Showing posts with label Stephen Hawking. Show all posts
Showing posts with label Stephen Hawking. Show all posts

Thursday, July 13, 2006

GRand Quantum Conjecture



My continued looked into the "fluids dynamics" had me wonder about the superfluid anomalies. How would the "sphere look" if it collapsed and allowed information to travel through it, based on what has been given here for perspective, when the "state of equillibrum" is arrived at?

In regards to 3, let's just say the assumption is from a theoretcial standpoint, that microstate blackholes "are created." They are created in "cosmic particle collisions" as well?

This is the premise from which I work, and how I gave "how particles are created," a beginning(dimensional referencing), and a basis from which all science becomes "evidentary" in the particle creations.

Exotic physics finds black holes could be most 'perfect,' low-viscosity fluidVince Stricherz, University of Washington

Son and two colleagues used a string theory method called the gauge/gravity duality to determine that a black hole in 10 dimensions -- or the holographic image of a black hole, a quark-gluon plasma, in three spatial dimensions -- behaves as if it has a viscosity near zero, the lowest yet measured.

It is easy to see the difference in viscosity between a jar of honey or molasses at room temperature and a glass of water. The honey is much thicker and more viscous, and it pours very slowly compared with the water.

Using string theory as a measuring tool, Son and colleagues Pavlo Kovtun of the University of California, Santa Barbara, and Andrei Starinets of the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, have found that water is 400 times more viscous than black hole fluid having the same number of particles per cubic inch.


Your points in conclusion,I, II, III

I-yes
II-yes
III- from my conclusions as well.

Again in above quote, I am defining the leading perspective on blackholes as they are being theoretically defined now, and will be subject to experimentation soon?:)

Now again "backreaction in the laval nozzle" is up for inspection here as we delve deeper into the nature of the blackhole.

Nature in Analog Models

Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).


"Analogistical behaviors" help to push perspective, where before, our theoretical explorations had ran dry?

Q:
These wormhole like 'blackholes' do not lead to other pocket universes, unless we choose to call another sector of space a pocket universe, like Europeans first called the land across the Atlantic the 'New World' or Australia 'Another World' yet still clearly part of this World we call Planet Earth.


If we are to think that the overall context can be apllied to this universe, then such evidence "should be obtainable" as to the nature of such a beginning? But even still, to your point and aspect within this universe, we are looking for accontable methods to such dark energy creation?

Plato:
Every picture held in mind is a link to other pictures


Each event in regards to gravitational collapse would be indicative of what can be "put back into this universe" and sustain it?

Lubos Motl:
The mechanism behind sonoluminiscence remains a bit controversial. Claiming that a thermonuclear fusion occurs during sonoluminiscence is among the more conservative explanations. The physicist Claudia Eberlein argued that the correct explanation is that the imploding bubbles create sonic black holes and the flashes are the counterpart of Hawking radiation as the sonic black hole evaporates. You should not think that this is an example of a very, very low energy quantum gravity because the sonic black holes have no connection with the scales of gravity. It is not a supercollider in a glass of beer. But let me admit that as an undergrad, I was excited by this proposal, at least for a few minutes, but I apparently forgot the details of that encounter.


So by developing this picture of the "bubble collapse in sonofusion", and let's forget about the energy produced from such bubbles and focus on the geometrics of such a collapse. That's my point.

Lubos Motl:
Janice Granhardt has pointed out a press release that is two days old and arguably much more serious and potentially far-reaching than the news about "sonofusion" we described yesterday.


That is part of my conjecture as well as the "unification factor" in my GRand Quantum perceptions.:)That if you remember Kip thorne's plate 27 you will understand that information from the collapse had to be sent over a great distance for us to make sense of the geometrical dynamics that are unfolding from that time and place.

So you look for the gravitational waves that Webber initiated, and Kip Thorne encouraged in our measures of what is actually being transmitted. Kip Thorne is the father of the LIGO program?

You must remember gravitational waves have not yet been verified, yet the theory of GR implicitly tells and is about gravity. It was thus taken further in my conclusions having understood that the creation of this infomration would allow one someday "to map" this very collapse in terms of the gravitonic information left in the bulk?

This is "Dimensional orientated" from a beginning(11dimensional view?), from which evidence is "the 3+1."

That's outside the box thinking? :)Cosmologists work "inside," as Clifford of Cosmic Variance once said?

How then is such a gravitational heat generated from the boundary conditions(blackhole), which grows ever smaller in that collapse, and our energy valuations go higher to supersymmetical realizations? The present volume calculated in the extension of our universe would have to be in concert with the volume before such a collapse was to be expected?

This "total energy value," assuming the universe is flat teeter's on the brink of ?:)

Total dark energy would have to account for this and supernova events contributing as well as, particle collisions that go on all the time?

So if space is not really empty, then what is it supposed to be filled with? Quantum harmonic oscillator and zeropoint?

See:
  • Charlatan's Who Use Graviton
  • Wednesday, February 15, 2006

    Big Bang:One Man's Change of Heart

    Thanks Paul

    One definitely needs some perspective around this and how such information is given. I refer here for consideration, about perspective, and how it can be exploited for further consideration on what is emitted, and what manifests in weak gravitational field measure, as neutrino effects(quantum gravity).

    Microperspective and methods of examination, raise the issue fo cerenkov radiation and what it tells us about such interactive phases?

    Here in refractive consideration, ICECUBE, paints a different picture of what began somewhere else in cosmological high energy collisions. "Neutrinos and strangelets" are part of the developing scenario with which the universe has consequences, if held to the initial conditons of our universe. You had to know where to look for these.

