Showing posts with label Elephant. Show all posts
Showing posts with label Elephant. Show all posts

Friday, November 03, 2006

Back to the Beginning of Time



While some of us who had been engaged in a little prehistory examination of earliest QGP states as glast determination of high energy photons, the question, "to Be or not to be," how could we not ask what Professor Susskind offered up for examination under the title, "the elephant and the event horizon?"

What happens when you throw an elephant into a black hole? It sounds like a bad joke, but it's a question that has been weighing heavily on Leonard Susskind's mind. Susskind, a physicist at Stanford University in California, has been trying to save that elephant for decades. He has finally found a way to do it, but the consequences shake the foundations of what we thought we knew about space and time. If his calculations are correct, the elephant must be in more than one place at the same time.


I think there is still this far reaching philosophical question about what really started time? If "nothing" existed then how could we assume anything could arise from it?

While empirically Aristotle has lead the thinking, you know how I think don’t you:) Do you see me stand apart from Aristotle?




So I resolve this question in my own mind, even if I do refer to Gabriele Veneziano and his introduction of what began as string theory.

How could I resolve "anything" that has been taken down to the very first microseconds, while recognizing the value of anything "underneath the guise of building blocks of matter," and have said, "that this is the theory of everything?"

It only helped us to the point of the singularity, but it is much different then a complete death. The whole time reductionistic thinking has dominated the move back in history, there were other things going on, that us simple lay people were not aware of. Maybe for some scientists too?:)


Colliding galaxies, NGC 4676, known as "The Mice" (credit: Credit: NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA )
The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope, scheduled for launch in 2013. JWST will find the first galaxies that formed in the early Universe, connecting the Big Bang to our own Milky Way Galaxy. JWST will peer through dusty clouds to see stars forming planetary systems, connecting the Milky Way to our own Solar System. JWST's instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range.

JWST will have a large mirror, 6.5 meters (21.3 feet) in diameter and a sunshield the size of a tennis court. Both the mirror and sunshade won't fit onto the rocket fully open, so both will fold up and open only once JWST is in outer space. JWST will reside in an orbit about 1.5 million km (1 million miles) from the Earth.

JWST Science

The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of The Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems.


So again, we are being lead by science here to look ahead to what plans for the future may have influenced, or caused the decsisons they did, on another trip to refurbish the Hubble Space Telescope?

The Dark Ages of the UniverseBy Abraham Loeb

What makes modern cosmology an empirical science is that we are literally able to peer into the past. When you look at your image reflected off a mirror one meter away, you see the way you looked six nanoseconds ago--the light's travel time to the mirror and back. Similarly, cosmologists do not need to guess how the universe evolved; we can watch its history through telescopes. Because the universe appears to be statistically identical in every direction, what we see billions of light-years away is probably a fair representation of what our own patch of space looked like billions of years ago.


So then I am at a loss to explain that what happened billions of years ago near the beginning of this universe, could have ever been created in this universe now? Some body may say to you, "that the beginning of time and the distance of the beginning of the universe to now, has no correlation?"

If the circumstance are to be created in our colliders, then what said that mass determinations will ever arise from our research into the HiGG's, is not relevant, to what can be created in this space and time now?

Remember, everywhere you look in the cosmos this possibility exists. The WMAP is indictive of what I am saying.

So you say, the beginning of the universe and "the time created" to produce the particles of new physics, has no correlation into how this universe came into being?

Perhaps you may like to read Stephen Hawkings perspective on the beginning of time?

The conclusion of this lecture is that the universe has not existed forever. Rather, the universe, and time itself, had a beginning in the Big Bang, about 15 billion years ago. The beginning of real time, would have been a singularity, at which the laws of physics would have broken down. Nevertheless, the way the universe began would have been determined by the laws of physics, if the universe satisfied the no boundary condition. This says that in the imaginary time direction, space-time is finite in extent, but doesn't have any boundary or edge. The predictions of the no boundary proposal seem to agree with observation. The no boundary hypothesis also predicts that the universe will eventually collapse again. However, the contracting phase, will not have the opposite arrow of time, to the expanding phase. So we will keep on getting older, and we won't return to our youth. Because time is not going to go backwards, I think I better stop now.

