Showing posts with label Hooft. Show all posts
Showing posts with label Hooft. Show all posts

Friday, September 09, 2005

Mission Impossible?



Tom Cruise tackles the new world of Mission's Impossible III. What kind of recording system will he use? You got it, the illustrous Ipod? :)

Plato said:
Hey I got one for you. You remember mission impossible. Well in this case, your only able to use the ipod once, then it turns into a super liquid.


It wouldn't be right to give a older paper for inspection of Gerard's and not to include current present day assessment on the issues here. Ipodmanship has run it's course, so we'll have to wait for Clifford to update:)

But in the mean time, Bps blackhole sets up the idea of supersymmetrical valuation?

Plato said:
It’s called a “BPS Ipod”. This would surely be a “hotty and a smoothy”?


Gerard t' Hooft:
In particular the gravitational interactions are responsible for the unitarity of the scattering against the horizon, as dictated by the holographic principle, but the Standard Model interactions also contribute, and understanding their effects is an important first step towards a complete understanding of the horizon’s dynamics. The relation between in- and outgoing states is described in terms of an operator algebra. In this paper, the first of a series, we describe the algebra induced on the horizon by U(1) vector fields and scalar fields, including the case of an Englert-Brout-Higgs mechanism, and a more careful consideration of the transverse vector field components.

Wednesday, September 07, 2005

Quantum Gravity: The Blackhole



Drawing Plane and Coordinate Systems More information is given here in Wiki.

There is no "distance" separating cosmological events, from the cubic centimeter in the corner of the room? I have to tell you why I see this, and what lead me to conclude such a thing. As I relay at bottom of page, this will be the subject of the next posted thread.

Imagine spreading such malicious comments as those in bold below?:)

Brian Greene
Sure. One of the strangest features of string theory is that it requires more than the three spatial dimensions that we see directly in the world around us. That sounds like science fiction, but it is an indisputable outcome of the mathematics of string theory. So the question is, where are these extra dimensions? One suggestion is that they're all around us, but they're small relative to the dimensions that we directly see and therefore are more difficult to detect.


I guess the link to source is good enough sometimes but not the page with which the url exists?:)

Sometimes all it takes is a concept to fuel the direction with which we might presume to deal with this world of the spacetime fabric. Brian Greene surmizes, and in a synoptic mode aligns our view for consideration, or a Lee Smolin, in developing Three roads, previews quantum gravity approaches for consideration. This "lineage", is developed in this sense.

The Fabric of the Cosmo, by Brian Greene, is a good source for inspiration, on my "The Fifth Dimension, is the Spacetime Fabric." I am gone in a whisper, and advancement is placed for those who will exceed our limitation in how we percieve the world. This is the way it has always been. On and upward.:)

Good people like Gerard t'Hooft help direct our attention in a most appropriate way, even amidst the ramble of rejection of any theoretical position. Once the comment is established, then indeed we move ahead to wonder and draw the conclusions we do, with a whole page of such reasoning. This whole blog is filled with this central idea.

Imagine molecules in the corner cubic centimeter of the room( nice visulaization for a strting point), and all that exists in this space is contained, all, the information of the universe at large? Would I have triggered ideas in the notion that Pierre Auger seen something unusual in cosmic interactive features of our current earth, as a playing field for particle reductionism? In face of LHC and all the wonderful toys that have been produced to extend vision in a reductionistic world? You have to remember John Ellis here, is how I ascent to views in these two different ways.

Gerard t' Hooft:
The predominant force controlling large scale events in the Universe is the gravitational one. The physical and the mathematical nature of this force were put in an entirely new perspective by Albert Einstein. He noted that gravitation is rooted in geometric properties of space and time themselves. The equations he wrote down for this force show a remarkable resemblance with the gauge forces that control the sub-nuclear world as described in the previous paragraph, but there is one essential difference: if we investigate how individual sub-atomic particles would affect one another gravitationally, we find that the infinities are much worse, and renormalization fails here. Under normal circumstances, the gravitational force between sub-atomic particles is so weak that these difficulties are insignificant, but at extremely tiny distance scales, of the order of 10-33 cm, this force will become strong. We are tempted to believe that, at these tiny distance scales, the fabric of space and time is affected by quantum mechanical phenomena, but exactly how this happens is still very mysterious. One approach to this problem is to ask: under which circumstance is the gravitational force as strong as it ever can be? The answer to this is clear: at the horizon of a black hole. If we could understand the peculiar physical phenomena that one expects at the horizon of a black hole, and if we could find a meaningful description of its quantum mechanical laws, then perhaps this would open up new perspectives.


Smolins interpretive stance of the blackhole horizon( glast determnations fuel this venture into recognition of a discrete approach to measure,) in what is emitted on a cosmological scale. Others who paved the way for this horizon problem, take us back, Hawking, to the pre-established roads to wonder, where today does subject sit? How well in minds has this conclusion played out, that we have ventured forth in a wonderful way to approach this in such a theoretical fashion. That only "pure thought", mathematics, could have paved the way of where physics will continued on in physical interpretation.

I will introduce the idea of this "membrane analogy in the cubic centimentor:)" for further consideration, shortly after I attend to getting wood fuel for the winter months today.

Tuesday, August 09, 2005

The Fifth Dimension, is the Spacetime Fabric

Perhaps Quantum Gravity can be Handled by thoroughly reconsidering Quantum Mechanics itself? by Gerard t' Hooft

I was attracted to Nigel Cook's statement on Peter Woits blog entitled, "Panel Discussion Video" by the quote of his taken here below. What immediately struck my mind, was the Bekenstein Bound and how "temperature" would have been seen from that perspective.

