Showing posts with label Landscape. Show all posts
Showing posts with label Landscape. Show all posts

Wednesday, March 28, 2007

Time as a Measure

SuperCosmologists Think Out of the Box, by Clifford at 1:13 am, August 3rd, 2005

From what we have learned so far about string theory, the natural starting point for doing physics which makes contact with our world seems to be to start in 9+1 dimensional spacetime. A modern perspective tells us to go further: Strings are not the only important objects in the game, but extended objects of more dimensions called “branes” are also important. (The term comes from starting with “membrane” which is a two dimensional object, calling it a “2-brane” and then having the idea of a “3-brane”, “4-brane” etc. Or just “brane” when you want to be non-specific.) It turns out that we need to consider these objects too. Fully non-perturbative considerations also encourage us to consider “M-theory”, which (at least at low energy) appears as an eleven dimensional (10+1) theory with no strings at all, just branes of a couple of sorts.


Do we suspect we had gone so far from reality to think about science we had somehow left our thought processes out of the loop, for what is demanded from science? I still like to think that with what ever process that one like Lee Smolin would want to talk abut on a philosophical level had it's counterpart in some process that I am speaking about below.

It's only fitting that while one could deal with the "abstractness spoken by Clifford" that we could have of course said the same thing with Lee Smolin's philosophical sojourns. In regards to "time," as an element of where we had taken reductionism too. To the depths of perception that speak to the very early universe. The microseconds of our universe spoken too, settled here to the 3+1 world of matter constituents.

So you see it began someplace else in dimensional perspective that is not so disconnected from the reality with which we like to work.




Experimentalists probe the structure of the proton by scattering electrons (white line) off quarks which interact by exchanging a quantum of light (wavy line) known as a photon.
See Compton and Graviton Scatterings?

How did one get to that level with which to discern the nature of the energy in relation to the photon? I have assume a certain position, in terms of what the photon represents as it speak to the very colouring of the gravitational field.



So how was one to look at the landscape without understanding that there is a measure to the nature of the gravitational field represented by that Photon?

IN relation to the landscape. This is not what stood out when I went to look at Lee Smolin’s reference to chapter 5 with regards to comment #148 I hope this shift is okay for posting?

Just drawing attention to the dates of publication and comparison of views. I was thinking of “Benchmarks” in terms of the progressions, that could have been marked as successes, and help one to realize that there was still a process unfolding?

I thought these two views countering one another?

A second obstacle arises from the theory’s reliance on the idea of spontaneous symmetry breaking to explain why each of the elementary particles we see in the world has different properties. While this is a beautiful idea, there is a certain ad hoc quality to how it is realized. To this date, no one has so far observed a Higg’s particle and we have only a very imprecise idea of their properties. Page 61, The Life of the Cosmos by Lee Smolin ISBN 0-19-510837-x 1997


As a Lay person I was thinking of the word “ad hoc” in Lee’s statement, and wonder if this is still reflected in his views of today. This was a build up and precursor to the statement about string theory in question according to Lee’s book statement??

Unravelling String Theory,by Edward Witten 29 Dec 2005

String theory is the only known generalization of relativistic quantum field theory that makes sense. The framework of special relativity plus quantum mechanics is so rigid that it practically forces quantum field theory upon us. The tightness of the modern framework is one of the main reasons why physicists were able to discover what has become the standard model of elementary particles.


Have we moved past this today and “all” in agreement?


Of course being the layman I am it is important that information that is given on Clifford's board is correct. One can quickly swipe out any statement quite easily without understanding the historical aspect of what Lee Smolin is suggesting. What is he suggesting?

Lee Smolin Mar 27th, 2007 at 8:23 am

For one thing the existence of the string landscape has been, at least for me, a great stimulus to revising the notion of time in quantum cosmology. Beyond that the context in which the role of time in quantum cosmology has to be discussed is that of attempts to formulate background independent theories, to the extent that efforts are made to construct a manifestly background independent framework for string theory in the compact case-with no asymptotic symmetries or boundary conditions, the problem of time has to be confronted.


Now of course after this I had been thinking when Lee Smolin made his statement in the selected paragraph above, some things that I had been thinking about.

Gravitational Mass for a Photon

The relativistic energy expression attributes a mass to any energetic particle, and for the photon



The gravitational potential energy is then



When the photon escapes the gravity field, it will have a different frequency




Since it is reduced in frequency, this is called the gravitational red shift or the Einstein red shift.