    Plato:
    "Nothing" in stated form was and always is "nothing" which would have not allowed any further discussion. "Zero" in our conversation is a much different kind of thinking. I understood that as well. "Zero" would have been the equivalent to "i" in the Dirac's matrices?



    Physics at this high energy scale describes the universe as it existed during the first moments of the Big Bang. These high energy scales are completely beyond the range which can be created in the particle accelerators we currently have (or will have in the foreseeable future.) Most of the physical theories that we use to understand the universe that we live in also break down at the Planck scale. However, string theory shows unique promise in being able to describe the physics of the Planck scale and the Big Bang.


    I wanted to add this post, and to centralize some references that were found that helped form my perspective on "nothing." What! I guess I'm done?:)

    Seriously, this had to be confronted, and who better then from our layman perspectve, then the admission of a leaders in science, who can change theirs mind after some thinking?

    Cosmological Constant SeeSaw in Quantum CosmologyMichael McGuigan

    Lubos shares his perspective on linked section of titled paper above.

    One interpretation of the coupling of Wheeler-DeWitt functions is that it originates from topology changing effects. Topology change seems to be inevitable in quantum gravity. To treat topology change properly is a very complicated calculation using today’s mathematical tools.


    I wanted to add these links here for consideration, as well what link given by Paul for consideration in regards to Penrose, the figure of the man's change of heart that ighlight's this post. In Phase transitions the comments have been quite enlightening.

    Before the Big Bang BBC News, with Stephen Sackur
    Sir Roger Penrose has developed a new theory on what happened before the Big Bang.

    These pages were created by Jack "Turtle" Wong, Spring 1999

  • First of all, how do we think the universe began?

  • The Big Bang theory.

  • Resolving the inadequacies of the big bang theory.

  • The Hawking-Turok Instanton theory: Stephen Hawking's
    ideas.

  • The Hawking-Turok Instanton theory: Neil Turok's ideas.

  • The Hawking-Turok Instanton theory: the result of merging
    two interesting theories.

  • Is the search over?

  • Bibliography / Further Reading


  • See Also:



  • Cycle of Birth, Life, and Death-Origin, Indentity, and Destiny by Gabriele Veneziano

  • Ekpyroptic and cyclical models
  • Monday, January 23, 2006

    Hyperspace


    Science is that human activity in which we aim to show towards nature that respect that in a democracy we endeavor to show towards each other."



    There is no doubt my views are biased. For all the wrong reasons I have cited the questions about how I see, has been strongly encouraged. There is no leader for me in this question( driven in my own research), with something that lead me through the mathematics and divergences from Euclidean perspectve.

    It was joined on a level with the geometrical implications of GR conclusions and assignments to Rienmann's positive views. Held in context of his teacher, I have given respect to the Gausssian approach of thinking, and definitions, assigned Hyperspace. If I see Gaussian coordinates as viable, then how shall I refrain myself from seeing in such spaces?

    So of course this is troubling to me, that if I was to proclaim my true belief in the religiousity of stringevangelism, then how could I ever give someone the clear and concise picture of this graduation?

    So shall I put aside my views of the translation given to hyperspatial views, in context of all the "colorings" I have given the "dynamical relation" of what is not seen, and is hidden, I want to understand this better, from the layman point of view.

    So a strong debate needs to be fuelled in regards to the validation process of what hyperspace actually means. Has it been a means to an effort to geoemtrically assign right thinking through the stages of what we have been given to perspective. That the beginning of this universe, had circumstances given to micro perspective views, had lost touch with the validation process, that this geometry, could have ever given credence in mathematical basis. There are no physics at that level, yet my view had been reduced to the superfluid.

    While "the debate" is not mine, by layman status, I do follow the logic.

    Deflating Hyperspace" by: David Pacchioli (Research/Penn State, Vol. 16, no. 4 (December, 1995))

    For Chernosky, a Ph.D. candidate in English literature, this isn't exactly the same thing as asking what hyperspace means. Hyperspace seems to mean a lot of things, and then again not to mean much at all; its meaning shifts with the user, if not with the wind. It is, Charnesky writes, "an almost empty signifier capable of almost limitless application."

    "This fuzziness," he adds in person, "is its power." It is also a quality that puts hyperspace in rather crowded company. Our language is loaded with terms appropriated from science for use in popular discourse. Along the way, the borrowed word's highly technical, narrowly precise -- not to say arcane -- meaning is typically transformed. What emerges is a fluttering, eye-catching, all-purpose concept that can be used interchangeably for explaining the weather or selling toothpaste.


    So conduct becoming, and of what I asked of others I am working to see this transition through. How I still believe in "my God, my religiousneess, and faith in humanities struggle for perfection" and still offer, perspective here, while biased?

    No one speaks here so I have to lead myself through intuitive journies, if there is not the willingness at other points in the blogopshere for this debate to take place. Of course, in my silent way I will try and be fair. I like to thank Peter for the toning down that has taken place.

    What views have been put out there then that we could answer and put aside comparative functions to "alien cultures" and all the sort, to speak a truth that would move perception accordingly.

    Are mathematcians divided in this case?

    Hyperspace(23 Jan 2006)

    Hyperspace theories are concerned with theoretical systems that have more than the familiar three spatial dimensions. Hyperspace theories are largely a mathematical theory but their developers often attempt to make them of use to physicists. Hyperspace theorists generally believe that the laws of nature are simpler in higher dimensions


    What are Degrees of Freedom


    If we travel to Peter Woit's site, can we point to the article introduced and go from there? If I quote the next source above, then this would have given reason to wonder if the trailing thoughts of those who wished to deal with this(above Wiki article and references), might create recognition of some of the things Peter Woit is describing.