Thursday, August 03, 2006

BigFoot: The Anomalistic Reality?

The explanation of scientific development in terms of paradigms was not only novel but radical too, insofar as it gives a naturalistic explanation of belief-change. Thomas Kuhn




What can we say to those who practice science and have been told, no anomalistic conditions can exist in reality? How will they "act" when they have been shaken at the very roots, assuming, such a thing can happen to them as a "observer" of what is "real" to them?



What "if" their illusions have taken hold of them? What if, they jump into a river? Scientists are not like this? They see "everything?":)OuI! Non? They all looking for "truth" just like you, Lee Smolin. There are no causalities?

Nature in Analog Models

In condensed matter, one can construct systems where the propagation of long wavelength phonons (sound waves) is very similar to the propagation of a scalar field in a curved Lorentzian spacetime. Such systems are called 'analog models'. It is even possible to construct analogies to black holes in this manner, where the phonons that travel past a certain point cannot return. For example, consider a fluid where long wavelength phonons in the fluid propagate with speed cs, which is analogous to the speed of light in these models. Now put this fluid in a pipe and change the shape of the pipe such that the speed v of the fluid is faster than cs in one section and slower in an adjacent section. A phonon can travel "back against the current" only up to a certain point, where the the fluid speed equals cs. After that the fluid flow carries it down the pipe. This point in the pipe therefore mimics a black hole event horizon, from which nothing can escape. Other black hole features such as Hawking radiation are also present in these models. Since these models give an example of a system that has a fundamental structure at very short distances (where the fluid description breaks down), yet has a pseudo-Lorentz invariance at long distances.


So forget about paradigmal change, and Kuhn's perspective about revolutonary change? A precursor to how things have always been done, now change, to become? Such an example is needed to push perspective unless you want to stay the way you have always been?

Evidence of Dis-ease?



Have we gotten so far to assume "the sickness" had indeed been caused by such theoretics and a "ventured mysticism," that the fault lied in those who venture forth and offer perspective and some who lacked visional meaning?

So as a "painter" Dali added "dimension" to the tesserack of our talks?:)

The artists begun to believe in the "mystical reality of life" and in so having succumbed to the death of all that has been forsaken(education), it will be strings that will lie at the root cause of this troubling disease?

What "seeing" has overtaken all that we have currently surmized. Is it such an artist of people who help free us of our rigidity?

I am trying to be sensitive as well here.

Bigfoot Toe Analogy

Backreaction: Lee Smolin's Trouble with Physics

BEE said:
Last night I had a nightmare! Bigfoot knocked at my door and wanted to talk to me about the existence of the string theory landscape. Still on east-coast time, I wiped off the sweat from my forehead but couldn't fall asleep again. I switched on my laptop, and decided its time to post the review on Lee Smolin's new book.


I found this a very interesting perspective by "B" on the "Theory of Everything" and how this can manifest in the deeper part of the subconcious mind. Of course the mind tries to deal with the incredibility of the world? How shall we come to deal with it's anomalies, if "repeatability" will not sanction the observer?

The unexpectedly hot output, if its cause were understood and harnessed, could eventually mean that smaller, less costly nuclear fusion plants would produce the same amount of energy as larger plants.


QGP tunnelling? So where are these times being presented? What is accounting for the conditions which allow for such tunnelling? A cosmological preview perhaps which allows for "new physics" to emerge?

Instead of the Newtonian inverse square law you’ll have an inverse fourth power law. This signature is being looked for in the ongoing experiments.


What things will shock the scientist? Change the "foundational basis" of thinking about the quantum reality?

The affect these things(?) can have on any mind is amazing, and of course, getting all the information is very important(observing what is wrong), so, we can assess what the heck is going on?

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
"God bless me! but the Elephant
Is very like a WALL!"


The Second, feeling of the tusk,
Cried, "Ho, what have we here,
So very round and smooth and sharp?
To me 'tis mighty clear
This wonder of an Elephant
Is very like a SPEAR!"

The Third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up and spake:
"I see," quoth he, "the Elephant
Is very like a SNAKE!"