Escape Energy for Photon

If the gravitational potential energy of the photon is exactly equal to the photon energy then



Note that this condition is independent of the frequency, and for a given mass M establishes a critical radius. Actually, Schwarzchilds's calculated gravitational radius differs from this result by a factor of 2 and is coincidently equal to the non-relativistic escape velocity expression



A black hole is an object so massive that even light cannot escape from it. This requires the idea of a gravitational mass for a photon, which then allows the calculation of an escape energy for an object of that mass. When the escape energy is equal to the photon energy, the implication is that the object is a "black hole."


For the longest time I have tried to understand what could be used to answer Lee's statement above. While I have no substituted I looked at what the physics had to say and what we may learn from the horizon.

The elephant and the event horizon by Amanda Gefter

Hawking radiation owes its existence to the weirdness of the quantum world, in which pairs of virtual particles pop up out of empty space, annihilate each other and disappear. Around a black hole, virtual particles and anti-particles can be separated by the event horizon. Unable to annihilate, they become real. The properties of each pair are linked, or entangled. What happens to one affects the other, even if one is inside the black hole.
See here for article.

This process itself. Would it not instigate the position of Lee to ask what can be revealed in the nature of the photon? While there is calorimetric measures designed in Glast, was it not with the understanding that "high energy" photons could exist? We are using the "escape velocity of the photon" to discern the nature of the blackhole?

This is Lee's current measure of time in any discussion?



See this link for what was deleted from Clifford's blog and I will try and expand and clear up what was quick to be discarded. You had to follow the comments in that section, to get the idea of what "entanglement may mean" for what we see of what exists on the boundary of the blackhole,as a indicator represented by the colour of that photon. Now of course I have exceeded the perspective limited by the 3+1 as a Relativity, yet I go as far as implement the fabric of the spactime as a correlate of what we see of that photon.

Sunday, March 18, 2007

AP May Still be Useful?

Full-sky Temperature Maps-Polarized Light-K-Band Map (23 GHz)-Credit:NASA/WMAP Science Team

The color represents the strength of the polarized signal seen by WMAP - red strong/blue weak. The signal seen in these maps comes mostly from our Galaxy. It is strongest at 23 GHz, weakest at 61 and 94 GHz.

This multi-frequency data is used to subtract the Galactic signal and produce the CMB map shown (top of this page). These images show a temperature range of 50 microKelvin.


It is essential that while we are looking at this universe we understand the makeup and how it is being expressed. We also understand that while we knew the uiverse had to have it's motivation for that expression, it had to have other states of existance as well. This is related to the curvatures parameters and how differing times in the universe's expression this curvature had to be considered. These curvatures at one time in the whole context, as some cosmological constant varied, not seem relevant to the state of the universe?

So you have to explain it. Some may think I am less then desired in my understanding of General relativity, but you can be certain that understand Einstein's work in finding the "geometry of expression" was critical in understanding the "nature of gravity."


The idea behind the Coleman-De Luccia instanton, discovered in 1987, is that the matter in the early universe is initially in a state known as a false vacuum. A false vacuum is a classically stable excited state which is quantum mechanically unstable. In the quantum theory, matter which is in a false vacuum may `tunnel' to its true vacuum state. The quantum tunnelling of the matter in the early universe was described by Coleman and De Luccia. They showed that false vacuum decay proceeds via the nucleation of bubbles in the false vacuum. Inside each bubble the matter has tunnelled. Surprisingly, the interior of such a bubble is an infinite open universe in which inflation may occur. The cosmological instanton describing the creation of an open universe via this bubble nucleation is known as a Coleman-De Luccia instanton.


See more on this here

So by seeing this dynamical nature expressed did not mean you discounted how this universe was acting at various times to become what it is today. You had to find processes that would speak to this,and by defining the continuity of geometrical expression it was important to define this false vacuum in relation towhat the universe was doing as it unfolded itself and from strong curvature parameters settled itself to where it is today.

Did the universe have a negative density value relation that one could interpret? So you have to explain this as well in relation to what contributed ot the universe speeding up or slowing down. What local events within the cosmos could contribute to the universe in it's total expression?

Gravity in the microseconds

Never mind Steven Weinberg's First Three mintes.

The amount of dark matter and energy in the universe plays a crucial role in determining the geometry of space. If the density of matter and energy in the universe is less than the critical density, then space is open and negatively curved like the surface of a saddle See my post on this here

While we talk about the universe I understand that there are "curvature parameters" that can be expressed, at any given time "within context of the whole universe." We had somehow forgotten these events as local expressions of galaxies "may contribute to the larger picture?"

'An unexpected gift' from string theory

The possibility that enormously large galaxies originated from tiny quantum fluctuations may seem too strange to be true. But many aspects of inflationary theory were confirmed by recent astronomical observations, for which the observers won the Nobel Prize in 2006. This gives some credence to an even more surprising claim made by Linde: During inflation, quantum fluctuations can produce not only galaxies, but also new parts of the universe.

