Tuesday, February 15, 2005

Where is Gravity Stronger?

If one were to ask where this energy came from, would such a weak gravitonic scale lead us to stronger inidcations of the energies presence and becomes a trail leading us to it's source? What would gravity mean, if it was considered in context of the fifth dimension, and only became realized at this time, in the four dimensional spacetime?

So we ask the question, where is gravity stronger?


Arkani-Hamed began pondering this quandary as a Stanford University researcher and continued at Harvard. He stumbled onto the idea of extra dimensions. Imagine a piece of paper floating in space. The space is the fifth dimension. Our world, everything we can perceive, is confined to that paper. But what if there is interaction between the paper and the surrounding space?

Perhaps gravity bleeds into this fifth dimension, Arkani-Hamed theorized, or even more dimensions. But, given our four-dimensional reality, we're able to experience only the gravity left over. In other words, gravity is much stronger than we realize. Perhaps, Arkani-Hamed speculated, at super high energy levels, of an intensity never seen by humans, such as the split second after the Big Bang, gravity is like the other forces, before leaking into the fifth dimension.

Describing this conceptual breakthrough, which he backed mathematically, thus rocking modern physics, Arkani-Hamed says: "At the time, I was just in the mood for thinking about something different." As speculative as his ideas might sound, experimental verification is on the way. In three years, a massive particle accelerator in Switzerland comes on line, giving scientists a means to create super-high energy levels that will enable them to measure nature at the most fundamental scale ever. This should provide evidence confirming -- or refuting -- Arkani-Hamed's theory.


I added bold to reinforce the conceptual thinking that we are dealing with.

Monday, February 14, 2005

The Arrow of Time


Rudolf Julius Emanuel Clausius


There is but one kind of entropy change. Entropy change is due to energy dispersal to, from, or within a system (as a function of temperature.), measured by microstate change: S = kB ln [microstates final / microstates initial ].


I should back up here and mentioned that Peter Woit seems to be coming out in the open and explaining somethings that have been not so clear before?

Perter Woit:
Penrose also carefully lays out areas in which his point of view differs from the general consensus of most theoretical physicists. An example is his emphasis on the importance for cosmology of understanding why the universe had such low entropy at the Big Bang


What is strange today that with this thought on the subject of entropy.

Lubos Motl:
This is what allows the early gas to clump (and seemingly create a more order state) without violating the 2nd law of thermodynamics: the gravitational entropy overcomensates the decrease of the entropy.

OK, so why was the beginning of the Universe a low-entropy state? The best explanation we have is inflation. It simply explodes the size of the Universe. During inflation, the total entropy of the Universe grows, but much more slowly than how it would grow otherwise, without inflation
.


if one did not understand the early universe consideration here, and the idealization of supersymmetry, could we have found a association to low orders of entropy since this early time would have been very topologically considered and part of a continuum?

Entropy and the second law of thermodynamics

Entropy is no mystery or complicated idea. Entropy is merely the way to measure the energy that spreads out in a process (as a function of temperature). What's complicated about that? Entropy change, S, measures how much energy is spread out in a system, or how spread out is the energy of a system (both always involving T). The first example in our text was melting ice to water at 273 K where S = q/T. So, in that equation, it's easy to see that q (the enthalpy of fusion) is how much "heat" energy was spread out in the ice to change it to water. What's the big deal?


Update: Reading Peter Woit's blog today he linked Sean Carroll's "Arrow of Time article," so I thought it most apropriate to link it from here as well, since I am on the topic.


Sean Carroll:
Jennie and I do the following thought experiment -- if it weren't for inflation, what would be a "natural" state for the universe to be in? Different people have addressed this question, with different answers; Roger Penrose, for example, has suggested that it would be a lumpy universe full of black holes. Our answer is almost exactly the opposite -- the only natural state is empty space. This is basically because gravity makes everything unstable, and the entropy of any given configuration can always be increased by just expanding the universe by a huge factor. Sure, black holes will form, but they will ultimately evaporate away. If you let the universe evolve forever, it will ultimately get emptier and emptier (generically).

Sunday, February 13, 2005

HIgher Dimensions Without the Geometry?