    So lets open it here then.

    Einstein Has Left the Building
    By JOHN HORGAN
    Published: January 1, 2006 NYTimes

    Today, government spending on physics research has stagnated, and the number of Americans pursuing doctorates has plunged to its lowest level since the early 1960's. Especially as represented by best sellers like "A Brief History of Time," by Stephen Hawking, and "The Elegant Universe," by Brian Greene, physics has also become increasingly esoteric, if not downright escapist. Many of physics' best and brightest are obsessed with fulfilling a task that occupied Einstein's latter years: finding a "unified theory" that fuses quantum physics and general relativity, which are as incompatible, conceptually and mathematically, as plaid and polka dots. But pursuers of this "theory of everything" have wandered into fantasy realms of higher dimensions with little or no empirical connection to our reality. In his new book "Hiding in the Mirror: The Mysterious Allure of Extra Dimensions, from Plato to String Theory and Beyond," the physicist Lawrence Krauss frets that his colleagues' belief in hyperspace theories in spite of the lack of evidence will encourage the insidious notion that science "is merely another kind of religion."



    Krauss and Susskind versus Horgan


    Peter Woit:
    I don’t see Horgan here criticizing the attempt to quantize gravity as “frivolous”. His criticism of physicists as having “wandered into fantasy realms of higher dimensions with little or no empirical connection to our reality”, is a justifiable one that deserves to be seriously addressed. Krauss and Susskind’s comment that Horgan would be surprised that both of them think that new degrees of freedom will be needed to characterize elementary particle physics doesn’t seem to have any basis in fact. Horgan isn’t making broad claims that physicists shouldn’t look for new degrees of freedom, he is very specifically referring to the use of extra space-time dimensions.

    Tuesday, November 15, 2005

    Laying the Foundation with Respect

    It is most certain that at this point the public would have been left behind, so is there a way to bring perspective at this point on where you are now?

    I recognize the generalization and roads that lead to blackhole as a basis for considerations. What would draw ones atyemtion to this horizon. Lee Smolin in his book gave adequate discription that I just pointed out here.

    Three Roads to Quantum Gravity, by Lee Smolin, pg 171


    I know it might seem that if this conversation is now highlighting the intricacies of blackhole dynamics, then what exactly are you doing?



    By giving a visual map of the Bekenstein Bound this help to direct my attention to the mapping that had been going on theorectically here.

    Mine would definitiely be generalizations, but work by others lead to deeper insights.

    Conformal Field Theory

    A conformal field theory is a quantum field theory (or statistical mechanics model at the critical point) that is invariant under the conformal group. Conformal field theory is most often studied in two dimensions where there is a large group of local conformal transformations coming from holomorphic functions.


    So what "tidbits" had already been out there then that would help.


    Black Holes and Beyond:
    Harvard's Andrew Strominger on String Theory

    Quantum Micostates?

    The old version of string theory, pre-1995, had these first two features. It includes quantum mechanics and gravity, but the kinds of things we could calculate were pretty limited. All of a sudden in 1995, we learned how to calculate things when the interactions are strong. Suddenly we understood a lot about the theory. And so figuring out how to compute the entropy of black holes became a really obvious challenge. I, for one, felt it was incumbent upon the theory to give us a solution to the problem of computing the entropy, or it wasn't the right theory. Of course we were all gratified that it did.


    While this is a past issue for most of you it is leading in the direction you are talking I assume.


    Holography encodes the information in a region of space onto a surface one dimension lower. It sees to be the property of gravity, as is shown by the fact that the area of the event horizon measures the number of internal states of a blackhole, holography would be a one-to-one correspondance between states in our four dimensional world and states in higher dimensions. From a positivist viewpoint, one cannot distinquish which discription is more fundamental.

    Pg 198, The Universe in Nutshell, by Stephen Hawking

    Gary T. Horowitz and Juan Maldacena,

    The purpose of this note is to provide a possible answer to this question. Rather than the radical modification of quantum mechanics required for pure states to evolve into mixed states, we adopt a more mild modification. We propose that at the black hole singularity one needs to impose a unique final state boundary condition. More precisely, we have a unique final wavefunction for the interior of the black hole. Modifications of quantum mechanics where one imposes final state boundary conditions were considered in [6,7,8,9]. Here we are putting a final state boundary condition on part of the system, the interior of the black hole. This final boundary condition makes sure that no information is “absorbed” by the singularity.


    While there is no "apparent relationship(?)" between microstate blackhole production and blackholes what would make one think that particle collsions can be written as dual blackholes?

    Thursday, September 15, 2005

    CFT and the Tomato Soup Can

    As always, the layman trying to develope the mathematical views?:)

    Greg Kuperberg on Sep 15th, 2005 at 12:11 pm
    Conformal maps of the Earth are a great introduction to complex analysis. If you identify the Earth with the Riemann sphere, then the Mercator map is exp(i*z), while the quincuncial projection is a Weierstrass elliptic function. Or you could view it as a 2-to-1 conformal projection from a torus to a sphere with four ramified points. I imagine that it is relevant to one-loop calculations in string theory in that guise.




    At what level has this map then progressed if we held such views to the "horizon and boundary conditions." That is now replaces what we talk about of earth, and now relay the mass consideration to events in the gravitational field? Has the mathematic hypothesized now, gone through a revision, and needed support of mathematical views?


    Campbell's Soup Can A. Warhol


    What mathematics would move our perception to the gravitational views seen there? Gary Horowitz relays the outside label of a can of a soup as the conformal surface, while the soup, the spacetime fabric?