Take an expanding universe with its little pockets of heterogeneous quantum events. At some point one of those random events may actually "escape" from its parent universe, forming a new one, Linde said. To use the ball analogy, if it experiences small perturbations as it rolls, it might at some point roll over into the next valley, initiating a new inflationary process, he said.

"The string theorists predict that there are perhaps 101000 different types of universes that can be formed that way," Linde said. "I had known that there must be many different kinds of universes with different physical properties, but this huge number of different possibilities was an unexpected gift of string theory."

According to string theory, there are 10 dimensions. We live aware of four of them—three of space plus one of time. The rest are so small that we cannot experience them directly. In 2003, Stanford physicists Shamit Kachru, Renata Kallosh and Linde, with their collaborator Sandip Trivedi from India, discovered that these compacted dimensions want to expand, but that the time it would take for them to do so is beyond human comprehension. When a new universe buds off from its parent, the configuration of which dimensions remain small and which grow large determines the physical laws of that universe. In other words, an infinite number of worlds could exist with 101000 different types of physical laws operating among them. Susskind called this picture "the string theory landscape."

For many physicists, it is disturbing to think that the very laws and properties that are the essence of our world might only hold true as long as we remain in that world. "We always wanted to discover the theory of everything that would explain the unique properties of our world, and now we must adjust to the thought that many different worlds are possible," Linde said. But he sees an advantage in what some others could see a problem: "We finally learned that inflationary universe is not just a free lunch: It is an eternal feast where all possible dishes are served."


I have been waiting I guess until the appropriate time that I could bring Q9's link of Linde's here for comparison, to what one may think of the landscape. You had to include all the information before this comment to know that what I am talking about has it's relation in the Anthropic Principle.

The theory of strings predicts that the universe might occupy one random "valley" out of a virtually infinite selection of valleys in a vast landscape of possibilities

See info on String Theory Landscape

The title above is taken from Lee Smolin's paragraph listed below. Why I am using it will be come clear after a time in this post. I am working all night because of the duties of life, so I'll have to come back to it tomorrow. I am barely await has a continue to compile the data necessary for understanding the way I see this universe.

We assume the landscape is covered by fog so we can’t see where the real peak is, we can only feel around and detect slopes and local maxima.Lee Smolin

Lee continues on in another forum and is linked to paragraph below.

I should also emphasize that while the book is not an attack on string theory in general it is very definitely an attack on a point of view about string theory that some, but not all, string theorists have adopted. This includes the arguments that the anthropic principle can yielded falsifiable predictions-which have been shown to be fallacious, and the argument that was made by several string theorists that a theory need not give falsifiable predictions for doable experiments to be believed. My book takes a strong stance against this point of view. I am confident here of my reasons, especially given that already in my first book the possibility of an anthropic solution to the landscape problem was considered and rejected. I am glad to know that my view on this is shared by some string theorists such as Brian Greene but not so happy that a number of very smart string theorists continue to believe that some version of the AP may still be useful.


Increased Curvatures

A circle of radius r has a curvature of size 1/r. Therefore, small circles have large curvature and large circles have small curvature. The curvature of a line is 0. In general, an object with zero curvature is "flat."

See my post here and here.

The value of the circle in relation to gravity is important to recognize, in that this value of the universe can be different based on what "critical density" in relation to Omega

In order for one to be concerned about the current state of the universe, it is essential that one realizes it's condition "before it became the way it is?" It's value in relation to the circle.



The big bang should have created equal amounts of matter and antimatter, with subsequent annihilation leaving neither behind. And yet, the observable universe has about ten billion galaxies that consist entirely of matter (protons, neutrons, and electrons) with no antimatter (antiprotons, antineutrons, and positrons). Very soon after the big bang, some forces must have caused the CP violation that skewed the equality in the number of matter and antimatter particles and left behind excess matter.



So while we get this sense here of the hills and valleys, what said that the current system had not taken into consideration the sombrero? The effects of gravity when it was once strong, and now is weak. We still get this sense of the universe doing things.

Friday, February 23, 2007

Light and Matter United

Murray Gellman: On Plectics

It is appropriate that plectics refers to entanglement or the lack thereof, since entanglement is a key feature of the way complexity arises out of simplicity, making our subject worth studying.


I was talking about some things in terms of the computerization that had gone to another level in perspective(gravitational entanglement). It was about how "technologies can change" while we had been held to a certain kind of thinking. While the limitations held us too, "not knowing what computerization may bring."

IN regards to the Landscape

It was important to understand why there would be such divergences in perspective and how these would be lined up? Some of course did not want to take the time, but it was important to me to understand the "philosophical position" taken.



