Showing posts with label Kip Thorne. Show all posts
Showing posts with label Kip Thorne. Show all posts

Wednesday, March 26, 2008

Blackhole Information Paradox

What good is a universe without somebody around to look at it?
Robert Dicke


John Archibald Wheeler (born July 9, 1911) is an eminent American theoretical physicist. One of the later collaborators of Albert Einstein, he tried to achieve Einstein's vision of a unified field theory. He is also known as the coiner of the popular name of the well known space phenomenon, the black hole.

There is always somebody who is the teacher and from them, their is a progeny. It would not be right not to mention John Archibald Wheeler. Or not to mention some of his students.

Notable students
Demetrios Christodoulou
Richard Feynman
Jacob Bekenstein
Robert Geroch
Bei-Lok Hu
John R. Klauder
Charles Misner
Milton Plesset
Kip Thorne
Arthur Wightman
Hugh Everett
Bill Unruh



COSMIC SEARCH: How did you come up with the name "black hole"?

John Archibald Wheeler:It was an act of desperation, to force people to believe in it. It was in 1968, at the time of the discussion of whether pulsars were related to neutron stars or to these completely collapsed objects. I wanted a way of emphasizing that these objects were real. Thus, the name "black hole".

The Russians used the term frozen star—their point of attention was how it looked from the outside, where the material moves much more slowly until it comes to a horizon.* (*Or critical distance. From inside this distance there is no escape.) But, from the point of view of someone who's on the material itself, falling in, there's nothing special about the horizon. He keeps on going in. There's nothing frozen about what happens to him. So, I felt that that aspect of it needed more emphasis.


It is important to me to understand some of the history of the Blackhole, and the students who went on to develop the very ideas around them. To see how they interconnect at one time or another, to provide for the very insights from such gatherings.




Stephen Hawking’s says:

“Roger Penrose and I worked together on the large scale structure of space and time, including singularities and black holes. We pretty much agree on the classical theory of theory of relativity but disagreements began to emerge when we got into quantum gravity. We now have different approaches to the world, physical and mental. Basically, he is a Platonist believing that’s there’s a unique world of ideas that describes a unique physical reality. I on the other hand, am a positivist who believes that physical theories are just mathematical models we construct, and it is meaningless to ask if they correspond to reality; just whether they predict observations.”
( Chapter Six-The Large, the Small and the Human Mind-Roger Penrose-Cambridge University Press-1997)
See: Phil Warnell's comment.

Black hole information paradox


Whereas Stephen Hawking and Kip Thorne firmly believe that information swallowed by a black hole is forever hidden from the outside universe, and can never be revealed even as the black hole evaporates and completely disappears,

And whereas John Preskill firmly believes that a mechanism for the information to be released by the evaporating black hole must and will be found in the correct theory of quantum gravity,

Therefore Preskill offers, and Hawking/Thorne accept, a wager that:

When an initial pure quantum state undergoes gravitational collapse to form a black hole, the final state at the end of black hole evaporation will always be a pure quantum state.

The loser(s) will reward the winner(s) with an encyclopedia of the winner's choice, from which information can be recovered at will.

Stephen W. Hawking, Kip S. Thorne, John P. Preskill
Pasadena, California, 6 February 1997


Drawing Credit: XMM-Newton, ESA, NASA-Image sourced from: Pictured above is an artist's illustration of a black hole surrounded by an accretion disk.

The black hole Information Paradox results from the combination of quantum mechanics and general relativity. It suggests that physical information could "disappear" in a black hole. It is a contentious subject since it violates a commonly assumed tenet of science—that information cannot be destroyed. If it is true, then cause and effect become unrelated, and nothing science knows, not even our memories, can be trusted.




Before the Big Bang

Professor Sir Roger Penrose, OM, FRS (born 8 August 1931) Before the Big Bang

Three Different Views of Quantum Weirdness
(and What It Means)


A: According to the orthodox view of quantum mechanics, called the Copenhagen interpretation, a system (represented here by a child’s block) does not occupy a definite state or location until it is measured. Before then it is just a blur of overlapping possibilities.

B: The many worlds interpretation insists that the system occupies all its possible states but that every one of them exists in its own alternate universe. Each universe sees one state only, which is why we never observe the block in two states at once.

C: In Penrose’s interpretation, gravity holds our reality together. In each potential state, the block generates a separate gravitational field. Over time, the energy required to maintain these multiple fields causes the block to settle into one state only—the one that we observe.


See:If an Electron Can Be in Two Places at Once, Why Can't You-by Tim Folger, Photograph by David Berry, Illustrations by Don Foley?

"In Penrose’s interpretation, gravity holds our reality together. In each potential state, the block generates a separate gravitational field.....," rings with a certain importance when one talks about what happens with the very nature of the blackhole. What happens to that information.

Phil Warnell:However, if the second is taken as truth and all is remembering, then what can the force of gravity do to a memory that is not in any, yet of all?

I tried to implement a method by which one could "gauge the significance of the emotive experience" as it may pertain to that "primitive part" of our nature. That we could see "remembering" had been assigned a "quantum reductionist state" within the confines of that methodology?

See:Quantum State reduction as a real phenomenon by Roger Penrose (Oxford)2 Sep 1999

"The block," while holding different gravitational defined consciousness states, had to settle to a strong emotive consolidating force from that experience. You repeatedly relive the experience, while current information saids that the memory can change. See Ledoux.

See:

Dennis William Sciama
Tipping LightCones and Escape Velocity of the Photon
What is Happening at the Singularity?
Science and the Mind: Sir Roger Penrose
Big Bang:One Man's Change of Heart

Tuesday, March 25, 2008

Dennis William Sciama

Dennis William Siahou Sciama FRS (November 18, 1926–December 18, 1999) was a British physicist who, through his own work and that of his students, played a major role in developing British physics after the Second World War.

Sciama also strongly influenced Roger Penrose, who dedicated his The Road to Reality to Sciama's memory. The 1960s group he led in Cambridge (which included Ellis, Hawking, Rees, and Carter), has proved of lasting influence.

Sciama was elected a Fellow of the Royal Society in 1982. He was also an honorary member of the American Academy of Arts and Sciences, the American Philosophical Society and the Academia Lincei of Rome. He served as president of the International Society of General Relativity and Gravitation, 1980-84.