Bekenstein Bound:
Superstring theory rules in the 5-D spacetime, but a so-called conformal field theory of point particles operates on the 4-D hologram. A black hole in the 5-D spacetime is equivalent to hot radiation on the hologram--for example, the hole and the radiation have the same entropy even though the physical origin of the entropy is completely different for each case.


Lee Smolin post given at Peter Woit's site was a ressurrection of "Three Roads to Quantum Gravity", and I like the fact that he wants cohesion amongst physicists and theoriticians alike. But if stauchly held to any position, then you have divisive comment about the ways in which to approach things. It can't be helped. But asking for more clarity this might be a good thing, and a approach by Lubos to qualify the string theorist position.

Lubos Motl:
The holographic conjecture, based on the Bekenstein's bounds and the Bekenstein-Hawking entropy of the black hole,has been first proposed by Gerard 't Hooft and discussed in more detail by Lenny Susskind:


But before consider Nigel's comment, I wanted to quote something from Lee Smolin.

Consider any physical system, made of anything at all- let us call it, The Thing. We require only that The Thing can be enclosed within a finite boundary, which we shall call the Screen(Figure39). We would like to know as much as possible about The Thing. But we cannot touch it directly-we are restrictied to making measurements of it on The Screen. We may send any kind of radiation we like through The Screen, and record what ever changes result The Screen. The Bekenstein bound says that there is a general limit to how many yes/no questions we can answer about The Thing by making observations through The Screen that surrounds it. The number must be less then one quarter the area of The Screen, in Planck units. What if we ask more questions? The principle tells us that either of two things must happen. Either the area of the screen will increase, as a result of doing an experiment that ask questions beyond the limit; or the experiments we do that go beyond the limit will erase or invalidate, the answers to some of the previous questions. At no time can we know more about The thing than the limit, imposed by the area of the Screen.


Page 171 and 172 0f, Three Roads to Quantum Gravity by Lee Smolin

Nigel Cook:
'Caloric’, fluid heat theory, eventually gave way to two separate mechanisms, kinetic theory and radiation. This was after Prevost in 1792 suggested constant temperature is a dynamic system, with emission in equilibrium with the reception of energy.


Yet I understand this call for bringing a string theorist into the fold of Lee's, but I would remind him, that such cosmological approaches are well on their way with the course ISCAP set for themselves and how comsological realization, are still important features that string theory would like to get a hold of.



Juan Maldacena:
The strings move in a five-dimensional curved space-time with a boundary. The boundary corresponds to the usual four dimensions, and the fifth dimension describes the motion away from this boundary into the interior of the curved space-time. In this five-dimensional space-time, there is a strong gravitational field pulling objects away from the boundary, and as a result time flows more slowly far away from the boundary than close to it. This also implies that an object that has a fixed proper size in the interior can appear to have a different size when viewed from the boundary (Fig. 1). Strings existing in the five-dimensional space-time can even look point-like when they are close to the boundary. Polchinski and Strassler1 show that when an energetic four-dimensional particle (such as an electron) is scattered from these strings (describing protons), the main contribution comes from a string that is close to the boundary and it is therefore seen as a point-like object. So a string-like interpretation of a proton is not at odds with the observation that there are point-like objects inside it.

Saturday, June 18, 2005

New Spacetime Quantum World View?



Of course the source of my statement about Penrose needed some clarification so I'll put him here for reference. Those who had been following will also have know that the view of Gerard t' hooft amazingly, asks the same question?

Do we need a New spacetime Quantum world view?

By taking advantage of quantum phenomena such as entanglement, teleportation and superposition, a quantum computer could, in principle, outperform a classical computer in certain computational tasks. Entanglement allows particles to have a much closer relationship than is possible in classical physics. For example, two photons can be entangled such that if one is horizontally polarized, the other is always vertically polarized, and vice versa, no matter how far apart they are. In quantum teleportation, complete information about the quantum state of a particle is instantaneously transferred by the sender, who is usually called Alice, to a receiver called Bob. Quantum superposition, meanwhile, allows a particle to be in two or more quantum states at the same time


As said, I do not want to further expound on the fansty world of Lewis Carroll , but bring the concept of mirrorworld here for more consideration. IN that, the detectors, Alice and BOb are two photons, that entangle and show this causal relationship, where before the idea existed that such a link could have never been made.

You have to remember to make sense of this as a junior being exposed to the mass of informtaion out there, it required sifting to get to the essence of the issues. Hopefully I have lead the mind to consider this issue now in terms of what was spooky to einstein, is not so spooky to the entanglement issues?

The Future of the Quantum Mechanical View


Quantum gravity and black holes . Whenever particles are separated further than 10-33cm, the gravitational force between them is very adequately described by Einstein's theory of general relativity. But when they come closer, the gravitational force becomes strong, whereas gravity is more complicated than gauge theories. Finding a logically coherent theory telling us how particles behave at such small distance scales is a fundamental problem. The most dazzling problem is the question whether these particles will make microscopic black holes. Predicting the behavior of such tiny black holes is a deep theoretical challenge. Or maybe they can't form black holes? Formulating laws of physics that avoid black hole formation is even more difficult.




Microstate blackholes and blackholes of the cosmo, as triggers?

So we are indeed looking for this method, this trigger, that would unite both possible worlds, to understand as we look around us, something exists which we had never entertained before? Microstate blackholes and blackholes of the cosmo, as triggers?