One could just as well venture to the condense matter theorist and said, what building blocks shall we use? One should not think the "history of Platonism" without some "other influences" to consider. Least you assign it to a "another particular subject" in it's present incarnation? An Oscillatory String Universe?

So the evolution here is much more then the "circumspect of the biological function," but may possible include other things that have not been considered?

Physiologically, the "biological function" had some other relation? So abstract that I assigned the photon? So I said "feelings," while Einstein might assigned them to a "short or long time" considering his state of mind? :)

More thought of course here on the "fictional presentation" submitted previous. As a layman I have a problem in that regard. :)


Who would have ever thought that such "concepts that moved from my mind had some relation to the world at large in our emotive consequences?" That from such thinking, I would adopt fictional perspective to help me deal with what the advancements may be in the computerized world?

I already had to know of the development in terms of entanglement's issues, to move it one step further not only in my thinking, but in understanding that as you adopt model apprehensions, how shall these lead you to conclude that the physics in association, had some relevance to it.

The cosmologist may say that indeed the gravitational consequences and waves have as yet to be considered, but, if held to the photon in it's affect in such a gravitational field, then what would we want from such a graviton condensation?

It's colouring?

So of course it is appropriate that I show you the comment I made above, and then you judge for your self the thought I held in fiction, in relation to this article below as I am making that statement.

Lene Hau explains how she stops light in one place then retrieves and speeds it up in a completely separate place.
Staff photo Justin Ide/Harvard News Office
Atoms at room temperature move in a random, chaotic way. But when chilled in a vacuum to about 460 degrees below zero Fahrenheit, under certain conditions millions of atoms lock together and behave as a single mass. When a laser beam enters such a condensate, the light leaves an imprint on a portion of the atoms. That imprint moves like a wave through the cloud and exits at a speed of about 700 feet per hour. This wave of matter will keep going and enter another nearby ultracold condensate. That's how light moves darkly from one cloud to another in Hau's laboratory.

This invisible wave of matter keeps going unless it's stopped in the second cloud with another laser beam, after which it can be revived as light again.

Atoms in matter waves exist in slightly different energy levels and states than atoms in the clouds they move through. These energy states match the shape and phase of the original light pulse. To make a long story short, information in this form can be made absolutely tamper proof. Personal information would be perfectly safe.

Friday, February 16, 2007

The Multiverse is like a....Flower?

Alexander Vilenkin
The implications of inflation are particularly important in the context of the landscape of string theory. One of the leading researchers studying how inflationary cosmology evolves through the landscape is Alex Vilenkin, a theoretical physicist at Tufts who has been working in the field of cosmology for 25 years and is a pioneer in introducing the ideas of eternal inflation and quantum creation of the universe from nothing. Here he sets forth his ideas of how the set of theories which began with Guth's inflationary scenario are playing out.


This post on the Multiverse of mine, may be an "psychological interpretation" here that I would like to bring forward. This may be distasteful for people of science. Please bear with me as I try to explain myself, and not sanction me to a site that has issues with "ten dimensions and and quantum tunnelling?":)

The Flower as a Universe in Expression

So I will open the above with an example of one of the flowers done up with regards to Mandalic interpretations. This has been part of my research to understand the "individuality of each persons expression" from the inside out. As if, one understood the "liminocentric structure" develop from the schematic of the "circle with a point" in it, "to a point" with a boundary condition that is contained, as an equation of E=mc2.

AS well the student here is learning to give credence to a "way of enlightenment" that foreshadows what can exist as "this schematic mathematical diagram," could find itself looking quite nicely in such a expression as that of a flower.

"Out of Nothing" Came Art and Science?

But even empty space has faint traces of energy that fluctuate on the subatomic scale. As suggested previously by Jaume Garriga of Universitat Autonoma de Barcelona and Alexander Vilenkin of Tufts University, these fluctuations can generate their own big bangs in tiny areas of the universe, widely separated in time and space. Carroll and Chen extend this idea in dramatic fashion, suggesting that inflation could start “in reverse” in the distant past of our universe, so that time could appear to run backwards (from our perspective) to observers far in our past.


I think one can be detracted by good pictures as to the originality of how we might see the universe in expression. So "without further explanation" we might say yes indeed they are good pictures of flowers without understanding the inheritance of the explanation forth coming.

So the idea here is not to be judgemental of the "book by it's cover" until one has considered the explanation that is forthcoming. As one weights what the expression of any universe can mean, while within it, there are evidences for the possibilities of what exists as our own universe, was granted a design, as one might grant each galaxy in expression?

Take an event within the colliders and tell how each will react according to the energies used?