    On planet Earth, we tend to think of the gravitational effect as being the same no matter where we are on the planet. We certainly don't see variations anywhere near as dramatic as those between the Earth and the Moon. But the truth is, the Earth's topography is highly variable with mountains, valleys, plains, and deep ocean trenches. As a consequence of this variable topography, the density of Earth's surface varies. These fluctuations in density cause slight variations in the gravity field, which, remarkably, GRACE can detect from space.

    So one would look at topography as something much different then what is laid out on this globe as "hills and valleys"?

    So now this map, has this extra feature to it.

    Holography encodes the information in a region of space onto a surface one dimension lower. It sees to be the property of gravity, as is shown by the fact that the area of th event horizon measures the number of internal states of a blackhole, holography would be a one-to-one correspondance between states in our four dimensional world and states in higher dimensions. From a positivist viewpoint, one cannot distinquish which discription is more fundamental.

    Pg 198, The Universe in Nutshell, by Stephen Hawking

    While on this topic it behooves me to think of the "horizon" and the mathematical construct that has taken us there. While we see to explain the nature of the effect in a fifth dimensional view, it had been reduced to "temperature" as a relation of this conformal view?

    "D-branes provide the fundamental quantum microstates of a black hole that underlie black hole thermodynamics"


    As much as one would try and ignore this position, you cannot get away from the mathematics or the approach and what this has culminated too.

    I like Peter and his no nonsense views, but he has gone to far in rejecting the basis of "mathematical dialogue" in face of what D brane issue had been taken too?

    Why would he reject mathematics on the one hand demonstrative of a particular point of view to which it has developed, then, ignore what position it had taken both string theory and Lee Smolins attempts at the disciption of the blackhole dynamics, from the views of that horizon?

    With regards to the conformal field theory approach. While I am in my infancy, I recognize the views of Bekenstein Bound, and the hologrpahical approach. One must first learn to crawl, then walk I know, but how indeed does one get to the vision held, when he himself(who ever you like) cannot explain how such a mathematics like string theory, arose to help with our views of reality?

    In 1919, Kaluza sent Albert Einstein a preprint --- later published in 1921 --- that considered the extension of general relativity to five dimensions. He assumed that the 5-dimensional field equations were simply the higher-dimensional version of the vacuum Einstein equation, and that all the metric components were independent of the fifth coordinate. The later assumption came to be known as the cylinder condition. This resulted in something remarkable: the fifteen higher-dimension field equations naturally broke into a set of ten formulae governing a tensor field representing gravity, four describing a vector field representing electromagnetism, and one wave equation for a scalar field. Furthermore, if the scalar field was constant, the vector field equations were just Maxwell's equations in vacuo, and the tensor field equations were the 4-dimensional Einstein field equations sourced by an EM field. In one fell swoop, Kaluza had written down a single covariant field theory in five dimensions that yielded the four dimensional theories of general relativity and electromagnetism. Naturally, Einstein was very interested in this preprint .


    While one may use sites to give indicative values ot the information, can we ignore these assumptions mathematically driven. It paved the way for how we view things that we did not see before. Go ahead reject it then:)

    Are we not looking for the Trigger?:)

    Sunday, July 31, 2005

    Dealing With a 5d World

    A black hole is an object so massive that even light cannot escape from it. This requires the idea of a gravitational mass for a photon, which then allows the calculation of an escape energy for an object of that mass. When the escape energy is equal to the photon energy, the implication is that the object is a "black hole".


    A lot of us understand I think that the cosmological world we had been lead through by Einstein, has geometrical principals embued with this organizational ascent. So too alongside of this equative understanding, the geometry must be understood as well, as the role we have in develoing to non euclidean geometry.

    The basic principals have direct physics results as we learn to explore these potentials.



    If we are taken to understand this progression, how did we get here? Are there higher dimensions without the geometry?



    Measuring the depth of ideas

    Lubos saids:Instead, let us ask: is quantum mechanics deep? Yes, I think that quantum mechanics is perhaps the deepest idea we know. It is once again a deformation of a conceptually simpler picture of classical physics. Much like the speed of light is finite in relativity and it unifies space and time, the Planck constant is finite in quantum mechanics which allows us to identify the energy with the frequency, among many other things - quantities that would otherwise remain as independent as space and time without relativity.

    Lubos Motl talk about the depth of ideas, for me, leads to this progression of geometry. Talked about it in a way I saw leading and consenting ideas to this progression, by developing these deeper qualities of "quantum mechanics".

    We had to understand then that such a physics progression would follow hand in hand, with the ideas of geometrical expression? So how were we lead into the non-eucldean world?



    So too then, how would it be, if we use a different method to extoll the holographical understanding in how we percieve the natural abilties of information related to this geometrical form? Bekenstein Bound holds important clues about this fifth dimensional attribute?

    Holography encodes the information in a region of space onto a surface one dimension lower. It sees to be the property of gravity, as is shown by the fact that the area of th event horizon measures the number of internal states of a blackhole, holography would be a one-to-one correspondance between states in our four dimensional world and states in higher dimensions. From a positivist viewpoint, one cannot distinquish which discription is more fundamental.

    Pg 198, The Universe in Nutshell, by Stephen Hawking

    How would then would we reduce Higher dimensions to relativity?

    Superstring theory rules in the 5-D spacetime, but a so-called conformal field theory of point particles operates on the 4-D hologram. A black hole in the 5-D spacetime is equivalent to hot radiation on the hologram--for example, the hole and the radiation have the same entropy even though the physical origin of the entropy is completely different for each case. Although these two descriptions of the universe seem utterly unalike, no experiment could distinguish between them, even in principle.