The Fourth reached out an eager hand,
And felt about the knee
"What most this wondrous beast is like
Is mighty plain," quoth he:
"'Tis clear enough the Elephant
Is very like a TREE!"

The Fifth, who chanced to touch the ear,
Said: "E'en the blindest man
Can tell what this resembles most;
Deny the fact who can,
This marvel of an Elephant
Is very like a FAN!"

The Sixth no sooner had begun
About the beast to grope,
Than seizing on the swinging tail
That fell within his scope,
"I see," quoth he, "the Elephant
Is very like a ROPE!"

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!


What is happening in the trouble minds of the scientists as we have come to learn of their struggles to deal with the anomalistic(animalistic)world? :)The Jaquar, the elephant(how shall we describe quantum gravity)?

Maybe it is a joke of "incredibility to some" knowing more then what we lay people know? Yet, with all that has been said here, where will you bury your experience? How shall it now manifest into your life? What will now "motivate" your science?



"Diamagnetic situation" and what creates these holes in what runs consistently, and we see where such instances "float" the disc. How strange, had you not have arisen from the tribal forest life? To view the situations of all "science life" to see and know more then what taken for granted as thplane flew over head on first take?

Einstein when given the compass saw something strange in his youth? We know better now what that was. All "lay people" are in their youth? All "lay people" can learn? As a "lay person" I will listen very hard to what you are saying.

Fantastic journies



A flight between "heaven and Earth?" Some cherish the Eagle for seeing.

"Warren Seagull" is a wonderful bird? :) Parodies, will break us free?

Friday, December 09, 2005

Laughlin, Reductionism, Emergence

I am still operating from the idea of Xtra-Dimensions. What motivating force would have brought such a quantum gravity group together and the aspect it might have spoken from? What mysterious forces motivates all these ladies/ gentlemen?

Everyone knows that human societies organize themselves. But it is also true that nature organizes itself, and that the principles by which it does this is what modern science, and especially modern physics, is all about. The purpose of my talk today is to explain this idea.



Can I hardly leave this post written below in my linked coment without some further explanantion?

Sean:
You have to be careful about words like “emergent,” because it has pre-existing connotations that may or may not be relevant to how the theory ends up actually working.


You know for me it became the quest to understand what the basis of reality was. So if one is given perspective to think about from different angles, then the very idea of a "emergent process unfolding from the quantum gravity regimes", then it would have been a truly ground breaking acknowledgement of what the basis of reality really is?

Plato:
I would have thought the modifications to GR might have signalled some truth to what was emergent(although this would ask us what that quantum geometry is?) from a condense matter perspective, as Witten saids below.

I also heard Robert Laughlin say, it didn’t matter if you use bricks or sargeant majors?

I had trouble with this ,and looking at CFT on the horizon, it made me think of string as a fifth dimensional component within the blackhole. Is this wrong and misleading, not to have looked at the spacetime fabric a a graviton constituent since these modifications were made to GR?


My thoughts were developing in perspectve as I did my own research, so all of a sudden the basis of the views that I was capturing started to make sense. What were people doing with the very ideaas of this theory of everything?


Witten:
One thing I can tell you, though, is that most string theorist’s suspect that spacetime is a emergent Phenomena in the language of condensed matter physics.


The Elephant?

Now having given the poem there for Sean's introduction to Mind and the poetry, we are given a sense of what the historical issues plaguing the ideas of quantum gravity? Filled with the perplex of citizens of a town? To have the proverb, this hinduist portrayal, Sufi expressed, as a lessson in our attempts to understand. It was not me, who first used John Saxes poem in the Physics realms, so do you know who this was?




So now we have this condense matter approach to consider? I wonder how well it will do when people share perspective about "this approach" to have taken a strong stance against Robert Laughlin's theory of everything? Where are you Peter Woit? What is your way, that you should be so different from what Lubos is saying below?


Lubos Motl:
All of us agree that some important features of physical phenomena do not depend on the details of underlying physics; many of these phenomena are emergent in character; it is not too important or useful to know quarks or strings in order to study most of the crucial concepts in biology, climate, physics of water, or quantum computing. If Laughlin thinks that other physicists do not realize this fact, then he is fighting a strawman. Most physicists realize these things - and many fundamental physicists actually use very similar mathematical techniques as Laughlin does in his "emergent" approach.