MARIO MARKUS, Max Planck Inst., Dortmund
This first issue of the journal became a "meeting place" of an international group of authors, representing five continents. Although the papers give reliable information about the authors, we add here some brief "informal" notes on all of them:


I may have been attracted to this one for consideration by implicating the "music of the spheres" in my previous comments so however words are transported back and forth between scientists, or "the insinuation" of JoAnne of Cosmic Variance has for it, I cannot help the way I see.:)

OKay now. On to the explanation, as I have learnt to understand it, and then, what ever fate I have assigned to me and this becomes the way of it for me? Cracked flower pot and all.

Bubble Nucleation

During a first-order phase transition, the matter fields get trapped in a `false vacuum' state from which they can only escape by nucleating bubbles of the new phase, that is, the `true vacuum' state. See here for correlating Post.

Now is it enough that I identify the "source of such expressions" to advance the "geometrical inherent of form" as a universe in expression? So where did this design come from. How could anything issue from such "chaos implied in all the possibilities" that we might have the universe we did in this one?

Physically, the effect can be interpreted as an object moving from the "false vacuum" (where = 0) to the more stable "true vacuum" (where = v). Gravitationally, it is similar to the more familiar case of moving from the hilltop to the valley. In the case of Higgs field, the transformation is accompanied with a "phase change", which endows mass to some of the particles.




So by looking at the picture below you get this sense of why the "sombrero as a hat" serves us well to explain the nature of gravitational considerations while this "collapse of the sphere" can produce all kinds of models of geometrical expressions, as a Calabi Yau?



The "landscape" has been something of a issue, as I have travelled through the last couple of years, watching scientists go back and forth in debate. They have their reasons why of course.

I will not assign "a label" although I use them here in this blog "to categorize the times that I have ventured onto a particular subject." I will not succumb to "any categories" that insinuate that "one group of scientists belong to let's say the "Templeton Foundation" and thusly criticize them, as being insignificant and deluded. "Founding a movement" to change society other then, what society wants itself to become.

So by characterization I have learnt to not hold any woman or man to the "fate of character alone," or the "choices they make." But to see the basis of science is continually being adhered to on a level of "correlation of cognition." Given, the experiment and facts, what does one conclude to do while they venture forward? What do they pull toward them, as they theorize about the science?

How is their philosophy imbued them to speak, while there is this underlying mathematical basis to the world? Is it all "flowery or drawn to the arts" that it detracts from the science? Are there not ways that art helps science visualize what has come from their thought processes?

So Tegmark saids,"the universe is not a bagel?" And we have all these ideas about the "shape of the universe." Cosmology likes em large, while the Calabi Yau-ist like it small? Okay, not small, but descriptively unique?

Friday, December 01, 2006

Theoretical Challenges



Stephen Hawking from the University of Cambridge, one of the world's leading theoretical physicists, addresses the audience during a ceremony in Beijing, June 19, 2006. Hawking, author of the best-selling 'A Brief History of Time,' said on Thursday humans must colonise other planets in different solar systems or face extinction. (Jason Lee/Reuters)
However, by using "matter/antimatter annihilation", velocities just below the speed of light could be reached, making it possible to reach the next star in about six years.


It's just one of those things that attracts our attention as we ponder the nature of the universe and how our modelling may change the way we see now. What proof for such things and we look at the basis of what we had been doing and we make changes accordingly.

More modern variations of tomography involve gathering projection data from multiple directions and feeding the data into a tomographic reconstruction software algorithm processed by a computer. Different types of signal acquisition can be used in similar calculation algorithms in order to create a tomographic image. With current 2005 technology, tomograms are derived using several different physical phenomena including X-rays, gamma rays, positron electron annihilation reaction, nuclear magnetic resonance, ultrasound, electrons, and ions. These yield CT, SPECT, PET, MRI, ultrasonography, 3d-TEM, and atom probe tomograms, respectively.


It never made much sense to me as time progressed, yet, I found myself challenging the very notions of what physics and experiment leads us, and what thoughts generated, could help propel our thinking forward. Why sound? If we thought such analogies are going to serve us then why would scientists be so misleading as to say "sound is the way we think about the universe?"

Now it is something much different that I think about these things. What caused this?

A way in which one can think and see and not have noticed the universe looks much differently from adopting these views. So of course I speak about lagrangian views and gravitational influences as a much different picture of the cosmos then the one we see as we look up. Or, as how we might look at the sun. The sun's eye?

So as usual today as I move through the "bloggeries of scientists," I look at what they are displaying. The post previous to this one of my article was instigated by reading John Baez's site and what he had there of course sparked what had written previous on the topic of, "Megalithic carved stone balls from Scotland." Yes that was in December of 2004 I wrote my article.

Artifacts of our thinking?

Now this morning of course I went over to Clifford's Blog, "Asymptotia" to have a look there to come to see what he had posted today. The Antikythera Mechanism



Now considering the information about our beliefs of what transpired in our history about gears and such, how is it we could have lost sight of mechanisms like this to have to re-invent the gear?