Friday, June 17, 2005

John Venn

The early historical work can be derived from personages. Helps sometimes to illucidate the avenue and abtractions that seem only fitted for the abstract mind?

Do people like to deal with such issues? I am finding that as I am learning, I am tryng to find the means with which to express myself, so that such a basis is understood when I bring togehter the thoughts I like to do, into other areas. So it is necessary to see how such abstract avenues play their role in my "fantasy journey's" and then introduce the deepr pursuate to explain myself more coherently.



A painting of John Venn by Charles E. Brock. Photograph by Christopher Hurst, Hamilton-Kerr Institute, University of Cambridge


John Venn (August 4, 1834 - April 4, 1923), was a British mathematician, who is famous for conceiving the Venn diagrams, which are used in many fields, including set theory, probability, logic, statistics, and computer science.

He was born in Hull, Yorkshire. He entered Gonville and Caius College, Cambridge in October 1853 and graduated in 1857. Shortly after graduating he was elected a fellow of the college. He was ordained as a deacon at Ely in 1858 and became a priest in 1859. In 1862 he returned to Cambridge as a lecturer in moral sciences
.


So having lead one to the esence of this individual I wanted to introduce a journey that combined a few different avneues, and how I go to that point. But before I do this, the image with which I wanted to supply, will do wonders on the unification idea manifesting in my own mind.

Thomas Young's Double Slit Experiment

The double-slit experiment consists of letting light diffract through two slits producing fringes on a screen. These fringes or interference patterns have light and dark regions corresponding to where the light waves have constructively and destructively interfered. The experiment can also be performed with a beam of electrons or atoms, showing similar interference patterns; this is taken as evidence of the "wave-particle duality" explained by quantum physics.



Society and all it's function might have seemed beyond the approach of a method to determination that could underlie it's very existance by functions that would have never made sense had they not been curtailed to a way of seeing. I exploit this ability to see underneath society and its basis, by bringing together perspective, hopefully in a sound mangagement style and artistic endeavor, no less then the work of Lewis Carroll and his fictous name sake, that will be revealled soon enough.



This image below will serve it's purpose when it comes time, so being part of this overall post, this directs us to the amazing value of mathematicians as they exercizes their creatve abilities beyound the abstract frames they have give themself.


Lewis Carroll's fame is universal. I can easily cite a couple dozen books that mention him or quote from his books. Temptation to quote from Alice's experiences with which so many people can identify, is indeed great. But the trend may be reversing. In the introduction to a book I have recently come across, the author found it necessary to mention that in the whole of the book there is not a single reference to either Alice in Wonderland or Through the Looking Glass - the two books that made the name of Lewis Carroll a household item the world over. However, his other works are either forgotten or known far less. In real life he was a mathematician C. L. Dodgson with deep interest in symbolic logic and logical reasoning. I have described elsewhere one of his probability and the doublets puzzles.


Now for some, the Feynmen diagrams become a useful toy model for defining the interatcive phases, and for me, being Junior in these aspects, I come with a lot of speculation, but no less the need for something to hang my hand on. It was interetsing for me to see that such defintions and pathways would have been exemplified by such drawings to hold the perspectve to specific interactve phases.

Now a given wide a berth to my speculation, from Young to Feynmen, I saw this content from Dirac's early work, as example used the matrice design? The work of Feynmen, leading from this. Now not to spread the willy nilly fate of wrong information, I would have to qualify this statement, and I wil do so at a later date. I will watch for such statements in my journeies and draw from them for support, if given. I would not lesson this view, by stating the topological pathway would have been incorporated into a design of strings no less held to such views of feynmen lines, that it would have explained these interactve phases as well. I think peope do not understand this very well?

So the work her ehas been lead nto a area of math that defnes the thinking process I have in a way that might not have been considered before? I wil expound even greater to confuse the masses, by introdcution of other areas that I found explicable by uniting avsion of such phase as to ask what value would GHZ entnaglement serve, but to have found the questions of the like sof Gerard t' hooft haunting when it comes to the questions also posed by Penrose. Do we need a new quantum mechanical view?

This highlighted my thinking and of course directed it too the state of examination given by Smolin and others, as we expound greatly on the essecne of Thomas young and his expeirment, and the basis bneeded for detrmination of the Trigger?:) I bet some see the principals now shown as I lead into other areas soon?:)

You had to understand, that Alice and Bob serve their purposes in a strange wonderful way. That one asks where had the photon gone, in it's illustrous journey of possibile pathways, that we did not wonder what intiatied this process? Would such a signature have highlighted the view with the question of the rigger signifying some deeper inherent basis of existance. That signalled other views to manifest into the world of gravtonic perceptions, no less dictating our understanding of time variable measures?

The Looking Glast

Friday, June 10, 2005

Why No New Einstein

To them, I said,
the truth would be literally nothing
but the shadows of the images.
.
-Plato, The Republic (Book VII)

The inference of dimensional attributes scares many good minds away from the matters at hand?:)

Lubos Motl:
The only truly open questions about the interpretation of quantum mechanics are those that also require us to understand dynamics of quantum gravity properly.




I think Gerard t' Hooft would like to change the way we see quantum mechanics? Non!

The Holographical Principle

I must add a very important note. It is still hard for me to believe that Lee Smolin wrote something that could imply that *he* was the author of the conjecture. Lee Smolin has nothing to do with the discovery of the holographic principle and I hope that he always refers to the real authors properly-and it was just you who did not read carefully enough. The holographic conjecture, based on the Bekenstein's bounds and the Bekenstein-Hawking entropy of the black hole,has been first proposed by Gerard 't Hooft and discussed in more detail by Lenny Susskind:



But my point is, that if we are lead to the understanding of gravity as GR does, then why would we not entertain the idea, that there are forces of gravity stronger, and areas, that are weaker?