So is there a consensus on how the science of our day recogizes the work that is trying to make iself known, as the truth and the light of the way? What does the elephant represent?

Robert Laughlin:
Likewise, if the very fabric of the Universe is in a quantum-critical state, then the "stuff" that underlies reality is totally irrelevant-it could be anything, says Laughlin. Even if the string theorists show that strings can give rise to the matter and natural laws we know, they won't have proved that strings are the answer-merely one of the infinite number of possible answers. It could as well be pool balls or Lego bricks or drunk sergeant majors.


How far in depth shall our abstract views look, as one uses the math to gaze into the "blackhole of oblivion" and wonder? What constitues the very nature from that very horizon. How shall Robert Laughlin speak on it? How shall he speak about the trigger?

Thursday, November 10, 2005

Timaeus:Laying the Ground rules on Genesis



You all know that you each have a respective hand on the elephant, and thsoe who would contribute their qunatum mathematics are new comers to what had already existed. As the craftsman Plato, I created the elephant in the thought of the man for this time:)


Genesis Timaeus 27c-34a


Sometimes as you read my dialogues you discover the flavour of individuals who had passed through these readings, and in selected words, highlighted the logic with which they would highlight my approach, and speak about science and the way of it?

Had I known that when I wrote this dialogue that minds like Einstein, or a Hooft would travel through these sections, I might then of assigned the "Craftsman" to different people here, as they developed the models of the world, with which this process speaks too.

Let me pick an example then for you and say that this perspectve I select holds one accountable, and recognizes that in this case it is becoming and perishable. A I highlight a section for you and you read you will understand.



Now some of you know that early on in this blog John Baez's view about the soccer ball was most appealing one for consideration, but indeed, the sphere as the closet example could all of a sudden become the ideas for triangulations never crossed my mind. Nor that Max Tegmark would tell us, about the nature of these things.

Is not, as John would like us to have believed? The "soccer ball" is dead, but not my Platomic form. It will remain, and live in the hall of the infamous, as a model of the way the world is created? It's underlying nature? It's "to be," as a Shakespearean thought would also have it's "infliction" on my very own words.

But let me first clarify some things here before I loose myself amongst all mmy writings, as it is difficult to retain the mind of individuals in the characters of these dialogues so that the discourse is found relevant in ways of a future, as I have first shown thus.

Timaeus:
First then, in my judgment, we must make a distinction and ask, What is that which always is and has no becoming; and what is that which is always becoming and never is? That which is apprehended by intelligence and reason is always in the same state; but that which is conceived by opinion with the help of sensation and without reason, is always in a process of becoming and perishing and never really is. Now everything that becomes or is created must of necessity be created by some cause, for without a cause nothing can be created.


Now let me say that if you are to define the rules of the game, then it will be that each would come from their corner, and from these distinctive positions, bias themselves to what I had always laid first before you.

So the ground rules had been laid long before any of you would speak on the ideas of emergence or not, first principle or not, and the defined shapes or not?

So by these implications you have to then known the logic with which you would approach this discourse with science and all who have used my dialogues :)

Lee Smolin:
-Stick to the issues raised. If someone raises a criticism, whether its done according to your standards of rhetoric or not, just answer the substantial science issue. Don’t waste our time with discussion about anything else. Don’t respond to a criticism on a specific point by changing the subject.

-No personal attacks, absolutely none. If someone has a Ph.D., then they are credentialed. Discuss with them in good faith and with respect.

-Let’s strive to agree on facts before discussing interpretation. Insist on precision and honesty, don’t allow exaggeration, and admit it gracefully when you are wrong or when the evidence does not support something you would like to be true. If someone questions the status of a claim, don’t say “everyone I respect believes X is true.” Say, X is in fact unproven, but there is evidence for it, which is exactly the following….

-Listen carefully to those professional colleagues who read the evidence differently from you, and try to understand sympathetically and in good faith, why they do so.