While occasional discoveries, such as the Antikythera mechanism, have forced scientists to reassess the technology of ancient civilization, critics regard most cases of OOPArt as the result of mistaken interpretation or wishful thinking. Supporters regard them as evidence that mainstream science is overlooking huge areas of knowledge, either willfully or through ignorance.


For me it has been an interesting journey having the freedom's to explore. Try and make sense of the world. Now I am experiencing the frustrations I have about the trends towards capitalism and sociological deconstruction of those things I would think should be the basis of our social fabric "as signs" of our sisterly and brotherly of caring for each other.

Plato:
So should we let the resistance of fear insight distrust of the media, and have good science minds disrupt by instigating false reports like the one did by Alan Sokal in regards to quantum gravity? Nice way to treat those who move up to face the challenge of a theoretical world that expects the same validation as any process?


AS if the Sokal affair wasn't enough, that one could use a computerized program to write a paper on quantum gravity? That those of us being ignorant of the process could be so easily fooled, has some how taken on a new thought here. About what String theory has done? What Peter Woit has placed in his information?

Hopefully this was not the nefarious intent of such information being divulged to the public as a speculation on "science's part" to do battle with the "evil forces of disinformation?"


Alone in the Universe?

So left alone to ponder the nature of the universe how can we not be affected by what has been put out there by scientists for us lay people to ponder about the directions we are going. That in our own thinking now biased, we move forward?

What will become of the understanding of our nature as we explore those things with which we are not accustomed to seeing? Do we "shake the resolve to do the things we have done in a logical and developmental thinking?" To destroy what has been the leading theories toward what goal? Of course not.

But it is such things that ask us to consider the "anomalistic nature" that we delved ever further into the wonders of science and what will become of us? What may be revealed by discovering more of our history, and what is yet to be "reawakened" in our continuance forward.

We must look deeper into the "fabric of reality" that we can see the world in much different way. At first, some might have only recognized the "beauty of the cosmos" and it's natural designs. Then, some wondered what are these things that they become what they are?

So we were forced to consider a much greater dimension to the reality then what was just there on appearance. Of course we might have wondered what made these move the way they do, and again we ask ourselves, "what is the motivator behind these things." How is it we might see what drives this process?


This is a computer-rendered model of a partially telescoped nanotube with a Leonardo DaVinci manuscript as the background. In the manuscript, DaVinci considers the construction of bearings, and also the frictional forces that might be encountered in bearings and sliding surfaces. He also has a drawing of a constant force spring (a mass hanging from a cord over a pulley). A nanotube bearing may be the ultimate realization of some of DaVinci's dreams.

Thursday, November 30, 2006

Megalithic carved stone balls from Scotland

With the discovery of sound waves in the CMB, we have entered a new era of precision cosmology in which we can begin to talk with certainty about the origin of structure and the content of matter and energy in the universe-Wayne Hu


I mean what influence might we have gained from looking at such ancient pieces?

The balls were located at the Ashmolean Museum, Oxford, UK at one time, so I do not know if they are still there.


Photo by Graham Challifour. Reproduced from Critchlow, 1979, p. 132.


Thursday, October 19, 2006

Central Theme is the Sun



A lot of times people do not understand the effects something can have and after we see these effects, we wonder how did we ever miss the importance of what layed underneath this process in Physics.


Richard Feynman-Dancing With Neutrinos-Nova



Much as we looked at the stars above, the views became much clearer with hubble and such, that we see the depth is necessary as we quantum dynamically learn to see with a greater comprehension.

481 MeV muon neutrino (MC) produces 394 MeV muon which later decays at rest into 52 MeV electron. The ring fit to the muon is outlined. Fuzzy electron ring is seen in yellow-green in lower right corner. This is perspective projection with 110 degrees opening angle, looking from a corner of the Super-Kamiokande detector (not from the event vertex). Option -show_non_hit was used to show all PMTs. Color corresponds to time PMT was hit by Cerenkov photon from the ring. Color scale is time from 830 to 1816 ns with 15.9 ns step. The time window was widened from default to clearly show the muon decay electron in different color. In the charge weighted time histogram to the right two peaks are clearly seen, one from the muon, and second one from the delayed electron from the muon decay. Size of PMT corresponds to amount of light seen by the PMT. PMTs are drawn as a flat squares even though in reality they look more like huge flattened golden light bulbs.


Now it is important to me that when I seen the relationships of physics extolling itself in nature, I wanted to understand how this evidence came to be. But, before I lay what nature has shown me, I wanted to explain a little further what I am starting put together in my head, about what has become common in our understanding, was not easily so from a theoretical/concept/idea standpoint. That it was indeed "progressive/reductionistic" as our views became ever more progressive as we see the same picture of the cosmo(astrophysics) in an ever widening view of understanding.