Of course, to Plato this story was just meant to symbolize mankind's struggle to reach enlightenment and understanding through reasoning and open-mindedness. We are all initially prisoners and the tangible world is our cave. Just as some prisoners may escape out into the sun, so may some people amass knowledge and ascend into the light of true reality.

What is equally interesting is the literal interpretation of Plato's tale: The idea that reality could be represented completely as `shadows' on the walls


How will the photon respond in such shadows?

Why would we not extend this vision from GR understanding well, that such resistance by Einstein, required deeper thinkers to respond to the theory that they had put forth in Solvay?


by Jacob D. Bekenstein
TWO UNIVERSES of different dimension and obeying disparate physical laws are rendered completely equivalent by the holographic principle. Theorists have demonstrated this principle mathematically for a specific type of five-dimensional spacetime ("anti–de Sitter") and its four-dimensional boundary. In effect, the 5-D universe is recorded like a hologram on the 4-D surface at its periphery. Superstring theory rules in the 5-D spacetime, but a so-called conformal field theory of point particles operates on the 4-D hologram. A black hole in the 5-D spacetime is equivalent to hot radiation on the hologram--for example, the hole and the radiation have the same entropy even though the physical origin of the entropy is completely different for each case. Although these two descriptions of the universe seem utterly unalike, no experiment could distinguish between them, even in principle.


It is thus, it challenged the views, of even the most determined thinkers, professional or not, once the paradox of thought experiment was introduced? Set the targets for research and developement and the initiatives of the younger generation to excell where the limtations had been drawn.

So in the one sense such a strong stance by Einstein was the incentive for a generation to prove its ability and prowness to overcome the limitations set by Einstein.

Do I believe he understood this?

Most assuredly so, for such conversation and thought experiments would have never been inrtroduced in such a forum, as to the require greater participation of thinkers to succeed. Some even to their death, still felt Eisntein's challenge, and we have a wonderful area of developement that has moved our visions to wonderful interactive feature of "gluonic perceptions."

I believe also that Lee Smolin, from his current work, is to instill and gather strong leaders to focus in a direction that Lubos has spotted, as a signature of Lee Smolin ways. To discern the quality and direction, before gravitonic abilities are ever encountered.

So yes such attempts are interesting, in that we see Glast detrmination as viable pathways to solving the understanding of the world around us and even going to great lengths, to move these consderation down to the level we might seee in such energetic features where such gravities might have exemplied a measured interactive feature like those of the Calorimetric design.

So the challenge was given to both sides of the camps to give us a way inwhich to see how such a challenge could measure progress? Is it not here, that such a stance holds each other accountable?

Lee Smolins ways expermentally are driven, even as the world of Strings are driven to bring perspective to the engagement, of the "way in which we see?" Careful challeneges to the interpretation, that such ideas are held within the scope of the Calorimentric view and all the while, the challenge has been a puzzle to that "missing energy" going someplace?

Where is this if such a boundary has been understood and the puzzle offered for introspection, that each other wants the other to understand it's limitations?

So now we have the place in which such a challenge should make itself known and we have the likes of Cern's delivery on microstate blackhole production, to have found it's associative feature in how we see interactive features can happen all around us without cern? >John Ellis is careful to draw these distinctions for us.

Do we have Proof of this Missing Energy? If the answer is yes, then the issue has not been resolved?

Sunday, May 29, 2005

"Lightening," as Strings, Strike?



With a "supersymmetrical realization" capable of being disemminated in the brain? What could have manifested from it's beginning? To have nature exemplify this greater potential "for new airs to breath life " into other possibilties of minds constructs "real objects" and "things"?

Are the brain matters limited in terms of this new math? A perspective on the origination of what this universe was before it settled into "the cosmic bands of creation," we know as matter constituents of a galaxy kind.

Flower representation (plank epoch and guth's expansnonary universe) as a torodial expression of form? As the basis of this supersymmetrical realization, seen in mathematical enlightenment? Makes it hard ,to see how expansionistc views could have been missed in gaining this toposense?

Mind Over Matter: Brain Waves Guide a Cursor's PathBy Rick WeissWashington Post Staff WriterMonday, December 13, 2004; Page A08


Wolpaw's "thinking cap" sports 64 sensors (the polka dots) that detect electroencephalographic (EEG) signals generated by neurons. With a software program analogous to those used in voice-recognition programs, which "learn" people's verbal quirks over time, people can gain control over a cursor's movement in two dimensions by modulating signal intensities in certain regions of the brain, Wolpaw and co-worker Dennis McFarland reported in last week's early online edition of the Proceedings of the National Academy of Sciences.


Now it's never easy to see how such tomographical initiatives of the brains complex firings, might have a issue with the way we do things? So early work here, and the ideas of cursor control stimulation from human contact rhythmns could exemplfy the greater complexity of control that the minds likes to extend from itself?

No less the idea that calorimetric views would measure some event in particle reductionistic views, about how things work. As a picture, is taken. Views condensed into greater meaning from a huge outlay of supersymmetrical issues, into this crazy bands that streak across our mind sky?

Here we have gone to extremes to say, "that the brain has a third arm" and we know how it works and we can use it?

