Showing posts with label Quarks. Show all posts
Showing posts with label Quarks. Show all posts

Friday, April 22, 2005

Clementine Project Information


Clementine was a joint project between the Strategic Defense Initiative Organization and NASA. The objective of the mission was to test sensors and spacecraft components under extended exposure to the space environment and to make scientific observations of the Moon and the near-Earth asteroid 1620 Geographos. The observations included imaging at various wavelengths including ultraviolet and infrared, laser ranging altimetry, and charged particle measurements. These observations were originally for the purposes of assessing the surface mineralogy of the Moon and Geographos, obtaining lunar altimetry from 60N to 60S latitude, and determining the size, shape, rotational characteristics, surface properties, and cratering statistics of Geographos.


Look at Clementine and the moon. The way they measured gravity there( the satellite lag)? The geological perspective gained from mapping the moon? The frames of reference are thus quite dynamical when you use this perspective to gain new insights developed from the work of Einstein.

Green Cheese?

The Clementine gravity experiment used measurements of perturbations in the motion of the spacecraft to infer the lunar gravity field

The complexity of measuring events in the cosmos, was to see information contained in what exists around us now. Using various locations they are trying to ascertain simultaneous correspondances in the signals from these cosmological locations, as a well as use the distance between these earth based locations.

Gravity for instance, varies with Time

Gravity is "flavor blind," so when a microscopic blackhole evaporates it produces all the Standard Model particles with equal probability. Once one accounts for spin and color, it turns out that particles produced when a blackhole decays are about 72 percent quarks and Gluons, 18 percent leptons, and the rest are bosons. Such a distinctive shower of particles would be hard to miss. So there is the possibility that the Pierre Auger Observatory will detect blackholes.
Page 262, Out of this World, by Stephen Webb

In a complex world of uncertainty this is hard to do, so you look for the ways to see how the cosmic rays create the situations for particle production. So you look for the origins of any number system that began, and how it was used to explain the natural world.

An Excursion into the Dimensions of Numbered Systems

An example here would be using Pascal's triangle. If you "blanket" using resonances pertaining to all number deveopements, then we might understand the harmonies created? Topological movements?

In a euclidean world, the developing geometries will lead somewhere, but how did you every arrive from topological states to euclidean frames of reference? You had to understand the physics process.

So from space to earth, the earth, a final physical state. But you understand that it existed in other states as well? That's where you learn to use the physics.

Friday, April 08, 2005

Pierre Auger Observatory


In his excellent paper, Louis LePrince-Ringuet, citing a remark of Powell's at the Conference of Bagneres-de-Bigorre in 1953, declared that from that date on, particle accelerators took the place of cosmic rays, which more or less faded into the background. And yet, even today accelerators have not caught up with cosmic rays.


Pierre Auger on Cosmic Rays


"For in 1938, I showed the presence in primary cosmic rays of particles of a million Gigavolts -- a million times more energetic than accelerators of that day could produce. Even now, when accelerators have far surpassed the Gigavolt mark, they still have not attained the energy of 1020eV, the highest observed energy for cosmic rays. Thus, cosmic rays have not been dethroned as far as energy goes, and the study of cosmic rays has a bright future, if only to learn where these particles come from and how they are accelerated. You know that Fermi made a very interesting proposal that particles are progressively accelerated by bouncing off moving magnetic fields, gaining a little energy each time. In this way, given a certain number of "kicks," one could perhaps account for particles of 1018 -- 1020 electron volts. As yet, however, we have no good theory to explain the production of the very-high-energy particles that make the air showers that my students and I discovered in 1938 at Jean Perrin's laboratory on a ridge of the Jungfrau."
-- Pierre Auger, Journal de Physique, 43, 12, 1982



On the vast plain known as Pampa Amarilla in western Argentina, a new window on the universe is taking shape. There the Pierre Auger Cosmic Ray Observatory has begun its study of the universe's highest energy particles. These rare messengers should tell an important story about how they originate. Experiments have so far failed to decipher their message, and their existence has become a profound puzzle. The Auger Observatory is attacking this enigma of the highest energy cosmic rays with unprecedented collecting power and experimental controls.