In Illusions and Miracles I became concerned with what the mind's capabilties which could encounter fifth dimensional views. That such examples were needed, and found in relation to Thomas Banchoff.

Having understood the early development from Euclidean perspective, our furthered evolutionary developement of the geometries, were gained by moving beyond the fifth postulate. I became comfortable with a dynamical realization about our universe(Omega), and about the idealization of curvature in dynamical fields of supergravity.

I made the statement that GR is reduced from the higher geometries and along with that view the understanding that things existed in earliers states of being. Robert Laughlin's views of complexity and symmetry breaking would reveal to me, that the matter states of form, were derived from "other states of existance". This is a fundamental realization of higher dimensional attributes revealled in the topologies/geometries. So from higher, and the continuity of, topological considerations to the firmly fixed realms of geometries in the forms? So from early universe to now, what views allow us to consider that symmetical breaking that has gone through phase transitions, to get from the planck epoch phase of our universe to today?

Having come in contact with a new type of thinking in the realm of the geometries, it became very important to me to understand how this could have manifested early in our historical background? I followed it through GR in order for this to make sense, I continued to move and consider the higher dimensional relevance new models might use in their move to the abstracts realms of thinking.

Here I would interject the realization of string theory, and ask why such a rejection mathematically, would dimiss the subject of strings based on this dimensional realization, and then quickly disperse, string's relevance because of the higher dimensional significance brought to bear on the attribtues of the minds capabilties? Part of the develpement of the brains compacity was the realization that such images produced(higher topological math forms), could indeed symmetryically break to forms within the world. Forms within mind, that could lead to solification in the math? When is a Pipe a Pipe?:)

This is what had troubled me most, noting Peter Woit's rejection of the value of his "anti" campaign of string theory evolution. Maybe, it was more then the idea of the subject and it's established views that he felt were as much part of the illusion as any other theory, that found itself unscientifically determined? Based on the constructs string theory developed? Maybe it was the funding biased felt towards this subject, and lack of, somewhere else. We wouldn't know this, because he had no alternative?

Saturday, February 12, 2005

What Pattern Emerges?

Problem solvers have a way of getting to the heart of the issues, and unfortunately when ones engages competent minds like Peter Woit in the world? Whose sign post is,"anti-string with no explanation"? This is simple in the minds of the general public? It then becomes a rant, without a substantial basis? Why? Because he had no platform with which to refute?

So this attempt was fruitless, in wondering why strings should not be.

What I did find viable in looking for myself, is finding out where strings applicable features pervaded and what they were describing. Both bottum up and top down have to find approaches that emerge from a place that asks us to map this progress, and there is only one place that allows me to understand this operation.

The spectrum.

When you look at Glast operations this idealization of using the spectrum in cosmological discernation, helped to clarify why the move of strings to a cosmological operation platform was necessary from a experimental and scientific undertanding. Why was this move important?

It had to do with the amounts of energy needed to explore the principles of reductionism? How could we extend reductionism to a cosmological question about the origins of our beginning? There were no limitations as to the question of the energy that could be displayed for us all to wonder on that cosmological pallete, and here Relativity Ruled.

While complexity, asks us about the means of what is established in the forms, stands for us in our observations, as existing? Many people feel safe in what they can see?

I looked for comparative features. Like how ideas could emerge and as a good example of what math could issue from the minds of those whose good observation could speak about natures manfestations.

How good are the observatory minds of mathematicians? That would systematically describe for us this idealization of quantum reality and Relativity to join in a way that makes sense?

Macroscopic and microcosmo perceptions joined?

You say Time? Julian Barbour wants to do away with Time? Yet his goal is the same? He calls Time a human construct? What isn'taside from everythng else that we don't see? Science reveals a deeper truth?

Killing Time

Barbour posits that time is, in fact, an illusion - a measure imposed on the world by humanity. He explains this with the concept of a 'now', which he describes as a snapshot in time - a completely frozen, self-contained instant (much like a Polaroid photograph). Time is simply the measure of the space between two separate and unrelated 'nows.'



BarryTo offer that I am an engineer and a sculpture with a carear of problem solving. To offer that making me understand the final solution is to achieve making it clear to anyone.