    Friday, April 08, 2005

    Pierre Auger Observatory


    In his excellent paper, Louis LePrince-Ringuet, citing a remark of Powell's at the Conference of Bagneres-de-Bigorre in 1953, declared that from that date on, particle accelerators took the place of cosmic rays, which more or less faded into the background. And yet, even today accelerators have not caught up with cosmic rays.


    Pierre Auger on Cosmic Rays


    "For in 1938, I showed the presence in primary cosmic rays of particles of a million Gigavolts -- a million times more energetic than accelerators of that day could produce. Even now, when accelerators have far surpassed the Gigavolt mark, they still have not attained the energy of 1020eV, the highest observed energy for cosmic rays. Thus, cosmic rays have not been dethroned as far as energy goes, and the study of cosmic rays has a bright future, if only to learn where these particles come from and how they are accelerated. You know that Fermi made a very interesting proposal that particles are progressively accelerated by bouncing off moving magnetic fields, gaining a little energy each time. In this way, given a certain number of "kicks," one could perhaps account for particles of 1018 -- 1020 electron volts. As yet, however, we have no good theory to explain the production of the very-high-energy particles that make the air showers that my students and I discovered in 1938 at Jean Perrin's laboratory on a ridge of the Jungfrau."
    -- Pierre Auger, Journal de Physique, 43, 12, 1982



    On the vast plain known as Pampa Amarilla in western Argentina, a new window on the universe is taking shape. There the Pierre Auger Cosmic Ray Observatory has begun its study of the universe's highest energy particles. These rare messengers should tell an important story about how they originate. Experiments have so far failed to decipher their message, and their existence has become a profound puzzle. The Auger Observatory is attacking this enigma of the highest energy cosmic rays with unprecedented collecting power and experimental controls.




    John Ellis:
    The next step will again be taken in Japan, with the new J-PARC accelerator starting in 2009 to send neutrinos almost 300 km, again to the Super-Kamiokande experiment, to probe the third neutrino mixing angle that has not yet been detected in either atmospheric or solar neutrino experiments. This may also be probed in a new experiment being proposed for the Fermilab NuMI beam. One of the ideas proposed at CERN is to probe this angle with an underwater experiment moored in the Gulf of Taranto off the coast of Italy, viewing neutrinos in a modified version of CERN's current Gran Sasso beam.



    Aussois, Savoie, France
    After "Neutrino 2004" the convergence of results from atmospheric, solar, reactor and accelerator experiments confirms the massive neutrino and gives the first opportunity to test physics beyond the Standard Model. The neutrino oscillations picture is still missing 3 fundamental ingredients: the mixing angle θ13, the mass pattern and the CP phase δ.

    Future neutrino beams of conventional and novel design aimed at a megaton type detector could give access to these parameters. Such a detector would also be the next generation facility for proton decay searches and an invaluable supernovae neutrino observatory.




    To understand the Higgs mechanism, imagine that a room full of physicists chattering quietly is like space filled with the Higgs field ...


    So who is the professor that crosses the room? It is Albert Einstein:)


    Any such Blackhole would quickly decay into a shower of Hawking radiation (mainly into standard model particles on our brane, rather than into grvaitons into the bulk). This shower of radiation would be quite different from showers arising from, say, the collsion of cosmic-ray proton with a atmospheric atomic nucleus. Gravity is "flavor blind," so when a microscopic blackhole evaporates it produces all the Standard Model particles with equal probability. Once one accounts for spin and color, it turns out that particles produced when a blackhole decays are about 72 percent quarks and Gluons, 18 percent leptons, and the rest are bosons. Such a distinctive shower of particles would be hard to miss. So there is the possibility that the Pierre Auger Observatory will detect blackholes.
    Page 262, Out of this World, by Stephen Webb


    Two of the tanks in the Pierre Auger Observatory are shown. They each hold 12 tonnes of clean water and are viewed by 3 X 8” diameter photomultipliers. The electronics for recording and data transmission are powered by solar cells. These tanks are placed close together so that cross-tank measurements of densities and arrival times can be made but the nearest neighbour for all other tanks is 1.5 km away. In this way 3000 km2 can be covered with only 1600 detectors.

    Wednesday, March 30, 2005

    Raychaudhuri Equation



    Is it sand running through our fingers, or a taffy like substance, in symbolic form?

    The difference, discretium and fluidity of nature, geometrically/topologically driven, are at war with what we might interpret in time? Early on, Salvador Dali understood well this geometrical propensity to the tesserack, that he embued his art with higher religious context(time). But in real life, he was different man?:)

    The issues were not far removed from perspective, that this battle would find itself challenged, in how we would portray the nature of reality? That it had burst forth in science and it's manifestations.

    But come back to earth, and we have to wonder indeed if this fluid is slipping through our fingers as time reveals a more intrinistic view of the reality in the cosmos?



    Sean Carroll said:Friedmann fights back:
    For those of you interested in the attempt by Kolb, Matarrese, Notari, and Riotto to do away with dark energy, some enterprising young cosmologists (not me, I'm too old to move that quickly) have cranked through the equations and come out defending the conventional wisdom. Three papers in particular seem interesting:



    Lubos Motl:Superhorizon fluctuations and accelerating Universe:
    Several physicists and bloggers, e.g. Jacques Distler, Peter Woit and especially Sean Carroll who may be considered a true expert in these questions and who added a very new article after this article of mine was published, recently noticed a paper that claimed that the cosmological constant was not needed. Instead, the accelerating expansion was conjectured to be a consequence of fluctuations of a scalar field (and the associated stress energy tensor) whose wavelength was longer than the Hubble radius i.e. the size of the visible Universe, roughly speaking.