John Ellis:
The next step will again be taken in Japan, with the new J-PARC accelerator starting in 2009 to send neutrinos almost 300 km, again to the Super-Kamiokande experiment, to probe the third neutrino mixing angle that has not yet been detected in either atmospheric or solar neutrino experiments. This may also be probed in a new experiment being proposed for the Fermilab NuMI beam. One of the ideas proposed at CERN is to probe this angle with an underwater experiment moored in the Gulf of Taranto off the coast of Italy, viewing neutrinos in a modified version of CERN's current Gran Sasso beam.



Aussois, Savoie, France
After "Neutrino 2004" the convergence of results from atmospheric, solar, reactor and accelerator experiments confirms the massive neutrino and gives the first opportunity to test physics beyond the Standard Model. The neutrino oscillations picture is still missing 3 fundamental ingredients: the mixing angle θ13, the mass pattern and the CP phase δ.

Future neutrino beams of conventional and novel design aimed at a megaton type detector could give access to these parameters. Such a detector would also be the next generation facility for proton decay searches and an invaluable supernovae neutrino observatory.




To understand the Higgs mechanism, imagine that a room full of physicists chattering quietly is like space filled with the Higgs field ...


So who is the professor that crosses the room? It is Albert Einstein:)


Any such Blackhole would quickly decay into a shower of Hawking radiation (mainly into standard model particles on our brane, rather than into grvaitons into the bulk). This shower of radiation would be quite different from showers arising from, say, the collsion of cosmic-ray proton with a atmospheric atomic nucleus. Gravity is "flavor blind," so when a microscopic blackhole evaporates it produces all the Standard Model particles with equal probability. Once one accounts for spin and color, it turns out that particles produced when a blackhole decays are about 72 percent quarks and Gluons, 18 percent leptons, and the rest are bosons. Such a distinctive shower of particles would be hard to miss. So there is the possibility that the Pierre Auger Observatory will detect blackholes.
Page 262, Out of this World, by Stephen Webb


Two of the tanks in the Pierre Auger Observatory are shown. They each hold 12 tonnes of clean water and are viewed by 3 X 8” diameter photomultipliers. The electronics for recording and data transmission are powered by solar cells. These tanks are placed close together so that cross-tank measurements of densities and arrival times can be made but the nearest neighbour for all other tanks is 1.5 km away. In this way 3000 km2 can be covered with only 1600 detectors.

Tuesday, March 01, 2005

Missing Energy Events

'There comes a time when the mind takes a higher plane of knowledge but can never prove how it got there. All great discoveries have involved such a leap. The important thing is not to stop questioning.'
Albert Einstein
(1879- 1955)



Oskar Klein (left) proposed in the 1920s that hidden spatial dimensions might influence observed physics. He poses with physicists George Uhlenbeck (middle) and Samuel Goudsmit in 1926 at the University of Leiden, the Netherlands. AIP Emilio Segrè Visual Archives


It is not easy for me to follow so many minds involved in the deeper intricacies of a world, that abstractually was built, to concieve of other possibilties. If it fell within the mind's capabilties to allow such ventures, then such values become developed in the mind's neurological developement?

High energy particles have extremely small wavelengths and can probe subatomic distances: high energy particle accelerators serve as supermicroscopes:

To see What?

The structure of matter

(atoms/nuclei/nucleons/quarks)



Did it see tidbits of nature, and ways, in which to explain other views of the microscopic world? What "eye" was held to the microscope(particle reductionistic further refined) and then, with such endearing qualties spoken to us, takes us on a journey well concieved and observed?



For me then to view this compact world, and reveal the dimensional attributes of something that may seem so foreign and alien in it's guise, I realize that for the mind to peer into the deeper workings of the microscopic world, we had to understand the images the we could produce, as we learn to build mathematical structures for contemplation

Dvali uses the analogy of a metallic sheet submerged in water to illustrate the principle. If one hits the sheet with a hammer, shock waves will carry away the energy in all directions. "Most of the energy will travel along the two-dimensional surface. Only at a substantial distance away from the source will the energy loss to water be appreciable," he said. "According to our picture, we are in a very similar situation. We think gravity is 'normal' because we only measure it directly at relatively short distances, but cosmic acceleration indicates leakage.
"


To further expand on this idea of Dvali's I wanted to draw attention to the principals of this leakage. Bear with me as I try to find the literature that I have accumlated, for what is spoken now has triggered my memory by selection of these words.