I am somewhat like a philosopsher as you are, minus, the engineering, yet I am quite capable of peering past the veil that good minds construct.

In the end, what is taken with you might be the realization that of all the thought forms we have estanblished and created. The illusion that we move through, hides a deeper truth, and we were emersed within it the whole time. Science, verified the anomalies that we saw?

How much power then could we grant the mind who escapes this realization, to find that all the thoughts that have ever existed, were weighted with the gravity that held us to earth? That the forms, revealled a deeper realization of their beginnings?

As the temperature cooled, the solification was final and so was the idealization that manifested from the idea.

When is a pipe a pipe? Is a question about what supergravity reveals in the forms manifestation. Crystalization. What pattern emerges?


Betrayal of Images" by Rene Magritte. 1929 painting on which is written "This is not a Pipe"


Yet probablistic in nature, how could such things arrange themselves as they have?

There is a deeper question here about the reality. If the idea is born in mind how would it not burn up, comparative to the beginning of our universe? Yet nature has supplied a good analogy of bubbles that form, rise to the surface, and this could have been information that arose from the fifth dimension? It all arose form the mind of the subconsious? It was always closer to the source. Why Ramanujan and Einsteins note taking in the subtle realms help to spur the incubation of reality to a deepr level of questions.

People might say indeed, that this departure point from the sane world of forms, is the moving further into the illusions? But if we cannot find a way to free ourselves, then surely, one will accept the consequences of there reality, as they take it with them?:)

Thursday, February 10, 2005

Organization of Matter: The Theory of Everything

I looked at Sean Carroll's blog on the thread on emergence and for me first principle was a dirty word to Robert Laughlin, and for many of us, the forms are the resulting framework of the organization of matter states, versus reductionistic attempts leading to the first building blocks of matter?



Robert Betts Laughlin (born November 1, 1950) is a professor of Physics and Applied Physics at Stanford University. Along with Horst L. Störmer of Columbia University and Daniel C. Tsui of Princeton University, he was awarded the 1998 Nobel Prize in physics for his explanation of the fractional quantum Hall effect.

Laughlin was born in Visalia, California. He earned a B.A. in Mathematics from UC Berkeley in 1972, and his Ph.D. in physics in 1979 at MIT, Cambridge, Massachusetts, USA. In the period of 2004-2006 he served as the president of KAIST in Daejeon, South Korea.

Laughlin shares similar views to George Chapline, doubting the existence of black holes.




It is rather obvious that one does not need to prove the existence of sound in a solid, for it follows from the existence of elastic moduli at long length scales, which in turn follows from the spontaneous breaking of translational and rotational symmetry characteristic of the crystalline state [12]. Conversely, one therefore learns nothing about the atomic structure of a crystalline solid by measuring its acoustics Robert Laughlin



So such a view of Robert Laughlin does not concern itself with what took place at the very beginning of the universe, but rather opposed to the higg's field, and the organizational process of matter, we might see of the professor crossing the room, there is real manifestation of the universe in the now. So I see where Professor Laughlin polarities are much different then high energy particle people?

Complexity changes these views, from a reductionistic view, as in particle identification, to one of a expansionary nature, when looking at our universe now?

Robert Laughlin is very helpful in showing us the complexity issue ballooning into a real world measure, of solid state and formative issues. But no where is this idealization asking what the basis of this existence is? Does it care?


The Institute for Complex Adaptive Matter (ICAM) is a University of California multicampus research project devoted to revealing the principles by which matter, both living and inanimate, organizes itself to reveal surprising, emergent behavior.



Certain assumptions make this universe and our perceptions of it, point to a reality. But in order to leave the confines of constructive formations and these ballooning attributes of universal expansionism, where are the seeds of its beginnings? Does it matter?

Emergent Matter Project
There is a huge potential public interest in learning about the frontier that connects inanimate matter, via quantum emergent properties such as magnetism, high temperature superconductivity, and quantum criticality, to the worlds of nanophysics and ultimately to biology and life itself.

What Lies Beneath?