-Restrain your own communities. Make it clear that it is not acceptable to you when those in your committee insult others or publish or post things that are exaggerated or false. If someone insists on behaving badly, it is up to their community to restrain them. Make it clear that repeatedly treating colleagues disrespectfully in a public forum amounts to professional misconduct. The same is true for repeated cases of knowingly exaggerated or misleading statements in a public forum.

If we can all agree to some basic rules like this I am optimistic that we-and science- will come out better from the debates ahead.


While Lubos has some ideas of his own here, then it seems fair that we should work on these "ground rules" so that each understands that when they step on stage, they had both agreed to the plot that would take hold of science for all to see.

Lubos Motl:
These rules are, first of all, a proposal for a complete and thorough politicization of all of science. The first point is that personal integrity (or scientific integrity) is a very subjective thing that a person simply has or has not. And people will never agree whether certain things have been honest or not.



So if Lee Smolin, sets the "ground rules" while Lubos seeks to develope clarity from position and Clifford the stage, then we would know that your bias's would have to be put aside, in order to proceed. Previous conversations failed, Lubos and Lee:)I have watched your respective positions and felt Lee's feelings on trying, but never really succeeding, to adventure respective positions as one would have put it on stage. The Krauss issue timing is impecabble not for book publicity gain but for how one were to develope the scripts of science in dicussion.

At these meetings of mind, the idealization had been first spelt out in my story of Timaeus, now it is your turn as "to be" the Shakespeare, Einstein or t"hooft would be.

Tuesday, April 05, 2005

Einstein's Bubble

If we wanted to understand this motivation and analogy using Einstein's bubble, how could we move this motivation to consider it's first expression, lies wihtin the bath of possibilties?

One needed to see this physics process in its whole harmonious view, to understand that even strings only tells us part of the story. If we disc the supersymmetrical reality, then how will you ever assume that this emergence had to come from some situation. That it is described by recognizing the pre-existing steps that will make this supersymmetrical reality possible for such expressions?


Afshar has done a variation of the standard two-pin-hole "welcher-Weg" optics experiment, in which he demonstrates that wave interference is present even when one is determining through which pinhole a photon passes. This result is in direct contradiction to Neils Bohr's Principle of Complementarity, which would require in the quantum world that when one is measuring particle properties [formerly read "measuring quantum properties" -KC], all wave interference phenomena must vanish. Afshar's trick is to find the location of the minimum points of wave interference, place one or more wires at these minimum points, and observe how much light is intercepted when one is determining the pinhole through which the photons passed.


I just wanted to add the following little blurb to show that the idea used here by John Cramer is one that many people like to use when we come to describing things if they contain others ways of describing?


Nathan Seiberg, a colleague of Witten's at the IAS, uses the analogy of blind men examining an elephant to explain the course of string theory until 1995. "One describes touching a leg, one describes touching a trunk, another describes the ears," he says. "They come up with different descriptions but they don't see the big picture. There is only one elephant and they describe different parts of it."The Guardian


So in this context John Cramer takes us through some information for consideration. This is also in context of the Welcher Weg experiment that is introduced on Lubos's site. Had he some search function I am sure he can take us directly to his continue discourse on this topic to help us orientate a better view of the issues. A little nudge again, like he's going to listen to what I have to say, eh?:)


The Blind Men and the Quantum: Adding Vision to the Quantum World

Question (Albert Einstein):

If a photon is detected at Detector A, how does the photon’s wave function Y at the location of Detectors B & C know that it should vanish?

Situation: A photon is emitted from an isotropic source. Its spherical wave function Y expands like an inflating bubble. It reaches a detector, and the Y bubble “pops” and disappears.

Thursday, January 20, 2005

Is Everyone Declaring their Position Clearly?

"Most string theorists are very arrogant," says Seiberg with a smile. "If there is something [beyond string theory], we will call it string theory."


I am going to comment on Peter Woit's reference to the article called String Fellows he has highlight from the Guardian.