So the process now is to remember where these views were previously spoken about and bring them back here for a wider comprehension of the leakage and the dimensional significance implied by Dvali, of where this extra energy is going?

Hopefully we wil see other minds involved in string theory speaking on this matter, to seal what they are doing and descibing where they think this extra energy is going?

Given the dearth of knowledge about gravity in the subcentimeter range, the group is looking for any kind of deviation from expectations, not just extradimensional effects, he says. Nonetheless, the excitement about extra dimensions helps spur the group on, Price says.

If the strength of gravity takes a sharp turn upward at around 1 TeV, as the Stanford-Trieste scenario implies, an opportunity opens for testing this theory also in accelerators. Collisions at such energies could produce gravitons in large numbers, and some of these particles would immediately vanish into the extra dimensions, carrying energy with them. Experimenters would look for an unusual pattern of so-called missing energy events.

This and more subtle effects of extra dimensions could show up at existing accelerators, such as LEP and the Tevatron at Fermilab, only if the dimensions have scales nearly as big as a millimeter. The powerful LHC will greatly improve the chances for detecting missing energy events and other prominent extradimension effects.


The bold highlight of the article preceding, points to the realization and values of what the gravitons appear to be able to do. How they can take this energy with them into those extra dimensions. This is a very important insight, that must be considered, and not just shelved because the mathematics seem disjoined from reality.

The basis of the capabilties of the dimenisonal significance in regards to these topological manueverings, had to have some basis to move from, and it is this essence, that string theory acknowledges? The energy of these gravitations in a world quite capable of being grviaational discribed, can now have a foundation in which we may describe this dynamcial issues at the quantum level?

We have moved the GR considerations of D>=4 to a much more dynamical recogntion of the probabilties inherent in energy determinations and also grvaitonic condensation values withinthe blackhole.

Sunday, February 20, 2005

The Phenix


PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma.


The Bird's eye view is really interesting once you consider the frame with which early detection system would speak to early universe formation. To me, this is a direct perspective of the spectrum's hidden aspect, from the origins of this universe to what we have around us now. From such a reductionistic valuation, how else would we be taken to such lengths of realization?

Can we see photons (particles of light) radiating directly from a Quark-Gluon Plasma? PHENIX has a preliminary measurement that confirms the presence of these direct photons. Data taken in 2004 should improve this measurement
.




Fig. 2. Image showing how an 8 TeV black hole might look in the ATLAS detector (with the caveat that there are still uncertainties in the theoretical calculations).




Quark-Gluon Plasma and such early universe detection systems would make it very difficult to move the mind to consider the deepr implications of Compton scattering versus graviton scattering with the idea that such early indications from the source, would have revealled stoing gravitational tendencies from recognition of the supesymmetrical valuation of that early universe?


Nevertheless, astroparticle and collider experiments should provide useful input to the theoretical work in this area. Indeed, the signatures are expected to be spectacular, with very high multiplicity events and a large fraction of the beam energy converted into transverse energy, mostly in the form of quarks/gluons (jets) and leptons, with a production rate at the LHC rising as high as 1 Hz. An example of what a typical black-hole event would look like in the ATLAS detector is shown in figure 2.
If mini black holes can be produced in high-energy particle interactions, they may first be observed in high-energy cosmic-ray neutrino interactions in the atmosphere. Jonathan Feng of the University of California at Irvine and MIT, and Alfred Shapere of the University of Kentucky have calculated that the Auger cosmic-ray observatory, which will combine a 6000 km2 extended air-shower array backed up by fluorescence detectors trained on the sky, could record tens to hundreds of showers from black holes before the LHC turns on in 2007.


Maybe John Ellis can orientate our thinking here a bit in this regard.




John Ellis:
CLIC is based on a novel technology in which an intense low-energy electron beam is used to generate an electromagnetic wave that is used to push a lower-intensity beam to much higher energies in a relatively small distance. It seems to be the only realistic chance of colliding electrons and positrons at multi-TeV energies so, if it works, it will allay (at least for a while) some of David Gross's concerns about the prospects for future big physics projects
.