Likewise, if the very fabric of the Universe is in a quantum-critical state, then the "stuff" that underlies reality is totally irrelevant-it could be anything, says Laughlin. Even if the string theorists show that strings can give rise to the matter and natural laws we know, they won't have proved that strings are the answer-merely one of the infinite number of possible answers. It could as well be pool balls or Lego bricks or drunk sergeant majors.



***


See:
  • "Lego Block" Galaxies in Early Universe
  • Wednesday, February 09, 2005

    Blackhole Production and Sonluminence




    John Ellis:The quark-gluon plasma - if it exists and is being produced at RHIC - is considerably more complicated than was thought a few years ago. It seems to be an almost perfect, strongl-interacting fluid with very low viscosity. Theoretically, there have been some very interesting developments relating the plasma to string theory, as well as strongly-coupled supersymmetric gauge theory and ideas from condensed-matter physics, e.g., in nano-Kelvin Bose-Einstein condensates.

    I have been interested in finding a consistent geometrical/topological system to undertanding our universe. When we look to the reductionistic principles, I couldn't help but be attracted to the idealization of bubble nucleation, and if such was the case, then such an idea had to emerge from a very hot time.

    Can we entertain such bubble nucleations within the context of these experiments?

    Would M theory have then found it's experimental counterpart? The Bose Nova and Jet idea from collapsing bubbles has been part of the vision I speculated in what Heisenberg saw in the geometrodynamics of a nuclear explosion. See, not only were we detonating a nuclear reaction(gravitational collapse), but we were doing something beyond the perception, by going to the heart of these particle collisions.

    Part of this process for me, was looking for a situable framework in which the gravitational collpase could induce the geometrics /topological explanations that would go hand in hand with these processes. So as theoretical this may sound, before such plasmatic states of existance are developed, what would we see at this level in relations to such bubble nucleations?


    The second plume of antimatter was unexpected and has yet to be explained. "The origin of this new and unexpected source of antimatter is a mystery," said Northwestern University physics professor William Purcell.


    In the Bose NOva such jets would seem beyond the approach of the micrososmic idealization but if such consistancies could exist, how would we describe the relationship between the very large to the very small? The geoemtrics/topological would have to be compatible?

    So in looking for this way in which such energy could go through a increase to generate the needed energy, the collapse of the blackhole would initiate this energy production by tapping the source?

    Such Gravitonic condensation would have initiated the booms by contracting the blackhole. Such allegorical relations were developing in my mind about how such gravitons could amassed from such intiated responses, that I looked to sonoluminece as to how such nuclear reaction could have been initiated for energy creation?

    I then saw such relations on how grvatons would have been move within the balckhole in comparative sounds vibration being moved witin t ebubbles for reaction. All highly speculative on my part and of course needing correction.

    Tuesday, February 08, 2005

    When Gravity Becomes Strong......




    The value of non-Euclidean geometry lies in its ability to liberate us from preconceived ideas in preparation for the time when exploration of physical laws might demand some geometry other than the Euclidean. Bernhard Riemann


    It is very important that this progresssion of thinking leaves the surface of the earth for a greater understanding of where our views might be taken from? If we move ourselves beyond the two dimension surface of earth's fields, the agricultural enlightenment, was greatly enhanced from the sheep herders(Romans) of days of ole.

    The developement in dimensional perspective is well understood in the art that has progressed in this evolutionary context as well. One has to wonder indeed why Penrose would seek solace from Escher in the developement of the idealizations of thinking beyond the box:)To see such tessellations and intelocking fundamentals of black and white to realize, that dependance of one or the other defines the lines of existance.

    Is it so clear here in the understanding of gravity? I think Einstein made this as simple as one can imagine, and to leave eucldean perspective you had to leave the planet earth in our thinking. It was a transformative picture of what we had always learnt to deal within in engaging the dynamics of earth everyday happenings. That the graduation and metamorphsis of thinking, was a greater realization from viewing the planet earth as a whole.

    Can it go from beyond here, to a more illustrious view. You bet it can.


    According to Einstein's theory of general relativity, the sun's gravity causes starlight to bend, shifting the apparent position of stars in the sky.

    I am sort of updating here from a previous post on how one can use images to orientate the rise from euclidean perspective. Dilation and the Cosmic String

    This is a very important lesson for me in moving into non eucldean perspectives and may seem trivial to some. How very important this is, is part and parcel of understanding GR . Without this geometrical principle being developed within the mind, then why would any topic like GR make sense on a cosmological scale?