In 1959 he married Lidia Dina, a social anthropologist, who survived him, along with their two daughters.


Alma mater
University of Cambridge

Doctoral advisor
Paul Dirac


Doctoral students

John D. Barrow
George Ellis
Gary Gibbons
Stephen Hawking
Martin Rees
David Deutsch
Brandon Carter


It was important that I understood the context of the entry by Phil Warnell.

Phil:
However, if the second is taken as truth and all is remembering, then what can the force of gravity do to a memory that is not in any, yet of all? So if all were to collapse would the memory not persist, since it is not of what vanished. Strangely, Hawking proved it so and yet he still denies his mentor who advised not only that it would be so, yet why

Saturday, December 15, 2007

The Gravity People of our History

What good is a universe without somebody around to look at it?
Robert Dicke


John Archibald Wheeler (born July 9, 1911) is an eminent American theoretical physicist. One of the later collaborators of Albert Einstein, he tried to achieve Einstein's vision of a unified field theory. He is also known as the coiner of the popular name of the well known space phenomenon, the black hole.

There is always somebody who is the teacher and from them, their is a progeny. It would not be right not to mention John Archibald Wheeler. Or not to mention some of his students.

Notable students
Demetrios Christodoulou
Richard Feynman
Jacob Bekenstein
Robert Geroch
Bei-Lok Hu
John R. Klauder
Charles Misner
Milton Plesset
Kip Thorne
Arthur Wightman
Hugh Everett
Bill Unruh



COSMIC SEARCH: How did you come up with the name "black hole"?

John Archibald Wheeler:It was an act of desperation, to force people to believe in it. It was in 1968, at the time of the discussion of whether pulsars were related to neutron stars or to these completely collapsed objects. I wanted a way of emphasizing that these objects were real. Thus, the name "black hole".

The Russians used the term frozen star—their point of attention was how it looked from the outside, where the material moves much more slowly until it comes to a horizon.* (*Or critical distance. From inside this distance there is no escape.) But, from the point of view of someone who's on the material itself, falling in, there's nothing special about the horizon. He keeps on going in. There's nothing frozen about what happens to him. So, I felt that that aspect of it needed more emphasis.



While people are drawn to the "micro-perspective" it is in face of this, that I fall behind on the "many blog postings" and "current events." I try to maintain a perspective about GR and the development of this process through understanding the history.

I also pay attention to those who use "relevant phrases" to let me know they are continuing to read this blog site. Even in face of the layman status I have. I pay attention also to the information they are imparting and try to incorporate new information from their blogs, within the scope of my understanding, to make sure that I am not misleading others. Thinking this artist( in the conceptual developmental phases) has some wish to be firm in the places science is currently residing.



Most people think of space as nothingness, the blank void between planets, stars, and galaxies. Kip Thorne, the Feynman Professor of Theoretical Physics at Caltech, has spent his life demonstrating otherwise. Space, from his perspective, is the oft-rumpled fabric of the universe. It bends, stretches, and squeezes as objects move through it and can even fold in on itself when faced with the extreme entities known as black holes. He calls this view the “warped side of the universe.”

Strictly speaking, Thorne does not focus on space at all. He thinks instead of space-time, the blending of three spatial dimensions and the dimension of time described by Einstein’s general relativity. Gravity distorts both aspects of space-time, and any dynamic event—the gentle spinning of a planet or the violent colliding of two black holes—sends out ripples of gravitational waves. Measuring the direction and force of these waves could teach us much about their origin, possibly even allowing us to study the explosive beginning of the universe itself. To that end, Thorne has spearheaded the construction of LIGO [Laser Interferometer Gravitational Wave Observatory], a $365 million gravitational-wave detector located at two sites: Louisiana and Washington State. LIGO’s instruments are designed to detect passing gravitational waves by measuring minuscule expansions and contractions of space-time—warps as little as one-thousandth the diameter of a proton.
Despite the seriousness of his ideas, Thorne is also famous for placing playful bets with his longtime friend Stephen Hawking on questions about the nature of their favorite subject, black holes. Thorne spoke with DISCOVER about his lifetime pursuit of science, which sometimes borders on sci-fi, and offers a preview of an upcoming collaboration with director Steven Spielberg that will bring aspects of his warped world to the big screen.


So some are quick to call Kip Thorne and his ilk the fantasy and science fiction editors of our times, when progressing to the new movies they will collaborate on. So maybe rightly so here. But to bunch them into the likes of string theorists, to somehow further their goal on their own "mission to enlighten," how Peter Woit do you think so?

Peter Woit said,
Thorne expects that nothing in the film will violate fundamental physical law. He also seems rather involved in fantasy as well as science fiction, believing that the LHC has a good shot at producing mini-black holes, and that String theory is now beginning to make concrete, observational predictions which will be tested.


The very basis of research and development "has a long arm here" developed from the likes of the "small interferometer that we know "works," as a qualitative measure of the fabric of our universe, as the Ligo Operation.

Don't be so smug to think that what is fantasy in the world of good science people was somehow related to "what you may think" and does not have any validity in the mathematical realm of the string theoretical development.

It all happens in stages as we all know to well?

Friday, December 07, 2007

Kip Thorne on Space Place Live and Cosmc Colors

The most important thing is to be motivated by your own intellectual curiosity. KIP THORNE




Click here to watch Kip Thorne on Space Place Live.

The "Color of Gravity to Sound" forces perspective. What can I say? It becomes an exercise into an artistic adventure. So there has to be a historical development in any idea to express gravity in such a way. So you develop new ideas, learn that detection methods in the aluminum bar for gravity detection holds ameaning for a new enquiring mind. What was Webber doing? Did Einstein hear gravity in such a way? He knew to measure time in terms of the hot stove and a beautiful girl?

The "visible" images in the viewer are what we see with our unaided eyes or ordinary telescopes. The other images shown here were made by instruments that detect light our eyes cannot see. Then those images were colored so that we can see what the instrument saw.

If a "wavelength" appears darkened in the viewer for a particular object, that means we don't yet have an image of that object in that wavelength.


So we develop our measures and apply our colours. How nice these pictures look? Everybody's view the same.