Hirotaka Sugawara, former director of Japan’s KEK laboratory, also an ITRP member, described the science opportunities that a linear collider could provide.

"High energy physics has a long history of using proton and electron machines in a complementary way," Sugarawa said. "With concurrent operation, here is a remarkable opportunity to maximize the science from both a linear collider and the Large Hadron Collider. Exciting physics at the linear collider would start with the detailed study of the Higgs particle. But this would be just the beginning. We anticipate that some of the tantalizing superparticles will be within the range of discovery, opening the door to an understanding of one of the great mysteries of the universe—dark matter. We may also be able to probe extra space-time dimensions, which have so far eluded us."

Monday, January 10, 2005

Tiny Blackholes in Cosmic Observations?

205th Meeting of the American Astronomical Society 9-13 January 2005 -- San Diego, CA

I am kind of interested to find further information on how microstate blackholes might have been generated and looking at the concentration of minds, I wonder if this topic was brought up, or will be brought up?

The Pierre Auger Observatory, currently being constructed in Argentina to study cosmic rays, could examine the structure of spacetime itself, say physicists in the United States.

If, as some suspect, the Universe contains invisible, extra dimensions, then cosmic rays that hit the atmosphere will produce tiny black holes. These black holes should be numerous enough for the observatory to detect, say Jonathan Feng and Alfred Shapere of the Massachusetts Institute of Technology in Cambridge, Massachusetts1.

The observatory will consist of two 3,000-square-kilometre arrays - one in Argentina, one somewhere in the Northern Hemisphere - each containing 1,600 particle detectors. Scheduled for completion by 2004, scientists hope that the equipment will help to solve the mystery of cosmic rays. These rays consist of extremely high-energy particles that stream into the Earth's atmosphere from space - from where, exactly, no one knows.


Lubos has mention Steve Giddings and I have also mentioned himearlier inmy blogs on the topic of Mini blackholes as well.

In theories with large extra dimensions at sub-millimetre distances, for example, and/or high energies of the order of 1 TeV or more, gravity may become a strong force. Thus, hypothetically, the energy required to produce black holes is well within the range of the LHC, making it a "black-hole factory". As Stephen Hawking has taught us, these mini black holes would be extremely hot little objects that would dissipate all their energy very rapidly by emitting radiation and particles before they wink out of existence. The properties of the Hawking radiation could tell us about the properties of the extra spatial dimensions, although there are still uncertainties in the theory at this stage. Nevertheless, astroparticle and collider experiments should provide useful input to the theoretical work in this area. Indeed, the signatures are expected to be spectacular, with very high multiplicity events and a large fraction of the beam energy converted into transverse energy, mostly in the form of quarks/gluons (jets) and leptons, with a production rate at the LHC rising as high as 1 Hz. An example of what a typical black-hole event would look like in the ATLAS detector is shown in figure 2.
If mini black holes can be produced in high-energy particle interactions, they may first be observed in high-energy cosmic-ray neutrino interactions in the atmosphere. Jonathan Feng of the University of California at Irvine and MIT, and Alfred Shapere of the University of Kentucky have calculated that the Auger cosmic-ray observatory, which will combine a 6000 km2 extended air-shower array backed up by fluorescence detectors trained on the sky, could record tens to hundreds of showers from black holes before the LHC turns on in 2007.




Cosmic rays in ATLAS
The flux of cosmic ray muons through the ATLAS cavern can be utilized as a tool to "shake down" the ATLAS detector prior to data taking in 2007.

Additionally, a thorough understanding of the cosmic ray flux in ATLAS will be of great use in the study of cosmic ray backgrounds to the search for rare new physics processes in ATLAS.





Wednesday, December 08, 2004

Compton and Graviton Scatterings?

Sometimes it is very difficult to express what you want to say when you have so much information in your head. That you know it has to be expressed most carefully in order for one to get the jest of what is being implied when making statements. It is indeed a struggle for me to be clear in this regard, but hopefully, recogizing the requirements of the physicist and the theoretician, that such scholar attributes can be waivered for the commoner?