Monkeys Adapt Robot Arm as Their Own


Image: Miguel Nicolelis, M.D., Ph.D., professor of neurobiology and co-director of the Center for Neuroengineering, Duke University Medical Center, with robot arm. PHOTO CREDIT: Duke University
"In our new experiments, the idea is that by using vision and touch, we're actually going to create inside the brains of these animal a vivid perceptual image of what it is to have a third arm," he said.


The greater complexity of a system would have known that the physiological coordination of views, could have, "photosynthesis processes"? Used chemcial derivatives endocronologically reduce to the euclidean view. While it existed, within this massive torodial view of the human body? Reduced it, to viable means of expression?


So why is it so difficult to accept the idea "that if a Professor is walking across the room, that many of his students would congregate.:)" Just as they would in any other attempts at defining the nature of this reality?

Hooft, Witten and now Lauglin himself understands, that we have face to face with a problem? By arguing "stuff", would we have divested ourselves of recognition of this Third Superstring Revolution? Of course not.:)



BrainInfo Site

Thursday, May 19, 2005

The case for discrete energy levels of a black hole


Jacob Bekenstein


Download for Lecture

The Bekenstein Bound, Topological Quantum Field Theory and Pluralistic Quantum Field Theory

An approach to quantum gravity and cosmology is proposed based on a synthesis of four elements: 1) the Bekenstein bound and the related holographic hypothesis of 't Hooft and Susskind, 2) topological quantum field theory, 3) a new approach to the interpretational issues of quantum cosmology and 4) the loop representation formulation of non-perturbative quantum gravity. A set of postulates are described, which define a (\it pluralistic quantum cosmological theory.) These incorporates a statistical and relational approach to the interpretation problem, following proposals of Crane and Rovelli, in which there is a Hilbert space associated to each timelike boundary, dividing the universe into two parts. A quantum state of the universe is an assignment of a statistical state into each of these Hilbert spaces, subject to certain conditions of consistency which come from an analysis of the measurement problem. A proposal for a concrete realization of these postulates is described, which is based on certain results in the loop representation and topological quantum field theory, and in particular on the fact that spin networks and punctured surfaces appear in both contexts. The Capovilla-Dell-Jacobson solution of the constraints of quantum gravity are expressed quantum mechanically in the language of Chern-Simons theory, in a way that leads also to the satisfaction of the Bekenstein bound.

Wednesday, May 04, 2005

Developing Character in Rhetoric and Composition


Francis Bacon (1561 - 1626)
-----although not a rhetorician, contributed to the field in his writings. One of the concerns of the age was to find a suitable style for the discussion of scientific topics, which needed above all a clear exposition of facts and arguments, rather than the ornate style favored at the time. Bacon in his The Advancement of Learning criticized those who are preoccupied with style rather than "the weight of matter, worth of subject, soundness of argument, life of invention, or depth of judgment." On matters of style, he proposed that the style conform to the subject matter and to the audience, that simple words be employed whenever possible, and that the style should be agreeable.

Heck I am still learning. But if I only said what you wanted to hear, then would you have heard anything different? :) You try and incorporate the logic into the statement? Here in this case, there is no arguement, because the logic can not be further reduced?

Word Play

Word play is a literary technique in which the nature of the words used themselves become part of the subject of the work. Puns, obscure words and meanings, clever rhetorical excursions, oddly formed sentences, and telling character names are common examples of word play.

All writers engage in word play to some extent, but certain writers are particularly adept or committed to word play. Shakespeare was a noted punster. James Joyce, whose Ulysses, and even more so, his Finnegans Wake, are filled with brilliant writing and brilliant word play is another noted word-player. For example, Joyce's phrase "they were yung and easily freudened" clearly conveys the meaning "young and easily frightened", but it also makes puns on the names of two famous psychoanalysts, Jung and Freud.


But here is another context of character masking that was revealled? Thinking about Francis Bacon, that one wonders, who was Shakespeare?

THE SHAKESPEARE/BACON CONTROVERSYFAUSTIN BRAY: Do you think that academia will eventually recognize this?


Who Is Arthur Young





We know well that some writers take pen names before they become established? Or hide amidst the current dealings of society. To not call attention to their positions in life, while they strive to delve into the deeper meanings or hide a message for others?:)

I learnt this early, to not complicate life, while I could have free roam, to delve into all aspects of our human natures. Struggle for, the ideals that we develope in life. Rote systemic appearances constituted from our early histories, as well shape our perceptions of society. I knew well, that if we think a certain way, whether we like it or not, we desemminate thoses principals into society, how ever it materialized, might be perceived in different ways.

So can we be artistic about it? I am, in choosing my characters becuase I saw in rhetoric and dialogue, past performaces by independant scientific researchers, this incination to go back in time, and then move forward.

Plato's cave might have seem ole fashion and constantly wornout and used, but in the scientific mind of Gerard Hooft, and his explanation of Holographical design, he wanted to push other minds to consider?

And one in which I like to consider, that a three dimensional frame work, can be arrived at from higher perception abilities. In science, four dimensional characteristics here would have understood dynamcial feature to the nature of reality, yet pinning it down to coordinates, it becomes realizstic in our minds, as a object of perception.

Heisenberg made similar use of such inclination for historical reference. His uncertainty in movement became interesting references, once we assumed a position?:)

This logic has underpinnings in how we see what can be consittuted in life. How we choose to display our positions with clarity.

That we should then find ourselves engaged because of the inhernet dialogue and espressions between each other on the internet, then we know that progression and learning, the desire, and not flaws of character dispositon should reign.