The Colour of the Emotive State

This a person's coloured view of the world around them. The gravity of their situation.

If we were to say that all life was expressed in such a way what would the vibrancy of our emotive states scream, if love is splashed onto a screen, or "anger" stopping in the red?

A man sits under heavy questioning. There are no lie detectors attached to his being. No way is there a better way then to know that his voice, his disposition, cannot hide a lie he might like to tell? The colour tells all, and the deception, is the man's grounded position on life and truth he acquired.

Saturday, September 29, 2007

Production of Gravitational Waves

"My heart leaps up when I behold A rainbow in the sky."
William Wordsworth-- My Heart Leaps Up



This post is based on "the production" and not the detection of gravitational waves.

It does serve it's purpose, that I explain what I have in terms of detection, that one moves from that process, to actual production of them.:) Now I am not talking about Taylor and Hulse and PSR 1913+16 either.


Dr. Kip Thorne, Caltech 01-Relativity-The First 20th Century Revolution



Weber developed an experiment using a large suspended bar of aluminum, with a high resonant Q at a frequency of about 1 kH; the oscillation of the bar after it had been excited could be measured by a series of piezoelectric crystals mounted on it. The output of the system was put on a chart recorder like those used to record earthquakes. Weber studied the excursions of the pen to look for the occasional tone of a gravitational wave passing through the bar...



  • Einstein@Home



  • LIGO:



  • Nor am I talking about Kip Thorne, Webber, or Ligo operation for that matter.

    I am actually talking about the creation of gravitational waves.

    Now imagine that you see this "slide of light," and you were to think that in front of you, this would help you see where the gravitational field would be falling away from you. You would be sliding "ahead" from where you pointed and created this effect.

    So now you get the idea here of what I propose in the production of gravitational waves versus the detection of them?:)


    Up until this point in time, I've used the term "generate" to describe the capability of producing a gravitational field, but since I'm not aware of any way of creating a gravitational field from nothing, a more accurate term might be to "access and amplify" a gravitational field. And this is what I mean when I use the term "generate". To understand how gravity is generated or "accessed and amplified", you must first know what gravity is.


    While watching a television program I listened to what he had to say. For people interested in gravity, Quantum or otherwise, this topic helped captured my change in thinking that is postulated, and one I am giving thought right now.

    The Problem


    Gravitational waves are produced when there is a change in the curvature of spacetime. Since the shape of spacetime depends only on how mass is distributed, events that change the distribution of mass cause gravitational waves. It takes events with a lot of energy to make gravitational waves that we can detect because spacetime is not very elastic. Remember the bowling ball analogy? Space-time is like a stiff trampoline, one that only sinks when you put something very heavy on it.


    So if we are to consider such a thing how would I go about it? Perhaps, "jumping up and down?":)


    “Every time you accelerate—say by jumping up and down—you’re generating gravitational waves,” says Rainer Weiss, Professor Emeritus of Physics at MIT. “There’s no doubt of it.” But just standing there won’t cut the mustard. To make a wave, your mass has to both move (have velocity) and have acceleration (change the rate of motion, direction, or both).

    Still, don’t get your hopes up. No matter how fast you jump, sprint, or cartwheel, the resulting warp your waves make on space is so weak that it’s utterly unmeasurable—perhaps 100,000,000,000,000,000,000,000 times less so than the warp made by massive exploding space objects. And LIGO has a tough enough time measuring those.


    So there are questions on my mind, about gravity creation.

    Plato writes:


    Dorigo,

    I am interested as a lay person in the collider experiments and wondered about "gravitational wave production."

    Considering quark gluon levels reached I wondered about the strength and the weakness as a measure of gravitational waves within that collider action. If microscopic blackhole are created then would it be wrong to observe, variation of gravity within the domain of the collider itself?

    regards,


    See following comment posted here.

    Dear Plato,

    quarks are microscopic bodies. The gravitational effects associated with the motion and interaction of masses that small are ridiculously small.

    In theories contemplating a low quantum gravity scale, black holes could in principle be created in high energy collisions, but if a chance of detecting their creation exists, it is not by gravitational effects, which remain billions of billions of billions of billions (and then some) of times smaller than those caused by strong interactions.

    Please check my post on Lisa Randall’s seminar (Sept. 29th), or the one on the seminar given by Steve Giddings last March. There is reading material that I tried to make accessible to most there.

    Cheers,
    T.


    I will be loking at this in much more detail. Something that immediately came to mind is Gran Sasso. "Muon creation" from the particle collisions. See: Neutrino Mixing in Sixty Seconds.

    This summer, CERN gave the starting signal for the long-distance neutrino race to Italy. The CNGS facility (CERN Neutrinos to Gran Sasso), embedded in the laboratory's accelerator complex, produced its first neutrino beam. For the first time, billions of neutrinos were sent through the Earth's crust to the Gran Sasso laboratory, 732 kilometres away in Italy, a journey at almost the speed of light which they completed in less than 2.5 milliseconds. The OPERA experiment at the Gran Sasso laboratory was then commissioned, recording the first neutrino tracks. See Strangelets and Strange Matter


    The Distorted Lense

    It would seem to me that if any lens could direct "the focus of our vision" then why not the focus of the gravitational waves? I mean if there is a "inverse calculation" to waves, it would seem t me that such a process could point to a heavy concentration in terms of blackhole production?


    As one of the fields which obey the general inverse square law, the gravity field can be put in the form shown above, showing that the acceleration of gravity, g, is an expression of the intensity of the gravity field.


    As I am reading different thoughts are manifesting and one of these has to do with the "escape velocity of the photon." Why I am not sure at the moment. This used as a measure of determination of whether a blackhole exists? How did we arrive at such a point?


    Albert Einstein (1879–1955)


    One part of the theory of Relativity was inspired when a painter fell off a roof. Einstein found out that while the painter was falling freely, he felt weightless. This led Einstein to realize that gravity was a form of inertia, a result of the way things moved through space - and General Relativity was born.


    It is important for me to recognize the collider process in context of what it is experimentally doing. For me this is demonstrating a "geometrical process" even if it is being taken down to the such "weak gravitational ranges" that I would point to what would manifest,if a tunnelling effect occurred from one location to the next.