The neutrino detector for the Super-Kamiokande experiment in Japan contains ultrapure water surrounded by an array of thousands of photo-tubes, arranged to catch the flashes of light from neutrino interactions in the water. In 1998, researchers at "Super-K" found evidence for a small mass for neutrinos coming to earth from particle interactions in cosmic rays. If neutrinos, until recently thought to be massless, actually do have a mass, the implications will be profound, not only for particle physics but for astronomy and cosmology. At right is the MINOS collaboration at the Department of Energy’s Fermilab, before a slice of the 10,000-ton detector they will build to capture neutrino interactions. The MINOS experiment will use beams of accelerator-produced neutrinos by Fermilab's Tevatron to investigate neutrino mass.


Now the lesson above is quite simplistic in the sense that what was once held in theoretical views could/would have made it's way into the depths of how we see things now in nature. So in having understood that process, I wanted to show two more that you might be interested in?


Astronaut's view of the Aurora Australis, or southern lights, from aboard Space Shuttle Discovery 1991 (Courtesy: NASA)


The picture below here is what I see from my backyard when mist and rain has fallen.



So here you have it. A couple of views of nature that have been exemplifed in our search for understanding. What does this all reveal to you? Well, that's the continung saga of what the depth of perception has endowed all us human beings, as we look ever deeper into the nature of the cosmo, and the beginning of this universe.

While we had been given the Sun to look at in one of it's diverse ways, I wanted and did show that meeting the views of how we look at things. That it had been extended, by understanding the "valuation of the energy" as it has ensued from the very heart of what that burning sun is. How we gain immediate results, not ony in the particle showers, but of what evidence we have lain before us, as the physical outcome, as we look from space, and how, we look from earth.

See:

  • SOLAR B and Van Ellen Belts
  • Thursday, August 17, 2006

    Cyclic Universe Could Explain Cosmological Constant

    Thanks Paul for pointing this article out here some time ago.

    Physicists have proposed several theories to explain why Λ is so small. One of the most popular -- the "anthropic principle" -- states that Λ is randomly set and has very different values in different parts of the universe (figure 1). We happen to live in a rare region, or "bubble", where Λ has the value we observe. This value has allowed stars, planets and therefore life to develop. However, this theory is also unsatisfactory for many scientists because it would be better to be able to calculate Λ from first principles.


    We understand where strings reside in terms of "microseconds" and the "arrow of time?"

    Once we know that there is one de Sitter solution, it is easy to find many more of them by just changing the values of the fluxes. Sujay Ashok and Michael Douglas of Rutgers University have recently estimated the number of different solutions to be at least 10100, which indicates an extremely rich landscape with many mountains, valleys, oceans and even volcanoes. Each minimum-energy point represents a different universe, and the height of that point is the value of the cosmological constant for that universe. Viewing the solution this way, the probability that one of these universes has a cosmological constant that is as small as is indicated by current experiments is actually non-zero.





    Hmmmm..... remember Higgins?

    Thursday, August 03, 2006

    BigFoot: The Anomalistic Reality?

    The explanation of scientific development in terms of paradigms was not only novel but radical too, insofar as it gives a naturalistic explanation of belief-change. Thomas Kuhn




    What can we say to those who practice science and have been told, no anomalistic conditions can exist in reality? How will they "act" when they have been shaken at the very roots, assuming, such a thing can happen to them as a "observer" of what is "real" to them?



    What "if" their illusions have taken hold of them? What if, they jump into a river? Scientists are not like this? They see "everything?":)OuI! Non? They all looking for "truth" just like you, Lee Smolin. There are no causalities?

    Nature in Analog Models

    In condensed matter, one can construct systems where the propagation of long wavelength phonons (sound waves) is very similar to the propagation of a scalar field in a curved Lorentzian spacetime. Such systems are called 'analog models'. It is even possible to construct analogies to black holes in this manner, where the phonons that travel past a certain point cannot return. For example, consider a fluid where long wavelength phonons in the fluid propagate with speed cs, which is analogous to the speed of light in these models. Now put this fluid in a pipe and change the shape of the pipe such that the speed v of the fluid is faster than cs in one section and slower in an adjacent section. A phonon can travel "back against the current" only up to a certain point, where the the fluid speed equals cs. After that the fluid flow carries it down the pipe. This point in the pipe therefore mimics a black hole event horizon, from which nothing can escape. Other black hole features such as Hawking radiation are also present in these models. Since these models give an example of a system that has a fundamental structure at very short distances (where the fluid description breaks down), yet has a pseudo-Lorentz invariance at long distances.