But now onto some more references for consideration here to help people digest, what could have ever arrive in our coordinated frames of reference. That we saw, other means to arrive at this conclusion. One of these means, is a Calormetric view? I use this while I think about the space between the earth and the sun. While looking at insightful ways to generate more possiblities, in the minds, that are resistant to change.

Standard particle reductionist methods have detailed how we shall see these energy considerations. So to apply a global perspectve to energy valuations, we are left to consider simpler model reductionist figures here in our talks, about climate change? Visions of non-euclidean world that few will take hold of in our consverstions. etc.

Resistance to character, should be statistics or better information?

See also,
  • Rhetoric and Composition
  • Thursday, April 28, 2005

    Quantum Entanglement: Do We Need a Radically New Spacetime/Quantum Worldview

    I have been thinking hard and heavy about how such information could have been translated from the horizon of a blackhole.

    IN post previous post this interaction and thinking has been directed in Gerard 't Hooft focus. In light of Penrose picture below we see where this focus can point our attention on principles of entanglement? Might we have said that there can be such a thing as the calorimetric view within context of the larger picture of relativity, as well as, incorporating this quantum view?

    We needed to start from some place and all seem to be happy here as long as we slowly chart this progress, to describing this visual expression of the reality we are moving into. Now we are at the horizon? Particle production and it's inception?

    What are the limitations of these views?



  • Penrose and Quanglement

  • Entanglement and the New Physics




  • In the past, teleportation has only been possible with particles of light Image: Rainer Blatt



    By taking advantage of quantum phenomena such as entanglement, teleportation and superposition, a quantum computer could, in principle, outperform a classical computer in certain computational tasks. Entanglement allows particles to have a much closer relationship than is possible in classical physics. For example, two photons can be entangled such that if one is horizontally polarized, the other is always vertically polarized, and vice versa, no matter how far apart they are. In quantum teleportation, complete information about the quantum state of a particle is instantaneously transferred by the sender, who is usually called Alice, to a receiver called Bob. Quantum superposition, meanwhile, allows a particle to be in two or more quantum states at the same time





    Whether such a "quantum computer" can realistically be built with a value of L that is large enough to be of practical use is a topic of much debate. However, the mere possibility has led to an explosive renaissance of interest in the host of curious




    Issues of Entanglement

    Wednesday, April 27, 2005

    The Calorimetric View?



    The Title, might seem somewhat strange, but a issue has developed for me that I see raised in the scourge of other intellectuals, who disavow the extra dimension scenario.

    So you have this view and you have this idea of missing energy? Where did it go and where did it come from? Pierre Auger linked previously and the Oh my god particle, raise this idea more in line with the vaster layout of this possibilty.

    You see these things are happening around us now, and you needed a much comprehensive view of this compacted dynamcial world? So the methods seen for determination help us to see what is happening in relation not only to particle reductionistic views, but of the relationship happening with Earth and the Sun. Our other Cosmic relations, that move here in the vast network of spacetime contortions that signal informative views from earlier times


    ATLAS and the LHC
    Describing the strong, weak and electromagnetic interactions in terms of gauge theories, the Standard Model (SM) of fundamental particles and their interactions has successfully explained and predicted many aspects of high-energy particle interactions. However, despite its tremendous successes, it remains theoretically unsatisfactory. The SM cannot answer what is the origin of particle masses, contains a large number of arbitrary parameters, and does not explain why there are so many types of quarks and leptons, among other questions. Perhaps as much as theoretical breakthroughs are needed in order to improve the SM, so are experimental observations on phenomena which can further constrain the SM or may reveal physics beyond it.


    The question I raised was in looking at where the missing energy had gone? This is a important question, becuase it speaks to what energy gone in/out, as not being equal? I take it, that all particle reductionistic interpretations would have surmized it's energy value, and then, had something left over that is accoutable? How would you know it's missing?

    Now I was looking a Cabi's ole post and from it, this lead me to look at the title of the connected paper for consideration.


    A Toroidal LHC ApparatuS


    Part of the counterpart of looking at particle creation would have been able to understand the part of the calorimeters that are used to measure the evidence produced. IN this context, it lead me to the Atlas information held at CERN. It also made me think of Glast determinations of early universe indications from the calorimeter located in the Glast satelitte. See the Looking Glast


    A Higgs Mechanism for Gravity, by Ingo Kirsch

    In this paper we elaborate on the idea of an emergent spacetime which arises due to the dynamical breaking of diffeomorphism invariance in the early universe. In preparation for an explicit symmetry breaking scenario, we consider nonlinear realizations of the group of analytical diffeomorphisms which provide a unified description of spacetime structures. We find that gravitational fields, such as the affine connection, metric and coordinates, can all be interpreted as Goldstone fields of the diffeomorphism group. We then construct a Higgs mechanism for gravity in which an affine spacetime evolves into a Riemannian one by the condensation of a metric. The symmetry breaking potential is identical to that of hybrid inflation but with the non-inflaton scalar extended to a symmetric second rank tensor. This tensor is required for the realization of the metric as a Higgs field. We finally comment on the role of Goldstone coordinates as a dynamical fluid of reference.


    Now I have not gone into in detail because I am somewhat slow and a bottom feeder trying very hard to gain perspective of the world these fellows like to deal with.

    So the water symbolically speaking, sound manifest, with those inhabiting a dynamical world, speak about the nature of matter constitutions. That come from some state of existance? Here the idea, that it could emerse from nothing (where do the graviton perceptions reside?), is again hard to swallow becuase, "preconstitutional states," had allowed such manifestations to emerge from something? It just seemed logical? Non!