    Time travel

    Plato:Thus the initial idea here to follow is that the process had to have a physics relation. This is based on the understanding of anti-particle/particle, and what becomes evident in the cosmos as a closed loop process. Any variation within this context, is the idea of "blackhole anti-particle expression" based on what can be seen at the horizon?Tunneling in Faster then Light


    Warp Drives", "Hyperspace Drives", or any other term for Faster-than-light travel is at the level of speculation, with some facets edging into the realm of science. We are at the point where we know what we do know and know what we don’t, but do not know for sure if faster than light travel is possible.

    The bad news is that the bulk of scientific knowledge that we have accumulated to date concludes that faster than light travel is impossible. This is an artifact of Einstein’s Special Theory of Relativity. Yes, there are some other perspectives; tachyons, wormholes, inflationary universe, spacetime warping, quantum paradoxes...ideas that are in credible scientific literature, but it is still too soon to know if such ideas are viable.

    One of the issues that is evoked by any faster-than-light transport is time paradoxes: causality violations and implications of time travel. As if the faster than light issue wasn’t tough enough, it is possible to construct elaborate scenarios where faster-than-light travel results in time travel. Time travel is considered far more impossible than light travel.


    It would be suspect to me that such travelling in space would allow for the manufacture of gravitational influences to be pointed in the "direction of travel" and allow such slippage away from that current position.

    Gravitational Mass for a Photon

    The relativistic energy expression attributes a mass to any energetic particle, and for the photon



    The gravitational potential energy is then



    When the photon escapes the gravity field, it will have a different frequency




    Since it is reduced in frequency, this is called the gravitational red shift or the Einstein red shift.

    Escape Energy for Photon

    If the gravitational potential energy of the photon is exactly equal to the photon energy then



    Note that this condition is independent of the frequency, and for a given mass M establishes a critical radius. Actually, Schwarzchilds's calculated gravitational radius differs from this result by a factor of 2 and is coincidently equal to the non-relativistic escape velocity expression




    A black hole is an object so massive that even light cannot escape from it. This requires the idea of a gravitational mass for a photon, which then allows the calculation of an escape energy for an object of that mass. When the escape energy is equal to the photon energy, the implication is that the object is a "black hole."


    For more see "Time as a measure.

    By allowing new physics to emerge, what basis is being held relevant then to what is being created in the particle collisions that are indeed faster then light?


    As we know from Einstein’s theory of special relativity, nothing can travel faster than c, the velocity of light in a vacuum. The speed of the light that we see generally travels with a slower velocity c/n where n is the refractive index of the medium through which we view the light (in air at sea level, n is approximately 1.00029 whereas in water n is 1.33). Highly energetic, charged particles (which are only constrained to travel slower than c) tend to radiate photons when they pass through a medium and, consequently, can suddenly find themselves in the embarrassing position of actually travelling faster than the light they produce!

    The result of this can be illustrated by considering a moving particle which emits pulses of light that expand like ripples on a pond, as shown in the Figure (right). By the time the particle is at the position indicated by the purple spot, the spherical shell of light emitted when the particle was in the blue position will have expanded to the radius indicated by the open blue circle. Likewise, the light emitted when the particle was in the green position will have expanded to the radius indicated by the open green circle, and so on. Notice that these ripples overlap with each other to form an enhanced cone of light indicated by the dotted lines. This is analogous to the idea that leads to a sonic boom when planes such as Concorde travel faster than the speed of sound in air


    See also information on What is Cerenkov Radiation?

    Fifth Dimensional General Relativity

    It was a gradual process that using Grace to help me see the earth in new ways was paramount to the inclusion principle of electromagnetism contained within the move to GR.I may be mixed up here, and I have no one to say.

    "Color of gravity" assumes that you have seen the colour of gravity in relation to this slide of light. So seeing in such a way would seem relevant in the fifth dimensional perspective.

    In Kaku's preface of Hyperspace, page ix, we find a innocent enough statement that helps us orientate a view that previous to all understanding, is couched in the work of Kaluza.

    In para 3, he writes,

    Similarily, the laws of gravity and light seem totally dissimilar. They obey different physical assumptions and different mathematics. Attempts to splice these two forces have always failed. However, if we add one more dimension, a fifth dimension, to the previous four dimensions of space and time, then equations governing light and gravity appear to merge together like two pieces of a jigsaw puzzle. Light, in fact, can be explained in the fifth dimension. In this way, we see the laws of light and gravity become simpler in five dimensions.


    I would think such a thought here by Kaku would have stimulated the brains of people to see that a direct result is needed in our reality to which such thoughts I am giving would allow you to see gravity in new ways?



    Lagrangian views with regards to relations between the Earth, Moon and Sun would help one to see the general outlay of gravitational influences in space. That is also part of the work I have been following to understand the spacetime fabric and how we may see this in our dealings.

    Saturday, October 21, 2006

    The History of "Star Shine to Now"

    In "The String Saga of Star Shine" I gave a distant measure of how we might seen any event from that time to now.

    But before I begin I wanted to link Lubos's mention of article from David G to him, to point out the method and determinacy with which I gave the "String Saga Star Shine" it's inital point of measure "from" to our currrent infomration present in this universe now.

    The Universe on a String By BRIAN GREENE

    This striking pattern of convergence, linking concepts once thought unrelated, inspired Einstein to dream of the next and possibly final move: merging gravity and electromagnetism into a single, overarching theory of nature's forces.

    In hindsight, there was almost no way he could have succeeded. He was barely aware that there were two other forces he was neglecting — the strong and weak forces acting within atomic nuclei. Furthermore, he willfully ignored quantum mechanics, the new theory of the microworld that was receiving voluminous experimental support, but whose probabilistic framework struck him as deeply misguided. Einstein stayed the course, but by his final years he had drifted to the fringe of a subject he had once dominated.


    Low and behold we measure the "high energy in our sun" but least we remember the lower ends of the spectrum how shall we ascertain the images of the Sun if we did not include the lower measures in what we discern of the "sterile neutrino?"

    Lest we forget about the "idea of convergence here" we might again refer to Lee Smolin's Book, The Trouble with Physics." Might Brian Greene be referring to the "latest debate?"