    I agree with Lubos here in regards to what has already been establish to date in the positions. Here with Sean Carroll, Jacques Distler, Peter Woit, and Lubos Motl respectively, that they all agree on the standards set here?

    This would be a clear statement of position, and one that would signal, accepted practice on the expository view of our cosmos? Is it to ambitious?

    Out of this a standard, even if there are divergences of personality; this is wiped away, so that we are introduced to new information as Sean shows us withRaychaudhuri equation? This gives one direction to look at.

    This equation has the special characteristic that it is true without reference to the Einstein equations . That is, it is true for any spacetime. It is an intrinsic property of the volume expansion.

    Now we come back to the intuitive development from this standard presence. Would it be so wrong to ask that four minds to stand together and paper their perspective? Then open it up to geometry/topological views, in relation to how we might develop the imagery of what might have been gathered from the dynamical realization of early universe idealizations?



    In regards to the tactile experience one might want to comprehend is in the way the universe now has unfolded?

    Now there is a most definite need to grasp the issue here in terms of what causality might mean in terms of balckhole/3 brane collapse as a perspective to the dynamics that would be revealled, for photon,/graviton production from the blackhole?

    Using Calorimeter, we see where such advances help us to distinquish early universe information in Glast cosiderations, but how much more suttle has this experience need to be expanded upon, to understand the exchange that takes place in the gravitational collapse?

    John Baez:
    Now, the way Hawking likes to calculate things in this sort of problem is using a "Euclidean path integral". This is a rather controversial approach - hence his grin when he said it's the "only sane way" to do these calculations - but let's not worry about that. Suffice it to say that we replace the time variable "t" in all our calculations by "it", do a bunch of calculations, and then replace "it" by "T" again at the end. This trick is called "Wick rotation". In the middle of this process, we hope all our formulas involving the geometry of 4d spacetime have magically become formulas involving the geometry of 4d space. The answers to physical questions are then expressed as integrals over all geometries of 4d space that satisfy some conditions depending on the problem we're studying. This integral over geometries also includes a sum over topologies.
    That's what Hawking means by this:

    Stephen Hawking:I adopt the Euclidean approach, the only sane way to do quantum gravity non-perturbatively. In this, the time evolution of an initial state is given by a path integral over all positive definite metrics that go between two surfaces that are a distance T apart at infinity. One then Wick rotates the time interval, T, to the Lorentzian. The path integral is taken over metrics of all possible topologies that fit in between the surfaces.


    How would missing energy events isolate the realization that such ventures would have been specific in detailing the envelope capturing all that has evolved in our universe to know that there is this consistancy, that spreads itself through all possibiltyies of Feynman's sum over paths of expression, that still needs to be identified?

    Now you must know that there are consequences when we see this collapse take place that asks us to consider the nature of the temperatures and diameter in reduction?

    That what has been reduced in this energy developing scenarion of the cosmos in action, is a applicable view to geometry/topology that at the same time reveals the idealization of entropic features of supersymmetical views that we learn to see?

    How this experience, as tactile as I approach it, is induced, is at very illusatory experience way back in some speculative past.:)Whooh! What? Careful now, I am analogically speaking here, because I like to see this way. It feels right(not saying it is right) as simple statement quickly summing up many mathematical views in a very short and simple way. That's what I hope anyway.

    When you look at this fluid geometrically/topolgically driven what view has transpired in blackhole production? You want to be able to understand the symmetrical breaking that is taking place? Crystalization processes, would quickly surmize a Laughlin view from a fast cooling temperature, to realize, it is much more slower then this in the cooling(15 bilion year assumption) in a cosmological process?

    So we understand curvature is well aquainted with vast track of cosmological views, but it become much more diffiult at such microscopic thinking. Sort of, all smeared out in a vast supersymmetrical views of previous states of existance, that quickly gather to form maybe, cosmic strings?:)

    John Baez said,
    But you shouldn't imagine the mood as one of breathless anticipation. At least for the physicists present, a better description would be something like "skeptical curiosity". None of them seemed to believe that Hawking could suddenly shed new light on a problem that has been attacked from many angles for several decades. One reason is that Hawking's best work was done almost 30 years ago. A string theorist I know said that thanks to work relating anti-deSitter space and conformal field theory - the so-called "AdS-CFT" hypothesis - string theorists had become convinced that no information is lost by black holes. Thus, Hawking had been feeling strong pressure to fall in line and renounce his previous position, namely that information is lost. A talk announcing this would come as no big surprise.

    Thursday, February 03, 2005

    Time and Gravity

    Einstein wrote
    >"...for us physicists believe the separation between past, present, and future is only an illusion, although a convincing one."


    After being changed by assuming the views of string theory, something happened in my perspective about understanding the dimensional significance of the history of our existance? Reading and working the GR evolution and seeing what Wheeler and Kip Thorne had done, I was not going to be to easily dismissed by those who do not want to find relevance in this association.

    Previously, I have show some detection methods that are being implored to understand what GR has lead us too. What happens when a quantum mechanical view wants to merge as a form of quantum geometry, in these short distances.