    When you think this is going to be the end of it, I thought, I would recap, because I have given the containment(calorimetric) that such particle views, or early universe connections, might have brought forward in detectors methods?

    This would have satisfied Peter Woit I am sure, but this view is far from over. The rules have defined a greater context to the issue that points us to the deeper issue of what Gerard 't Hooft might have said was comprehensible features of computerized information consistancies. This would have been far from the truth. Blackhole particle production, would have said hold on? To have this comprehensive view, you needed to include a completed version of the standard model? Without the grvaiton in cvomputerized versions you see where the picture is far completed and you se where the extra dimensiona would have certain features that would have incorporated graviton perceptions in the bulk?



    The horizon would have been far from complete had the standard model not included this into the the energy in/out version. This would have been the thread(string) that connected the innner space of the blackhole with the particle production that would have dissipated/exploded in view? How would computerization meet this demand? LIGO?

    Tuesday, April 26, 2005

    The Holographical Mapping of the Standard Model onto the Blackhole Horizon

    New paper that came out yesterday written by Gerard 't Hooft

    Interactions between outgoing Hawking particles and ingoing matter are determined by gravitational forces and Standard Model interactions. In particular the gravitational interactions are responsible for the unitarity of the scattering against the horizon, as dictated by the holographic principle, but the Standard Model interactions also contribute, and understanding their effects is an important first step towards a complete understanding of the horizon’s dynamics. The relation between in- and outgoing states is described in terms of an operator algebra. In this paper, the first of a series, we describe the algebra induced on the horizon by U(1) vector fields and scalar fields, including the case of an Englert-Brout-Higgs mechanism, and a more careful consideration of the transverse vector field components.


    But before I entertain this idea, I wanted to gain some perspective. I was immediately struck by something here that changes the way we have been doing things? Recognizing the blackhole evaporation and standard model production, we are saying that indeed these things already existed in the horizon?

    Would M theory have then found it's experimental counterpart? The Bose Nova and Jet idea from collapsing bubbles has been part of the vision I speculated in what Heisenberg saw in the geometrodynamics of a nuclear explosion. See, not only were we detonating a nuclear reaction(gravitational collapse), but we were doing something beyond the perception, by going to the heart of these particle collisions.

    What makes it diffuclt for me is that having seen the blackhole dynamics in relation to bubble technlogies, that I like to use as analogies, relate too, and contain the elements of the standard model without ever entering the blackhole? How is this possible and still see the three blane collapse of the blackhole here?

    Dimensional Reduction in Quantum Gravity by Gerard 't Hooft


    The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two-dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found.

    Essay dedicated to Abdus Salam.


    Gerard "t Hooft:No 'Quantum Computer' will ever be able to out perform a 'scaled up classical computer.'

    Holding onto the sanity of why such computerization program will run into difficulties, has not undermined the position to included and create opportunities for seeing what is happening at such reductionistic levels? To have wondered, will we gain a dynamcial visulaization of what is happening within the context of the universe as it came into being?

    With more computer power, scientists can also include more elements of the Earth's climate system, such as the oceans, the atmosphere, their chemistry and the carbon cycle.

    This should make forecasts of future temperature rises more reliable. Keiko Takahashi, who works at the Earth Simulator Centre, says they have already carried out several experiments that look 50 years ahead.



    There is difficulties with doing this, and like LIGO or a SEti work in progress, how shall this information allows us to see the interactions in a consistent model? So dealing with these difficulties has been part of Gerard 't Hoofts analysis to see that others too, work hard to deal with issues of information paradox?

    Part of this difficulty in computerized model application, would have been transfer rates of information from such quantum levels. Lubos gives some insight here. Although it has been very nice that such visualization techiques could be applied to this data transfer, from what we understand of particle reductionsism. Within context of the larger universe, how detailed shall has our observations become of the world around us?


    These images contrast the degree of interaction and collective motion, or "flow," among quarks in the predicted gaseous quark-gluon plasma state (Figure A, see mpeg animation) vs. the liquid state that has been observed in gold-gold collisions at RHIC (Figure B, see mpeg animation). The green "force lines" and collective motion (visible on the animated version only) show the much higher degree of interaction and flow among the quarks in what is now being described as a nearly "perfect" liquid. (Courtesy of Brookhaven National Laboratory)


    The goal of the Large Hadron Collider (LHC) is to link roughly 6,000 scientists so they can perform large-scale experiments and simulations to help the world better understand subatomic particles. The grid will ultimately link more than 200 research institutions.

    "This service challenge is a key step on the way to managing the torrents of data anticipated from the LHC," Jamie Shiers, manager of the service challenges at CERN, said in a statement. "When the LHC starts operating in 2007, it will be the most data-intensive physics instrument on the planet, producing more than 1,500 megabytes of data every second for over a decade."


    Gerard 't Hooft recognized this problem and when we see such scattering ideas from blackhole standard model production particles, how shall we see this event in terms of what is sent back for examination? It would mean considering the context of Gerard's paper there is no information loss? No missing energy events?

    Thus the consistent model frame, from blackhole production underlying framework would disavow any ideas relating to energy in and energy out imbalance held in context of gravitonic production as part of the standard model production? The horizon area would become a balanced view?

    Using the ideas of Clementine and the graduation to Grace, it seemed that I was leading to a good comprehensive view of the bubble technicalities as they contained the missing energy, but moving too "this view of Gerard's" might endanger how we approximate the whole view of this missing energy, with the easy removal of that missing energy scenario? Would this be consistent with the overall encompassed view that the grvaiton has emerged from the extension of this standard model to say oh, it's okay we can remove this and fnd comfort with the existing framework without other contentions issues like missing energy to deal with this?

