [2]. Apart from a certain philosophic and aesthetic attraction of such models, they lead to the exciting possibility of experimental discovery of unification of the Standard Model with Quantum Gravity within the next few years, in the forthcoming accelerator, neutrino and cosmic-ray experiments [3, 4, 5].
Moreover, one could even claim that Quantum Gravity phenomena are already present in existing cosmic-ray data [6]. In the present paper we shall argue that the long-known Centauro-like events (CLEs) may be due to the formation and subsequent evaporation of mini black holes (MBHs), predicted in TeV-gravity models.