Compton scattering detector

Compton scattering happens when a photon interacts with an electron - the photon leaves the interaction with a lower energy and the electron has a higher energy. The energies of the outgoing photon and electron along with the angle at which these two leave the interaction allow determination of the energy and direction of the original photon.






What the heck is a Graviton

1. A quantizied gravitational wave...........
2. They travel at the speed of light
3. They have never been experimentally proven to exist.
4. They have been theoretically proven?
5. They permeate all dimensions.

Particle Physics Probes Of Extra Spacetime
Dimensions



The exact expression may be found in (15,17). It is important to note that due to integrating over the effective density of states, the radiated graviton appears to have a continuous mass distribution; this corresponds to the probability of emitting gravitons with different extra dimensional momenta. The observables for graviton production, such as the γ/Z angular and energy distributions in e+e− collisions


Visiting Scientist Sends Physics World Spinning

This summer, Afshar, Flores and Knoesel are conducting follow-up experiments in Rowan's state-of-the-art Science Hall to determine whether they can validate Afshar’s initial findings for single photons. In the experiment at Rowan, the team is using a single photon source instead of a beam. Some critics have pointed out that the results of the experiment with a laser beam could be explained in terms of classical physics. Thus, the use of single particles is critical and would be able to finally determine the validity of Afshar’s claims.

If the next round of experiments does support Afshar’s findings, this can mean a whole new way of looking at quantum theory among physicists, who have long-accepted the opinion of Einstein's rival on the subject, Danish scientist Niels Bohr. And that can have meaning for the lay community as well.

Flores noted, "It is likely that the interpretation problems of quantum mechanics are a hint that there is something new to learn about our physical world. There might be either a new force or a new physical property to be discovered. The problems of quantum mechanics will not be resolved unless they are exposed and studied. Thus, doing this experiment at Rowan is an exciting prospect."


The ideas presenting the way in whch we have percieved the quantum mechanical spacetime fabric, I am asking, that if applied to string considerations we have indeedd changed the language attributes of the same field that is understood in Compton scattering?


Dying to Know, by Max Tegmark



Three quarks indicated by red, green and blue spheres (lower left) are localized by the gluon field.

A quark-antiquark pair created from the gluon field is illustrated by the green-antigreen (magenta) quark pair on the right. These quark pairs give rise to a meson cloud around the proton.

The masses of the quarks illustrated in this diagram account for only 3% of the proton mass. The gluon field is responsible for the remaining 97% of the proton's mass and is the origin of mass in most everything around us.

Experimentalists probe the structure of the proton by scattering electrons (white line) off quarks which interact by exchanging a quantum of light (wavy line) known as a photon.


Friday, December 03, 2004

Inverse Fourth Power Law

By moving our perceptions to fifth dimenisonal views of Kaluza and KLein, I looked at methods that would help me explain that strange mathematical world that I had been lead too geometrically. If such a bulk existed, then how would we percieve scalable features of the energy distributed within the cosmo?

The angular movements needed to signal the presence of additional dimensions are incredibly small — just a millionth of a degree. In February, Adelberger and Heckel reported that they could find no evidence for extra dimensions over length scales down to 0.2 millimetres (ref. 11). But the quest goes on. The researchers are now designing an improved instrument to probe the existence of extra dimensions below 0.1 mm. Other physicists, such as John Price of the University of Colorado and Aharon Kapitulnik of Stanford University in California, are attempting to measure the gravitational influence on small test masses of tiny oscillating levers.


In previous posts I have outline the emergence and understanding of hyperdimensional realities that we were lead too. Our early forbearers(scientifically and artistic embued with vision) as they moved through the geometrical tendencies, that if followed , made me wonder about that this strange mathematical world. How would we describe it, and how would it make sense?


Our new picture is that the 3-D world is embedded in extra dimensions," says Savas Dimopoulos of Stanford University. "This gives us a totally new perspective for addressing theoretical and experimental problems.