    Developing this intuitiveness about curvature parameters was very helpful in getting to the senssation of lensing and time dilation. Einstein in his provoking thoughts about a pretty girl was most helpful in orientating a much subtle logic to what curvature implied, once this progression is understood in relation to photon interaction.

    On the Effects of External Sensory Input on Time DilationA. Einstein, Institute for Advanced Study, Princeton, N.J.

    Abstract: When a man sits with a pretty girl for an hour, it seems like a minute. But let him sit on a hot stove for a minute and it's longer than any hour. That's relativity.

    As the observer's reference frame is crucial to the observer's perception of the flow of time, the state of mind of the observer may be an additional factor in that perception. I therefore endeavored to study the apparent flow of time under two distinct sets of mental states.




    Einstein@home is a program that uses your computer's idle time to search for spinning compact stars (such as pulsars) using data from the LIGO and GEO gravitational wave detectors. While we are still testing, we are close to deploying a production version of Einstein@home, as part of the American Physical Society's World Year of Physics 2005 activities.

    Friday, February 04, 2005

    Symmetry and Symmetry Breaking

    Harmonices Mundi


    Symmetry considerations dominate modern fundamental physics, both in quantum theory and in relativity. Philosophers are now beginning to devote increasing attention to such issues as the significance of gauge symmetry, quantum particle identity in the light of permutation symmetry, how to make sense of parity violation, the role of symmetry breaking, the empirical status of symmetry principles, and so forth. These issues relate directly to traditional problems in the philosophy of science, including the status of the laws of nature, the relationships between mathematics, physical theory, and the world, and the extent to which mathematics dictates physics.


    This is cosmological question about what the universe has become? At earlier time in the Planck era, the symmetry theoretically speaking from a string perspective, is much different then it is in today's matter orientated world?

    High Energy particle identification, brings us much closer to the earlier views of the cosmo. Glast determinations, with Compton scattering help us to identify early photon interaction. These views are limited, although they give us a better window on the universe?



    Complexity changes these views, from a reductionistic view, as in particle identification, to one of a expansitory nature, when looking at our universe now?

    Thursday, February 03, 2005

    Time and Gravity

    Einstein wrote
    >"...for us physicists believe the separation between past, present, and future is only an illusion, although a convincing one."


    After being changed by assuming the views of string theory, something happened in my perspective about understanding the dimensional significance of the history of our existance? Reading and working the GR evolution and seeing what Wheeler and Kip Thorne had done, I was not going to be to easily dismissed by those who do not want to find relevance in this association.

    Previously, I have show some detection methods that are being implored to understand what GR has lead us too. What happens when a quantum mechanical view wants to merge as a form of quantum geometry, in these short distances.

    The Beginning of Time, by Stephen Hawking

    The conclusion of this lecture is that the universe has not existed forever. Rather, the universe, and time itself, had a beginning in the Big Bang, about 15 billion years ago. The beginning of real time, would have been a singularity, at which the laws of physics would have broken down. Nevertheless, the way the universe began would have been determined by the laws of physics, if the universe satisfied the no boundary condition. This says that in the imaginary time direction, space-time is finite in extent, but doesn't have any boundary or edge. The predictions of the no boundary proposal seem to agree with observation. The no boundary hypothesis also predicts that the universe will eventually collapse again. However, the contracting phase, will not have the opposite arrow of time, to the expanding phase. So we will keep on getting older, and we won't return to our youth. Because time is not going to go backwards, I think I better stop now.


    It was well evident that we had minds who are engaging thes econcepts and helping us along, it became clear, that the distance from the events of gamma ray burts will have released information at one end of the spectrum that ha sbeen adjust for a finer view of the times in terms of these billions of years?




    The measure of this distance has left information for us to consider? Has left traces of these events for us to consider in these detection systems. How much closer has "particle identification," taken us to the source of these events?

    Not to shabby with the thinking minds, that we could have gained in perspective with thinking and intelligent beings, who slowly moved us forward in the evolution of our understanding.