    So forget about paradigmal change, and Kuhn's perspective about revolutonary change? A precursor to how things have always been done, now change, to become? Such an example is needed to push perspective unless you want to stay the way you have always been?

    Evidence of Dis-ease?



    Have we gotten so far to assume "the sickness" had indeed been caused by such theoretics and a "ventured mysticism," that the fault lied in those who venture forth and offer perspective and some who lacked visional meaning?

    So as a "painter" Dali added "dimension" to the tesserack of our talks?:)

    The artists begun to believe in the "mystical reality of life" and in so having succumbed to the death of all that has been forsaken(education), it will be strings that will lie at the root cause of this troubling disease?

    What "seeing" has overtaken all that we have currently surmized. Is it such an artist of people who help free us of our rigidity?

    I am trying to be sensitive as well here.

    Bigfoot Toe Analogy

    Backreaction: Lee Smolin's Trouble with Physics

    BEE said:
    Last night I had a nightmare! Bigfoot knocked at my door and wanted to talk to me about the existence of the string theory landscape. Still on east-coast time, I wiped off the sweat from my forehead but couldn't fall asleep again. I switched on my laptop, and decided its time to post the review on Lee Smolin's new book.


    I found this a very interesting perspective by "B" on the "Theory of Everything" and how this can manifest in the deeper part of the subconcious mind. Of course the mind tries to deal with the incredibility of the world? How shall we come to deal with it's anomalies, if "repeatability" will not sanction the observer?

    The unexpectedly hot output, if its cause were understood and harnessed, could eventually mean that smaller, less costly nuclear fusion plants would produce the same amount of energy as larger plants.


    QGP tunnelling? So where are these times being presented? What is accounting for the conditions which allow for such tunnelling? A cosmological preview perhaps which allows for "new physics" to emerge?

    Instead of the Newtonian inverse square law you’ll have an inverse fourth power law. This signature is being looked for in the ongoing experiments.


    What things will shock the scientist? Change the "foundational basis" of thinking about the quantum reality?

    The affect these things(?) can have on any mind is amazing, and of course, getting all the information is very important(observing what is wrong), so, we can assess what the heck is going on?

    It was six men of Indostan
    To learning much inclined,
    Who went to see the Elephant
    (Though all of them were blind),
    That each by observation
    Might satisfy his mind.

    The First approached the Elephant,
    And happening to fall
    Against his broad and sturdy side,
    At once began to bawl:
    "God bless me! but the Elephant
    Is very like a WALL!"


    The Second, feeling of the tusk,
    Cried, "Ho, what have we here,
    So very round and smooth and sharp?
    To me 'tis mighty clear
    This wonder of an Elephant
    Is very like a SPEAR!"

    The Third approached the animal,
    And happening to take
    The squirming trunk within his hands,
    Thus boldly up and spake:
    "I see," quoth he, "the Elephant
    Is very like a SNAKE!"

    The Fourth reached out an eager hand,
    And felt about the knee
    "What most this wondrous beast is like
    Is mighty plain," quoth he:
    "'Tis clear enough the Elephant
    Is very like a TREE!"

    The Fifth, who chanced to touch the ear,
    Said: "E'en the blindest man
    Can tell what this resembles most;
    Deny the fact who can,
    This marvel of an Elephant
    Is very like a FAN!"

    The Sixth no sooner had begun
    About the beast to grope,
    Than seizing on the swinging tail
    That fell within his scope,
    "I see," quoth he, "the Elephant
    Is very like a ROPE!"

    And so these men of Indostan
    Disputed loud and long,
    Each in his own opinion
    Exceeding stiff and strong,
    Though each was partly in the right,
    And all were in the wrong!


    What is happening in the trouble minds of the scientists as we have come to learn of their struggles to deal with the anomalistic(animalistic)world? :)The Jaquar, the elephant(how shall we describe quantum gravity)?

    Maybe it is a joke of "incredibility to some" knowing more then what we lay people know? Yet, with all that has been said here, where will you bury your experience? How shall it now manifest into your life? What will now "motivate" your science?



    "Diamagnetic situation" and what creates these holes in what runs consistently, and we see where such instances "float" the disc. How strange, had you not have arisen from the tribal forest life? To view the situations of all "science life" to see and know more then what taken for granted as thplane flew over head on first take?

    Einstein when given the compass saw something strange in his youth? We know better now what that was. All "lay people" are in their youth? All "lay people" can learn? As a "lay person" I will listen very hard to what you are saying.

    Fantastic journies



    A flight between "heaven and Earth?" Some cherish the Eagle for seeing.

    "Warren Seagull" is a wonderful bird? :) Parodies, will break us free?