Quantitative studies of future experiments to be carried out by LHC show that any signatures of missing energy can be used to probe the nature of gravity at small distances. The predicted effects could be accessible to the Tevatron Collider at Fermilab, but the higher energy LHC has the better chance.
These colliders are still under construction, but results also have consequences for "table-top" experiments, being carried out here at Stanford, as well as the University of Washington and the University of Colorado. Here’s the basic idea: imagine there are two extra dimensions on a scale of a millimeter. Next, take two massive particles separated by a meter, at which distance they obviously behave according to the well-known rules of 3-D space. But if you bring them very close, say closer than one millimeter, they become sensitive to the amount of extra space around. At close encounter the particles can exchange gravitons via the two extra dimensions, which changes the force law at very short distances. Instead of the Newtonian inverse square law you’ll have an inverse fourth power law. This signature is being looked for in the ongoing experiments
.


As you look at the issue of two points(introduction to hyperdimensional realites of quark confinement as a example), it is well understood, by this point that such emergence had to be geometriclaly consistent on many levels. That such royal roads leading too, culminate in some realistic measure? In that mathematical realm, we had left off, and in recognition of the fifth postulate of euclid. By acceptance and creation of this extra dimension, it was well apparent, that such tendencies were developing along side with the physics as well.

But we had to determine where this mathematical realm had taken us, in terms of measure? We are quckly reminded of the place in which such measures become the constant rallying point around important questions of these views.



Physics at this high energy scale describes the universe as it existed during the first moments of the Big Bang. These high energy scales are completely beyond the range which can be created in the particle accelerators we currently have (or will have in the foreseeable future.) Most of the physical theories that we use to understand the universe that we live in also break down at the Planck scale. However, string theory shows unique promise in being able to describe the physics of the Planck scale and the Big Bang.

It wasn't a game anymore, that we did not suspect that reductionism might have taken us as far as the energy we could produce could take us? So we had to realize there was limitations to what we could percieve at such microscopic levels.

High energy particles have extremely small wavelengths and can probe subatomic distances: high energy particle accelerators serve as supermicroscopes:

To see What?

The structure of matter

(atoms/nuclei/nucleons/quarks)


Faced by these limitations and newly founded conceptual views based on the quantum mechanical discription of spacetime as strings, how would we be able to look at the cosmos with such expectancy? To know, that the views energetically described, would allow further developement of the theoretcial positons now faced with in those same reductionistic views?

What has happened as a result of considering the GR perspective of blackholes, that we had now assigned it relevance of views in cosmological considerations? Such joining of quantum mechanical views and GR, lead us to consider the sigificance of these same events on a cosmological scale. This view, had to be consistent, geometrically lead too?

If we discover the Planck scale near the TeV scale, this will represent the most profound discovery in physics in a century, and black hole production will be the most spectacular evidence of that new discovery

Wednesday, November 17, 2004

New Non-geometrical Generalization of the Principles of CFT Found?

There is always a certain expectancy, when it comes having formulated the theoretical work, that further developement along these lines presenst the opportunities for such things to exist.


A new non-geometrical generalization of the principles of CFT will be found, and it will allow to extend the success of S-matrices etc. to the non-perturbative realm. A geometry-like original of dualities - such as E_k in supergravity - will be clarified. Non-perturbative physics on general backgrounds will become calculable, and supersymmetry breaking will be shown to be very different in details than previously anticipated. Realistic N=1 4D vacua with SUSY breaking will be connected and the potential will pick up a rather small number of priviliged points - close to the "heterotic strings on Calabi-Yau three-folds" and/or "M-theory on G2 manifolds" and/or "intersecting brane models with some warping". Two years after the beginning of the revolution, the people will calculate the masses of the heaviest quarks, the (small) QCD theta-angle, and other things, and they will predict the first new physics beyond the SM, which will be only confirmed several years later experimentally.

Meanwhile, the structure of M-theory in 11D will be solved exactly, and the position of poles of the scattering amplitudes in 11D will be known more or less exactly.

Alternatively, theorists won't be that fast, and the revolution will start experimentally in 2007, most likely with the LHC. A rather simple pattern of masses of superpartners will be found, together with supersymmetry, and it will match one of the popular SUSY scenarios within string theory. Alternatively, small black holes or excited strings are gonna be seen, and their precise patterns will be used to reversely engineer the shape of branes and hidden dimensions.