Here's what Nathan Seiberg mentions and points to the difficulty of finding the means to describe the microstates of quantum geometry. I wanted to place his statement, in context of a poem earlier written. So I'll post his comment, and then link to the appropriate source for consideration. It's getting a little worn out already, without us constantly being reminded:)



Nathan Seiberg, a colleague of Witten's at the IAS, uses the analogy of blind men examining an elephant to explain the course of string theory until 1995. "One describes touching a leg, one describes touching a trunk, another describes the ears," he says. "They come up with different descriptions but they don't see the big picture. There is only one elephant and they describe different parts of it."The Guardian


Now I most definitely see there is a great wish to eliminate any familiarity with dimensional anaylsis in regards to Peter Woit, that I find many others now, all of a sudden clarfying for us the model distinctions that are being used, and I think Peter Woit understands this?

Model Building

I am not like the kind of people who would like to eliminate (and often they DO eliminate) every piece of data that is inconvenient to them. And moreover I think that John Ellis is an interesting person with inspiring ideas, and I have absolutely no reason to try to verbally eliminate him from some group---Posted by Luboš Motl at January 20, 2005 08:32 AM
.

In delving into the issue of dimenisons it has become pretty clear there are intelligent people who have paved the roads for us to count to the fourth dimension for sure and we have also heard, there is no such things as dimensions? So what the heck does this mean.

Maybe a expanded version of dimension is needed? But if you do this, you might go beyond string theory?:) Which of course brings me to the issue, that if dimension is to be used to the fourth, then anything that goes beyond the fourth if not a dimension has to be something else? Of course giving room to grow being expounded here, tells us what is beyond string theory, to have said, we are going beyond the standard model?


THOMAS BANCHOFF has been a professor of mathematics at Brown University in Providence, Rhode Island, since 1967. He has written two books and fifty articles on geometric topics, frequently incorporating interactive computer graphics techniques in the study of phenomena in the fourth and higher dimensions


With John Ellis' reference to what took place at Cern in 2003 brings to a head the idea of dimension, as it has been expounded by Thomas in regards to computer screens?

Today, however, we do have the opportunity not only to observe phenomena in four and higher dimensions, but we can also interact with them. The medium for such interaction is computer graphics. Computer graphic devices produce images on two-dimensional screens. Each point on the screen has two real numbers as coordinates, and the computer stores the locations of points and lists of pairs of points which are to be connected by line segments or more complicated curves. In this way a diagram of great complexity can be developed on the screen and saved for later viewing or further manipulation


As a reality greatly expanded from what the internet used to be, refering to the Cern Article. If you accept the conceptualization of higher dimension then indeed the work that Thomas moved into, was mind expanding and thought provoking in regards to the animations and reality in front of you with this two dimensional screen?

So has this computer screen okayed the analogy to the fifth dimension?

So What is this Dimenisonal Archetecture Built On?

3-d: no hidden dimensions 1/R2 in F = G(m1 x m2)(1/R2)
4-d: one “ “ 1/R3 replaces 1/R2
5-d: two “ “ 1/R4 “
6-d: three “ “ 1/R5 “

and so on.

The rule is that for n hidden dimensions the gravitational force falls off with the inverse (n + 2 ) power of the distance R. This implies that as we look at smaller and smaller distances (by banging protons together in particle accelerators) the force of gravity should look stronger and stronger. How much stronger depends on the number of hidden dimensions (and how big they are). There may be enough hidden dimensions to unify the all the forces (including gravity) at an energy level of around 1 TeV (1012 eV), corresponding to around 10-19 meters. This would be a solution to the hierarchy problem of the vast difference in energy scale between the three standard gauge forces and gravity. This is already partly solved by supersymmetry (as mentioned previously); but this new idea would be a more definitive solution--if it were the right solution!




Thursday, December 09, 2004

Quantum Geometry

Mathematics is not the rigid and rigidity-producing schema that the layman thinks it is; rather, in it we find ourselves at that meeting point of constraint and freedom that is the very essence of human nature.
- Hermann Weyl

I know I said I would post the discussion between Susskind and Smolin again for refreshing but I wanted to post the issue of Quantum Geometry first and then move there.

My area of research is superstring theory, a theory that purports to give us a quantum theory of gravity as well as a unified theory of all forces and all matter. As such, superstring theory has the potential to realize Einstein's long sought dream of a single, all encompassing, theory of the universe. One of the strangest features of superstring theory is that it requires the universe to have more than three spatial dimensions. Much of my research has focused on the physical implications and mathematical properties of these extra dimensions --- studies that collectively go under the heading "quantum geometry".