    The Beginning of Time, by Stephen Hawking

    The conclusion of this lecture is that the universe has not existed forever. Rather, the universe, and time itself, had a beginning in the Big Bang, about 15 billion years ago. The beginning of real time, would have been a singularity, at which the laws of physics would have broken down. Nevertheless, the way the universe began would have been determined by the laws of physics, if the universe satisfied the no boundary condition. This says that in the imaginary time direction, space-time is finite in extent, but doesn't have any boundary or edge. The predictions of the no boundary proposal seem to agree with observation. The no boundary hypothesis also predicts that the universe will eventually collapse again. However, the contracting phase, will not have the opposite arrow of time, to the expanding phase. So we will keep on getting older, and we won't return to our youth. Because time is not going to go backwards, I think I better stop now.


    It was well evident that we had minds who are engaging thes econcepts and helping us along, it became clear, that the distance from the events of gamma ray burts will have released information at one end of the spectrum that ha sbeen adjust for a finer view of the times in terms of these billions of years?




    The measure of this distance has left information for us to consider? Has left traces of these events for us to consider in these detection systems. How much closer has "particle identification," taken us to the source of these events?

    Not to shabby with the thinking minds, that we could have gained in perspective with thinking and intelligent beings, who slowly moved us forward in the evolution of our understanding.

    Monday, January 10, 2005

    Tiny Blackholes in Cosmic Observations?

    205th Meeting of the American Astronomical Society 9-13 January 2005 -- San Diego, CA

    I am kind of interested to find further information on how microstate blackholes might have been generated and looking at the concentration of minds, I wonder if this topic was brought up, or will be brought up?

    The Pierre Auger Observatory, currently being constructed in Argentina to study cosmic rays, could examine the structure of spacetime itself, say physicists in the United States.

    If, as some suspect, the Universe contains invisible, extra dimensions, then cosmic rays that hit the atmosphere will produce tiny black holes. These black holes should be numerous enough for the observatory to detect, say Jonathan Feng and Alfred Shapere of the Massachusetts Institute of Technology in Cambridge, Massachusetts1.

    The observatory will consist of two 3,000-square-kilometre arrays - one in Argentina, one somewhere in the Northern Hemisphere - each containing 1,600 particle detectors. Scheduled for completion by 2004, scientists hope that the equipment will help to solve the mystery of cosmic rays. These rays consist of extremely high-energy particles that stream into the Earth's atmosphere from space - from where, exactly, no one knows.


    Lubos has mention Steve Giddings and I have also mentioned himearlier inmy blogs on the topic of Mini blackholes as well.

    In theories with large extra dimensions at sub-millimetre distances, for example, and/or high energies of the order of 1 TeV or more, gravity may become a strong force. Thus, hypothetically, the energy required to produce black holes is well within the range of the LHC, making it a "black-hole factory". As Stephen Hawking has taught us, these mini black holes would be extremely hot little objects that would dissipate all their energy very rapidly by emitting radiation and particles before they wink out of existence. The properties of the Hawking radiation could tell us about the properties of the extra spatial dimensions, although there are still uncertainties in the theory at this stage. Nevertheless, astroparticle and collider experiments should provide useful input to the theoretical work in this area. Indeed, the signatures are expected to be spectacular, with very high multiplicity events and a large fraction of the beam energy converted into transverse energy, mostly in the form of quarks/gluons (jets) and leptons, with a production rate at the LHC rising as high as 1 Hz. An example of what a typical black-hole event would look like in the ATLAS detector is shown in figure 2.
    If mini black holes can be produced in high-energy particle interactions, they may first be observed in high-energy cosmic-ray neutrino interactions in the atmosphere. Jonathan Feng of the University of California at Irvine and MIT, and Alfred Shapere of the University of Kentucky have calculated that the Auger cosmic-ray observatory, which will combine a 6000 km2 extended air-shower array backed up by fluorescence detectors trained on the sky, could record tens to hundreds of showers from black holes before the LHC turns on in 2007.




    Cosmic rays in ATLAS
    The flux of cosmic ray muons through the ATLAS cavern can be utilized as a tool to "shake down" the ATLAS detector prior to data taking in 2007.

    Additionally, a thorough understanding of the cosmic ray flux in ATLAS will be of great use in the study of cosmic ray backgrounds to the search for rare new physics processes in ATLAS.





    The Emergence of Time, What Lies Beneath?

    The intuitive classical space-time picture breaks down in quantum gravity, which makes a comparison and the development of semiclassical techniques quite complicated.

    Taken in context of how supersymmetrical levels could have ever been reached, is really a wonderful thnng to consider. If singularities were to be devised in methods that would experiementally bring forth blackholes at the microstates. Then what value is derived from learning about high energy and the levels we must go through to speak about these singularities?

    From classical discritpion of GR to the understanding that supergravity could have ever been devised as a method to live in supersymmetrical worlds, would have been a challenge indeed, and we might ask where would time would begin, and what was below time?


    The conclusion of this lecture is that the universe has not existed forever. Rather, the universe, and time itself, had a beginning in the Big Bang, about 15 billion years ago. The beginning of real time, would have been a singularity, at which the laws of physics would have broken down. Nevertheless, the way the universe began would have been determined by the laws of physics, if the universe satisfied the no boundary condition. This says that in the imaginary time direction, space-time is finite in extent, but doesn't have any boundary or edge. The predictions of the no boundary proposal seem to agree with observation. The no boundary hypothesis also predicts that the universe will eventually collapse again. However, the contracting phase, will not have the opposite arrow of time, to the expanding phase. So we will keep on getting older, and we won't return to our youth. Because time is not going to go backwards, I think I better stop now.
    by Stephen Hawking

    It becomes very difficult then for anyone to accept that Robert Laughlin might have "wondered" about about condensed matter physics to have wonder what the building blocks shall be at such levels? That he might have wanted to stay to discrete structures for explanations as far as he could tell experimentally?:)


    Likewise, if the very fabric of the Universe is in a quantum-critical state, then the stuff that underlies reality is totally irrelevant-it could be anything, says Laughlin. Even if the string theorists show that strings can give rise to the matter and natural laws we know, they won't have proved that strings are the answer-merely one of the infinite number of possible answers. It could as well be pool balls or Lego bricks or drunk sergeant majors
    .