    The relationship here being expounded upon, holds this principal that Lee Smolin talks about in what a new theory can do. Pastes it in our heads as I have shown the historical value of what began with "Pauli's Ghost particle" as the "now" of today, askes us to consider the value of the "sterile Neutrino" as a value in the discernation of that weak gravitational field?

    Arrow of Time?

    Let's look at Kip Thornes definition of the "timeline(star shine's) history" shall we?


    Dr. Kip Thorne, Caltech 01-Relativity-The First 20th Century Revolution


    So here we are, fully appreciating and understanding the "measure of distance" as we look at the "new image" of the sun?



    Yes, we are to include now not only the valuation of high energy dissertations here but what value we have of the immediate presence of the neutrinos from the sun. We now have a much more comprehensive view of what the sun saids to us over "this distance of time?" How we may look at the image as we look at the way the sun looks in that picture shown by JoAnne of Cosmic Variance above.

    A lot of people do not understand that if you look to the cosmo, you do not just look at what is evident from observation, but that your observation is increased, as you enhance your perceptions about the "real depth" of that universe.


    So the lesson here, is that the mathematics "first born to mind" is a very suttle thing, as we peer deeper into the very beginning of this universe. While Einstein did not see in the way we do now, the relevance of that distance in time, is still held to every mind to consider in GR, that the depth of perception s still needed on a quantum level.

    While the point made here is "gravitational in nature," the issuance is from the "other dimensions" to now. Quantum dynamcically this has been revealled while the discrete notion has been applied to our thinking as the "oscillation factor" has been understood in the muon to electron neutrino?

    So should I point to the nature spread out before us, as you look at the effect of the neutrinos on the Kamiokande screen? Other ways, that I have shown, as we look at the aurora borealis, or the rainbow in our skies?



    The effect of "our reason" for such processes in physics are extremely versatile on a sociological level, that one might question indeed where such "pure thoughts in mathematics" could arise to the "symbolistic nature predating( monte carlo methods of computerization)" of that physics?

    Model apprehension is part of the convergence that Lee Smolin and Brian Greene talk about, and without it, how could we look at nature and never consider that Einstein's world is a much more dyamical one then we had first learnt from the lessons GR supplied about gravity in our world?

    Yes GR is still a theory, but with experimental consequences, much as the model string theory offers you, as we look at the oscillatory nature of what asymmetry provides for us, from that pure "high energy state?" Gravity, very strong, to what is weak in the measures of the neutrino characters?

    I gave some pictures to consider while I continue. Some may move ahead of me if they like:) Maybe Stefan and Bee of Backreaction?

    Thursday, July 13, 2006

    GRand Quantum Conjecture



    My continued looked into the "fluids dynamics" had me wonder about the superfluid anomalies. How would the "sphere look" if it collapsed and allowed information to travel through it, based on what has been given here for perspective, when the "state of equillibrum" is arrived at?

    In regards to 3, let's just say the assumption is from a theoretcial standpoint, that microstate blackholes "are created." They are created in "cosmic particle collisions" as well?

    This is the premise from which I work, and how I gave "how particles are created," a beginning(dimensional referencing), and a basis from which all science becomes "evidentary" in the particle creations.

    Exotic physics finds black holes could be most 'perfect,' low-viscosity fluidVince Stricherz, University of Washington

    Son and two colleagues used a string theory method called the gauge/gravity duality to determine that a black hole in 10 dimensions -- or the holographic image of a black hole, a quark-gluon plasma, in three spatial dimensions -- behaves as if it has a viscosity near zero, the lowest yet measured.

    It is easy to see the difference in viscosity between a jar of honey or molasses at room temperature and a glass of water. The honey is much thicker and more viscous, and it pours very slowly compared with the water.

    Using string theory as a measuring tool, Son and colleagues Pavlo Kovtun of the University of California, Santa Barbara, and Andrei Starinets of the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, have found that water is 400 times more viscous than black hole fluid having the same number of particles per cubic inch.


    Your points in conclusion,I, II, III

    I-yes
    II-yes
    III- from my conclusions as well.

    Again in above quote, I am defining the leading perspective on blackholes as they are being theoretically defined now, and will be subject to experimentation soon?:)

    Now again "backreaction in the laval nozzle" is up for inspection here as we delve deeper into the nature of the blackhole.

    Nature in Analog Models

    Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).


    "Analogistical behaviors" help to push perspective, where before, our theoretical explorations had ran dry?

    Q:
    These wormhole like 'blackholes' do not lead to other pocket universes, unless we choose to call another sector of space a pocket universe, like Europeans first called the land across the Atlantic the 'New World' or Australia 'Another World' yet still clearly part of this World we call Planet Earth.


    If we are to think that the overall context can be apllied to this universe, then such evidence "should be obtainable" as to the nature of such a beginning? But even still, to your point and aspect within this universe, we are looking for accontable methods to such dark energy creation?

    Plato:
    Every picture held in mind is a link to other pictures


    Each event in regards to gravitational collapse would be indicative of what can be "put back into this universe" and sustain it?

    Lubos Motl:
    The mechanism behind sonoluminiscence remains a bit controversial. Claiming that a thermonuclear fusion occurs during sonoluminiscence is among the more conservative explanations. The physicist Claudia Eberlein argued that the correct explanation is that the imploding bubbles create sonic black holes and the flashes are the counterpart of Hawking radiation as the sonic black hole evaporates. You should not think that this is an example of a very, very low energy quantum gravity because the sonic black holes have no connection with the scales of gravity. It is not a supercollider in a glass of beer. But let me admit that as an undergrad, I was excited by this proposal, at least for a few minutes, but I apparently forgot the details of that encounter.


    So by developing this picture of the "bubble collapse in sonofusion", and let's forget about the energy produced from such bubbles and focus on the geometrics of such a collapse. That's my point.

    Lubos Motl:
    Janice Granhardt has pointed out a press release that is two days old and arguably much more serious and potentially far-reaching than the news about "sonofusion" we described yesterday.


    That is part of my conjecture as well as the "unification factor" in my GRand Quantum perceptions.:)That if you remember Kip thorne's plate 27 you will understand that information from the collapse had to be sent over a great distance for us to make sense of the geometrical dynamics that are unfolding from that time and place.