Quantum geometry differs in substantial ways from the classical geometry underlying general relativity. For instance, topology change (the ``tearing" of space) is a sensible feature of quantum geometry even though, from a classical perspective, it involves singularities. As another example, two different classical spacetime geometries can give rise to identical physical implications, again at odds with conclusions based on classical general relativity.


If one did not understand where this geometry will begin, then it does not make much sense for a person to consider the mathematics that will arise from this situation?

The Elegant Universe, by Brian Greene, pg 231 and Pg 232

"But now, almost a century after Einstein's tour-de-force, string theory gives us a quantum-mechanical discription of gravity that, by necessity, modifies general relativity when distances involved become as short as the Planck length. Since Reinmannian geometry is the mathetical core of genral relativity, this means that it too must be modified in order to reflect faithfully the new short distance physics of string theory. Whereas general relativity asserts that the curved properties of the universe are described by Reinmannian geometry, string theory asserts this is true only if we examine the fabric of the universe on large enough scales. On scales as small as planck length a new kind of geometry must emerge, one that aligns with the new physics of string theory. This new geometry is called, quantum geometry."


So I have shown I thnk the importance of the math involved and how it might address the quantum nature of the world in small things. We find, we can be quite comfortable in looking at the achievemets of Einstein, in leading us to a good perception about things on a cosmological scale. But moving back to the "quantum geometry," what are we describing here?

Quantum gravity is perhaps the most important open problem in fundamental physics. It is the problem of merging quantum mechanics and general relativity, the two great conceptual revolutions in the physics of the twentieth century. The loop and spinfoam approach, presented in this book, is one of the leading research programs in the field. The first part of the book discusses the reformulation of the basis of classical and quantum Hamiltonian physics required by general relativity. The second part covers the basic technical research directions. Appendices include a detailed history of the subject of quantum gravity, hard-to-find mathematical material, and a discussion of some philosophical issues raised by the subject. This fascinating text is ideal for graduate students entering the field, as well as researchers already working in quantum gravity. It will also appeal to philosophers and other scholars interested in the nature of space and time.

The same vigor with which string theory/M theory is attack for is fundamental points about the nature of the geometric world is no less important then what achivements and attempts are made by Rovelli. Each aspect of the societal influence theoretists and physics people engage in, is part and parcel of the individuals who are, hands on with the Elephant.


Edward Witten

Reflections on the Fate of Spacetime








Thursday, November 25, 2004

The Six Men and the Elephant

I'd like to embrace all those who are attempting to speak in regards to quantum gravity. This is a common poem, that reflects the efforts and differing perspectives at trying to descibe a world that is very much in the understanding below the planck epoch.

If we acknowledge the structural integrity that we assign strings and loops this then can embrace solidified positions, to the understanding that we may differ in those same positions. Logically the perspectives are even displayed very nicely in this poem? Wall, Spear, Snake, Tree, Fan, and Rope.

What taste comes to mind, and we have this same inabiltiy to express the intangible yet we have engaged mathematically something very real?





The Blind Men and the Elephant
John Godfrey Saxe (1816-1887)

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
"God bless me! but the Elephant
Is very like a WALL!"


The Second, feeling of the tusk,
Cried, "Ho, what have we here,
So very round and smooth and sharp?
To me 'tis mighty clear
This wonder of an Elephant
Is very like a SPEAR!"

The Third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up and spake:
"I see," quoth he, "the Elephant
Is very like a SNAKE!"

The Fourth reached out an eager hand,
And felt about the knee
"What most this wondrous beast is like
Is mighty plain," quoth he:
"'Tis clear enough the Elephant
Is very like a TREE!"

The Fifth, who chanced to touch the ear,
Said: "E'en the blindest man
Can tell what this resembles most;
Deny the fact who can,
This marvel of an Elephant
Is very like a FAN!"

The Sixth no sooner had begun
About the beast to grope,
Than seizing on the swinging tail
That fell within his scope,
"I see," quoth he, "the Elephant
Is very like a ROPE!"

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!