    You see this is okay. That one can direct their attention to such infrastructures to ask, what the ultimate building block shall be, that we constantly refocus our mind to the finer things(abstract mathematical forays into these fine building blocks), only to find, we have progress well into the cosmological view, of such microstates?

    "The path integral is taken over metrics of all possible topologies, that fit in between the surfaces. There is the trivial topology, the initial surface, cross the time interval. Then there are the non trivial topologies, all the other possible topologies. The trivial topology can be foliated by a family of surfaces of constant time. The path integral over all metrics with trivial topology, can be treated canonically by time slicing. In other words, the time evolution
    (including gravity) will be generated by a Hamiltonian. This will give a unitary mapping from the initial surface, to the final.
    "


    But to follow is this what Peter Woit thinks?

    Peter Woit said--?His argument is in Euclidean quantum gravity, which he describes as "the only sane way to do quantum gravity non-perturbatively", something which some might disagree with. What he seems to be arguing is that, while it is true you get information loss in the path integral over metrics on a fixed non-trivial black hole topology, you really need to sum over all topologies. When you do this you get unitary evolution from the trivial (no black hole) topology and the non-trivial topologies give contributions that are independent of the initial state and don't contribute to the initial-final state amplitude.

    I guess what this means is that he is claiming that, sure, if you knew you really had a black hole, then there would be a problem with unitarity, but in quantum gravity you don't ever really know that you have a black hole, you also have to take into account the amplitude for not actually having one and when you properly do this the unitarity problem goes away.


    You must accept my humble apologies, but to have been given these directions(quotes analogies in reference links and statements, from both Lubos Motl and Peter Woit, I wonder about the difference in their interpretations of the mathematics they are using? Are they so fundamntally at odds with each other, that they do not realize that they are working very close in their idealizations?



    Monday, December 20, 2004

    Hodge Conjecture

    Interplay between geometry and topology.

    One of the things that I am having difficulty with is if I understood the idea of a cosmic string. The understanding would have to imply that the higher dimensions would reveal themselves within the spacetime curvatures of gravity. So I have been looking to understand how the quantum mechanical nature could have ever reduced itself from those higher dimensions in string theory, and revealed themselves within the context of the cosmos that we know works very well with Gravity.



    Part of my attempts at comprehending the abtractness with which this geometry evolved, was raised diffrent times within this blog as to whether or not there was a royal road to geometry?

    Throughout, I have shown the processes with which a smooth topological feature would have endowed movements like the donut into the coffee cup and wondered, about this idea of Genus figures and how they to become part of the fixtures of the terrain with which mathematicians like to enjoy themselves over coffee?:)



    How would this information in regards to the strings, become a viable subject with regards to non-euclidean realms, to have understood where GR had taken us and where QM had difficult combining with GR(gravity).

    Large extra dimensions are an exciting new development … They would imply that we live in a brane world, a four-dimensional surface or brane in a higher dimensional spacetime. Matter and nongravitational forces like the electric force would be confined to the brane … On the other hand, gravity in the form of curved space would permeate the whole bulk of the higher dimensional spacetime …. Because gravity would spread out in the extra dimensions, it would fall off more rapidly with distance than one would expect … If this more rapid falloff of the gravitational force extended to astronomical distances, we would have noticed its effect on the orbits of the planets … they would be unstable… However, this would not happen if the extra dimensions ended on another brane not that far away from the brane on which we live. Then for distances greater than the separation of the branes, gravity would not be able to spread out freely but would be confined to the brane, like the electrical forces, and fall off at the right rate for planetary orbits.
    Stephen Hawking, Chapter seven

    Saturday, November 06, 2004

    Holography and Dimensional Relevance

    Holography encodes the information in a region of space onto a surface one dimension lower. It sees to be the property of gravity, as is shown by the fact that the area of th event horizon measures the number of internal states of a blackhole, holography would be a one-to-one correspondance between states in our four dimensional world and states in higher dimensions. From a positivist viewpoint, one cannot distinquish which discription is more fundamental.
    Pg 198, The Universe in Nutshell, by Stephen Hawking

    One had to understand what Einstein did for us, and the progression through to Riemann views. Once you get to the point of discerning geometrodynamics as a feature of that dynamical world of the fifth dimension, we soon understand what feature of the bulk has been assigned to the dimensions lower.

    The higher dimensional significance of the world I am saying is beyond the forms we are accustom too.



    Beyond forms

    Probability of all events(fifth dimension)
    vvvvvvvvvvvvv Future-Time
    vvvvvvvvvvv |
    vvvvvvvvv |
    vvvvvvv |
    vvvvv |
    vvv |
    v |
    <<<<<<<<<<<< o >>>>>>>>>>>now -------|
    flash fourth dimension with time |
    A |
    AAA |
    AAAAA |
    AAAAAAA |
    AAAAAAAAA |
    AAAAAAAAAAA |
    AAAA ___AAAAA |
    AAAAA/__/|AAAAA____Three dimension
    AAAAAA|__|/AAAAAA |
    AAAAAAAAAAAAAAAAAAA |
    |
    ___ |
    /__/ brane--------two dimension
    \ /
    .(U)1=5th dimension


    I hope this helps explain. It certainly got me thinking, drawing it:)