    So you look for the gravitational waves that Webber initiated, and Kip Thorne encouraged in our measures of what is actually being transmitted. Kip Thorne is the father of the LIGO program?

    You must remember gravitational waves have not yet been verified, yet the theory of GR implicitly tells and is about gravity. It was thus taken further in my conclusions having understood that the creation of this infomration would allow one someday "to map" this very collapse in terms of the gravitonic information left in the bulk?

    This is "Dimensional orientated" from a beginning(11dimensional view?), from which evidence is "the 3+1."

    That's outside the box thinking? :)Cosmologists work "inside," as Clifford of Cosmic Variance once said?

    How then is such a gravitational heat generated from the boundary conditions(blackhole), which grows ever smaller in that collapse, and our energy valuations go higher to supersymmetical realizations? The present volume calculated in the extension of our universe would have to be in concert with the volume before such a collapse was to be expected?

    This "total energy value," assuming the universe is flat teeter's on the brink of ?:)

    Total dark energy would have to account for this and supernova events contributing as well as, particle collisions that go on all the time?

    So if space is not really empty, then what is it supposed to be filled with? Quantum harmonic oscillator and zeropoint?

    See:
  • Charlatan's Who Use Graviton
  • Tuesday, July 11, 2006

    Singularities must be Rewritten?

    From Dr. Kip Thorne, Caltech 01 On Relativity-Plate 24

    I have given examples why the singularities have to be rewritten. I explain the value of the KK Tower as well. As well, it's relationship to curvature of the universe. Following through that discussion I hope I reveal the thinkng that has been garnered through my own research and understanding.

    If the initial states at the beginning of the universe are to be in concert with particle reductionism, and the particle creations that I have exemplified in how particles came into being, then, the understanding of what can be transmitted through the blackhole is extremely important as a valuation of what appears over time?

    So we have this universe and the temperature of the WMAP and the cosmic background?

    You have to know what the entropic realizations say about this time(now), as well as what is gravitationally being exemplified at this junction of the universe in terms of geometrical curves.

    Are the expansitory revelations being realized as I relate entropic and temperature valuation to the existing universe? What about the beginning then, and our supersymmetical realization?

    It was much simplier then?:)

    So looking for similarites in expression ask that "lagrangian methods" be established in terms of how the "weak field measure" in context of the Sun/earth relation, also speaks too, what is transmitted in the high energy collisions "outflows" as well?

    Image and text from NASA Solar System

    The Quark Gluon Plasma revealled the anomalies for us to consider the "jet outflow" of all that is being propelled back into this universe? Much like this image that is being reproduced. The beginning has then been established in my point of view:)

    Particle creation helps to exemplified this position.

    You would have to understand this geometrical progression as well?

    If you seat yourself in the terms of high energy considerations, how shall this geometry be expressed? Topological undertanding would need to be examined as you progressed to the basis of the singularity with the way I am seeing. The way I am directing one's view to that singularity in terms of the Quark Gluon Plasma.

    High energy photon recognition helps us in this regard as well?

    Friday, May 26, 2006

    Pulsars and Cerenkov Radiation

    Of course, I could be mistaken making such assumptions.

    Scientists May Soon Have Evidence for Exotic Predictions of String Theoryissued by Northeaster University

    "String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap. This increases the number of 'down' neutrinos detected. At the same time, the creation of black holes causes 'up' neutrinos to be caught in the Earth's crust, reducing the number of 'up' neutrinos. The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."


    So what is it we can learn about high energy photons. Kip Thorne was instrumental here in helping draw us a sequence of events in our cosmos and on the cosmic particle considerations? I couldn't help identify with this process.



    Of course in order to capture the effects of high energy photons we need a vast array of area in terms of detector status, that we might indeed capture them. So ICECUBE is a interesting perspective here?



    Now why would I combine these two things, and it is of course through a previous conversation that the ideas of high energy particles using our atmosphere for secondary particle realizations, could have capture the human eye so that one had to turn from the brightness? Look to the image below o pulsar sources for cosnideration.




    Now of course it is just being put here for a minute, while I try and get my thoughts together on this.

    But in the mean time, for those who understand what I am refering too, you might leave your comment and share what you think about this similarity? What may have been happening with "the light" as the snow boarders were doing their olympics?

    We see a pulsar, then, when one of its beams of radiation crosses our line-of-sight. In this way, a pulsar is like a lighthouse. The light from a lighthouse appears to be "pulsing" because it only crosses our line-of-sight once each time it spins. Similarly, a pulsar "pulses" because we see bright flashes every time the star spins.


    Linked qote and picture to tutorial site has been taken down, and belongs to Barb of http://www.airynothing.com

    Tuesday, April 04, 2006

    Krauss Speaks, People React? :)



    We understand that Alice is just part of the developing perspective we have about interactions? THis is consistant with Glast, as well as any calormetrical understanding, from an interaction?

    That we had not explain the extra energy should still be held respective positions in mind if incoming and outcoming energy calculatins do not match? That left room in mirror world for other possibilities and had not explain all "sum over paths?"

    Lubos:
    My understanding is that the very main point of his latest book, Hiding in the mirror, is to present the idea of extra dimensions as an essentially religious idea in order to diminish the credibility of the research of modern high-energy physics - because he knows that most of the readers are anti-religious.

    Everyone who has ever worked in phenomenology or string theory knows very well that this research has nothing to do with religion. The link is an invention of Krauss' - one that is intended to politicize things and to encourage his readers to think about completely irrational relations between different ideas.




    Foot, R., and S.N. Gninenko. 2000. Can the mirror world explain the ortho-positronium lifetime puzzle?

    (belongs to another article words that follow within link)
    Welcome to the mirror world, in which every particle in the known universe could have a counterpart. This cosmos would hold mirror planets, mirror stars, and even mirror life.



    While Alice in Wonderland may be a fictional story and pervasive in terms of many paths taken, the consequence of the photon in this enviroment and under gravitational influences, is well understood I think?

    Lubos's first paragraph quoted is a questionable one to me, "on character," as I have understood Krauss to be.

    Startreking explanatory on the understanding of reality, to make sure we understand what is going on, as well as, explaining the idea's of scientists who write for the public, in the movie production scenario's?

    Kip Thorne and Brian Greene?