    Do we have Proof of this Missing Energy? If the answer is yes, then the issue has not been resolved?

    Thursday, February 17, 2005

    Neutrinos for Geophysics

    I am always interested in seeing how the physics that has developed, could better induce minds to expand the potentials of these innovations to help the world's population in a most appropriate way.

    The issues on climate and the ways in which we could measure this is far removed from the butterfly who flaps his wings, and the need for dramatic computerization functions to reveal model apprehensions of some predictable feature of that same climate. A pretty unsurmoutable problem in uncertainty? Gerard Hooft recognizes these problems, but while this uncertainty reigns alternative to using many computers to diagnosis,as in Seti and Ligo analysis.



    A physicist in the US has proposed using a beam of neutrinos to measure the density of the Earth's core. Walter Winter of the Institute for Advanced Study in Princeton says that neutrinos could provide information about the Earth that is not available with other techniques (arXiv.org/abs/hep-ph/0502097).


    So in this respect of information gathering, the idea here is to understand the mass density of the land mass regions to help people gather in potential spots of safety. Much like the recognition of tsunami revelations detected, so that escape from shores can be forewarn to people to move inland.

    Friday, November 19, 2004

    Plato as a City Slicker

    You all know the saying of this one thing, right?



    The rest of the Republic answers this challenge. It does so by way of an analogy. Socrates says that it is difficult to distinguish what is going on in the soul, but it is easier to see what is going on in the state. Thus the state will be examined by analogy to the soul. Now we would say that the state is the macrocosm (makros, "large," kosmos, "universe"), the large scale analogue, and the soul is the microcosm (mikros, "small"), the small scale analogue. When matters are sorted out for the state, then the soul can be understood in its own right.

    Well wisdom is bestowed upon us all, when we consider this one thing. Is it the stuff all dreams are made up of?

    Hooft, Witten and now Lauglin himself understands, that we have come face to face with a problem? By arguing "stuff", would we have divested ourselves of recognition of this Third Superstring Revolution? Of course not.:)

    So instead of defining the state of the cosmo and the insignificance of the microscopic views of man's soulful journey, what value had we'd be lured in too, but by Curlies Pot of Gold?

    The Republic: "You must contrive for your future rulers another and a better life than that of a ruler, and then you may have a well-ordered State; for only in the State which offers this, will they rule who are truly rich, not in silver and gold, but in virtue and wisdom, which are the true blessings of life."

    I don't think so. The expansive nature of the cosmo is still very relevant to the expansiveness yet to be contained with our humble brains? Some cannot leave the four-square of earth, and wonder about the shape, representing God, yet the diversity of opinion reocgnizes that a view has formed, of a world so few recognize.

    Tuesday, November 16, 2004

    Self-Organization of Matter



    Everyone knows that human societies organize themselves. But it is also true that nature organizes itself, and that the principles by which it does this is what modern science, and especially modern physics, is all about. The purpose of my talk today is to explain this idea.



    So why is it so difficult to accept the idea that if a Professor is walking across the room, that many of his students would congregate.:) Just as they would in any other attempts at defining the nature of this reality?

    Hooft, Witten and now Lauglin himself understands, that we have face to face with a problem? By arguing "stuff", would we have divested ourselves of recognition of this Third Superstring Revolution? Of course not.:)


    Likewise, if the very fabric of the Universe is in a quantum-critical state, then the "stuff" that underlies reality is totally irrelevant-it could be anything, says Laughlin. Even if the string theorists show that strings can give rise to the matter and natural laws we know, they won't have proved that strings are the answer-merely one of the infinite number of possible answers. It could as well be pool balls or Lego bricks or drunk sergeant majors.

    Witten's statement has then brought myself to recognize strings will manifest as a emergent property of spacetime. It is a conceptual reocgnition, that does not falter under the guise of irrelevant possibilties, but one facet of a concerted effort.

    Saturday, November 13, 2004

    Mass Transfer to Blackhole



    This image is very strong in mind as I read Smolins discriptions of the thing?:)

    Consider any physical system, made of anything at all- let us call it, The Thing. We require only that The Thing can be enclosed within a finite boundary, which we shall call the Screen(Figure39). We would like to know as much as possible about The Thing. But we cannot touch it directly-we are restrictied to making measurements of it on The Screen. We may send any kind of radiation we like through The Screen, and record what ever changes result The Screen. The Bekenstein bound says that there is a general limit to how many yes/no questions we can answer about The Thing by making observations through The Screen that surrounds it. The number must be less then one quarter the area of The Screen, in Planck units. What if we ask more questions? The principle tells us that either of two things must happen. Either the area of the screen will increase, as a result of doing an experiment that ask questions beyond the limit; or the experiments we do that go beyond the limit will erase or invalidate, the answers to some of the previous questions. At no time can we know more about The thing than the limit, imposed by the area of the Screen.

    Page 171 and 172 0f, Three Roads to Quantum Gravity by Lee Smolin

    How shall Gerard Hooft deal with this means of gathering information?


    Perhaps Quantum Gravity can be Handled by thoroughly reconsidering Quantum Mechanics itself?

    Quickly my mind wanders, to the experiments of Glast, and the gamma ray detection system. How will this informtaion allow such information, to align itself with quantum computer modelling and understand, what is hoped in gathering information from the screen?

    No 'Quantum Computer' will ever be able to out perform a 'scaled up classical computer.'