    Would the normal public understand the evolution of Abbott and flatland, or the develomment of non-euclidean geometries?

    You have taken the word geocentrism in vain Lubos:)

    As a "liminocentric structure" wholeness is important to me, not just as some circle, a sphere, or how a genus figure is move from one form to another, but that other things are happening as well, when this happens? If it happens many times microscopically will this have satisfied our viewing of Coleman de Luccia Instanton?

    It's just another way of "toposeeing" is all" ( many microprocesses make for many new physics to emerge?), and as far I understand it, it is necessary back ground with which to develope a consistant picture of what is going on with our universe, macroscopically, as well as microscopically, continously? Wmap polarization is topolgical driven by perpective sound valuations, blendings so that sucha 2d pciture measured is much more dynamcially seen?

    Yes I know, no one knows what geometry this is in the blackhole or what new physics will emerge, so we needed to look for this consistancy beyond the standard model?

    How could one not attempt to join this with quantum and cosmological views?

    This just may mean that "uncertainty" is encapsulated?

    I am glad to have "information" that would maintain my current hold on reality, as I expand the brain's coverings.

    As we project our "evolutionary mind in projective geometries" further into the strange world of high energy, as well as reducing to a weak field measure, some hope of a consistant picture.

    Okay, I have not forgotten what string theory has already done in regards to bulk pespective:)

    So the bulk perspective is "nothing," or does it act as a catelysct?

    Sunday, March 12, 2006

    The Singing Bowl

    One harmonious possibility is that string enthusiasts and loop quantum gravity aficionados are actually constructing the same theory, but from vastly different starting points-Page 490, Fabric of the Cosmos by Brian Greene


    What would such gravitons in the bulk concentration mean, to those whose value might have seen sound expressed, as low and rumbling, while energy would have been freer to implement the expression of higher pitched notes?



    Some might have never gotten the greater significance, or the relation to the Kernel of Truth, but hidden behind all the facades of humanities thoughts about sound, it was with the understdanding of Joseph Weber's work, that I too, became intrigued with the cylinder bars and sound.



    In the late 1950s, Weber became intrigued by the relationship between gravitational theory and laboratory experiments. His book, General Relativity and Gravitational Radiation, was published in 1961, and his paper describing how to build a gravitational wave detector first appeared in 1969. Weber's first detector consisted of a freely suspended aluminium cylinder weighing a few tonnes. In the late 1960s and early 1970s, Weber announced that he had recorded simultaneous oscillations in detectors 1000 km apart, waves he believed originated from an astrophysical event. Many physicists were sceptical about the results, but these early experiments initiated research into gravitational waves that is still ongoing. Current gravitational wave experiments, such as the Laser Interferometer Gravitational Wave Observatory (LIGO) and Laser Interferometer Space Antenna (LISA), are descendants of Weber's original work.


    Now what does sound mean in this case? How far shall we go back with Kip Thorne, or John Wheeler? Would a good scientist know that the roots of these thoughts about string theory began long before the mathematical struggles became known in current day thoughts. That the roots began in relativity, and what relativity means geometrically as a gravitational force in consideration?

    It required a graduation in thinking. Views in the abstract spaces that were less then understood, that without understanding how such thoughts lead from the classical world, would now move perspectve to it's strengths and weakeness as part of a larger view established from the standard model and beyond. It had to include all the fundamental forces and ultimately it's carriers?

    The activity in string theory and quantum gravity is aimed at developing a quantum theory that incorporates the physics of gravity and is valid down to the smallest length scales, where conventional quantum field theory can no longer be applied. There has been rapid progress in this area in recent years, in part due to work of Princeton faculty and students, and it continues to be a fertile source of research problems.


    Would These good scientists might have forgotten maybe, or because of the failure of Joesph Webers experiments, the very ideas of LIGO today, would not support the greater depth of seeing? In ways such structures would ring with the gravitational expansion and contraction, and allocated sound value in analogy? What use?

    Might I have missed the nature of the bubble in geometric views, as we looked at the sonofusion idea manifested in the way that "time and the bubble's membrane," elastic in it's measure, might have symbolized a larger global view of all the things that it would contained within it. Even, it's magnetic field?



    So some were better equiped to see spheres whithin spheres, and all bubble membranes as some topological derivation of Sklars's quandry of what line is a 5 or 1, in relation to the torus. How diffiuclt to undertand that then, inner bubble/line might have encapsulated the expression of Maxwell and all the equations, as being defined within the context of General Relativity and it's completion, as th eenvelope on the outer sphere called earth in space. Some might never have resolved such thinking to sucha bumpy world but it does indeed happen. Not only there, but in how such energies would have made themselves known as we turned this inside out, like some Klein bottled?



    I know I have much to learn in the geometrical perspective, but I am trying.

    Recognition of a Sphere that is Not so Round

    Gravity is the force that pulls two masses together.

    Since the earth has varied features such as mountains, valleys, and underground caverns, the mass is not evenly distributed around the globe. The "lumps" observed in the Earth's gravitational field result from an uneven distribution of mass inside the Earth. The GRACE mission will give us a global map of Earth's gravity and how it changes as the mass distribution shifts. The two satellites will provide scientists from all over the world with an efficient and cost-effective way to map the Earth's gravity field.

    The primary goal of the GRACE mission is to map the Earth's gravity field more accurately than has ever been done before. You might ask, how will GRACE do this? Two identical spacecraft will fly about 200 kilometers apart. As the two GRACE satellites orbit the Earth they are pulled by areas of higher or lower gravity and will move in relation to each other. The satellites are located by GPS and the distance between them is measured by microwave signals. The two satellites do not just carry science instruments, they become the science instrument. When mass moves from place to place within the Earth's atmosphere, ocean, land or frozen surface (the "cryosphere"), the gravity field changes
    .


    So while I was quite aware of what the earth contained in it's views as a planet on which we live, it was not without some understanding that such mass considerations woul have also included the "view of bubbles"? AS rings around this planet.

    The way in which they can work to help push perspective inside/out? Is this wrong? Can no undertanding that leads to electrognagnetsm and gravity joined in the fifth dimensional perspective, lead to the dynamcial understanding of nature in accordance with the spacetime fabric and it's orientations?



    Why then lagrange coordinates, and how we see the "hole in space" as satelittes that might choose the most easiest route to travel and least fuel to burn? What say the equillibrium status, had not been reached in the blackhle interior, as a anomlie of perception, in regards to the formation of the superfluid through such collidial events?

    Wednesday, May 11, 2005

    The Unity of Mathematics


    Alain Connes

    Where a dictionary proceeds in a circular manner, defning a word by reference to another, the basic concepts of mathematics are infinitely closer to an indecomposable element", a kind of elementary particle" of thought with a minimal amount of ambiguity in their defnition.

    I think what intrigues me most, is that a world can be fabricated mathematically that is carefully constructed using models of math, to get to a desired visionary culmination? One had to have some culminative effect, from such model thinking, that a vision beocmes clear. In this sense I related Lenny Susskind here, for his developement and contributions to string theory.

    Now having spent time delving into parts of this world, the "tidbits" help me to see that such alignmenets of the world of physics have correlations in mathematical design. This has to have it basis set, "in the Rossetta stone you might say," about how we percieve the deveopement of those physics. The math must contrast the physics?

    So to set things straight here, in case I gave the wrong link, I thought I should attribute proper link to words in case this mistake was made.



    So too, information in blogs can be readily adapted too, where previous articles might have made some feel that the article not worth maintaining in their blog? That it might have been removed? I was thinking of the B-field topic that Lubos had written briefly on, that when I went to look for relevant information pertaining to this current entry, it was no where to be seen.

    A VIEW OF MATHEMATICS by Alain CONNES
    Most mathematicians adopt a pragmatic attitude and see themselves as the explorers of this mathematical world" whose existence they don't have any wish to question, and whose structure they uncover by a mixture of intuition, not so foreign from poetical desire", and of a great deal of rationality requiring intense periods of concentration.

    Each generation builds a mental picture" of their own understanding of this world and constructs more and more penetrating mental tools to explore previously hidden aspects of that reality.


    Now many would have to forgive my adventurous heart. I was somehow transported in my thoughts and converted? I don't know when, that such models of the mathematical structure had easily become discernable for me(it's result)? Not it's elemental structure(although I have seen areas of string theory design developed) from basic principals. It had it's culminative effect.

    Is my vision always right? Of course not. But I see where such discriptions are necessary. Solid, and in stone, so that such progression can be made. I respect this, and I respect the physics, and it's culminative approach in theoretical developement.

    Nature's Greastest Puzzle



    Alain Connes refers to "poetic design," much like I see beats to music:?), and artistic adventure, as the play ground of imagination. We hope such songs shared, lyrics or otherwise, will reveal what the most secluded and private individuals might have found in their own world. To seek out, good artistic drawers like Escher? Penrose, needed his help, and the ideas brought forth, interesting results.

    Now there is a reason for this post besides setting the record straight. It came up a long time ago with the question of whether mathematics was natural or created.

    This may seem simplistic thought to some, but to me, it forced me to consider whether mathematics and physics were directed connected to each other.:) Now as I have said it is not easy for me to follow the matheics of such abtract individuals, but once I catch sight of the world that they allude too, it is somehow easy for me to see the structure of the bubble, or a representative drawing correlated in nodes, and features of a world that is constained in the physics.

    This is why I refer back to Lubos and his B-field missing post, or I cannot simply find it. I refer to it, because I made links to mathematical design, that correlated dynkin diagram as shown above, and connects to other blog. Now it was important for me to see this correlation in the archetecture of the picture I linked to its prospective author, in relation to the dynkin diagram. Not the E11 asscoiation, but with that I had linked in image in comments to the B-field post.

    My whole blog is based on visionary developement, theoretically, as well as nurturing physics association as best as I can, to show that the envelope is being pushed theoretically.



    Interpretations of the magnetic field, in all its desgin is easily comprehensible once we align our thinking to hard fact and design reprsentation. Magnetic field lines on paper, is a child's toy, but easily experimetally done. Much more abstract then, that we see the field created, it's north and south, and a channel through which expression can flow?



    Now even this is contained, and a Gausssian representation, highly abtract, relates curvature in away that we would understand this force that nature has created for us.

    You must remember I do not have the luxury or life's abilty to move through the higher avenues that scholastic carreers have venture forth in. To preview this branch or that branch in physics, so I am bombarded with information from all angles:?)

    I like to wrap the gravitational field, much like we wrap the magnetic field. It's just the way I see, and in it's greater design, that vast gravitational field that is generate through our cosmos? Bubbles become very interesting whenyou wrap somehing and the inside is moving with the outside, and in the vast vacuum of space this is stretching the very fabric itself?

    I won't make the mistake of calling it the aether, yet continuity of expression seen in this abstract mode, does not see "tears" and such, so it is allocated to topological relevances. Holes, that look like swiss cheese in the cosmos? Yet I know well the events, that materialize in comsological expression, I wanted to push beyond these material things, to see the greater vision that has been moved by mathematcians.

    You can say the rogue man here who speaks, is a wolf cub. Has been raised in a foreign world, without the benefits of scholastic teachers to guide me. So I had to look for them who held sacred some of the vision that I see when this math leads to a comprehensive view.

    Reimann lead Einstein, and it was fortunate that Grossman was able to spot Einsteins deficiences. Help him move geoemtical principal beyond the euclidean coordinated world, to one manifested in spacetime, and a new dynamcial feature called gravity. It was beyond billiards and the sound related, and not the clasical discription that now beocmes the analogy of, that strange world we now see in gravitational thought.

    Was it enough to speak about theses things and theorectically develope thoughts, to describe ways, in which such sound could ring bars, or influence the flexible arms of LIGO We measure this abstract world mathematcially created, to realize, we are now engaged in something very unique about our visions developement? Kip Thorne progeny will be the new genration that sees in way that were new to bauss and Riemann and now as we see of Einstein. This has a geometrical expression and basis to it, and it leads into projective elements topologically described.

    Klein's Ordering of Geometries

    A theorem which is valid for a geometry in this sequence is automatically valid for the ones that follow. The theorems of projective geometry are automatically valid theorems of Euclidean geometry. We say that topological geometry is more abstract than projective geometry which is turn is more abstract than Euclidean geometry.


    Klien's ordering of geometries were specifc here?