Showing posts with label Earth. Show all posts
Showing posts with label Earth. Show all posts

Monday, January 08, 2007

Hubble Maps the Cosmic Web of "Clumpy" Dark Matter in 3-D


Three-Dimensional Distribution of Dark Matter in the Universe
This three-dimensional map offers a first look at the web-like large-scale distribution of dark matter, an invisible form of matter that accounts for most of the universe's mass. This milestone takes astronomers from inference to direct observation of dark matter's influence in the universe. Because of the finite speed of light, regions furthest away are also seen as they existed a long time ago. The map stretches halfway back in time to the beginning of the universe.

The map reveals a loose network of dark matter filaments, gradually collapsing under the relentless pull of gravity, and growing clumpier over time. This confirms theories of how structure formed in our evolving universe, which has transitioned from a comparatively smooth distribution of matter at the time of the big bang. The dark matter filaments began to form first and provided an underlying scaffolding for the subsequent construction of stars and galaxies from ordinary matter. Without dark matter, there would have been insufficient mass in the universe for structures to collapse and galaxies to form.


Part of this reporting is the way in which one could look at the Cosmos and see the gravitational relationships, as one might see it in relation to "Lagrangian views" in the Sun Earth Relation.


Diagram of the Lagrange Point gravitational forces associated with the Sun-Earth system.


Make sure you click on the image for further information. Mouseovers as your cursor is placed over images or worded links are equally important. You learn about satellites and the way they travel through these holes.

While one can see "dark matter" in terms of it's constraints, what of "dark energy" as it makes it way through those holes? This reveals the expansionary nature in terms of dark energy being repelled, whether you like to think so or not. This explains the dark energy developing free of the dark matter constraints and explains the state of our universe.


LSST Homepage background image. (Image credit: LSST Corporation, Bryn Feldman) Design of LSST Telescope dome and local facilities, current as of January 2007. Google Inc. has joined with nineteen other organizations to build the Large Synoptic Survey Telescope, scheduled to see first light atop Cerro Pachón in Chile in 2013.
The Large Synoptic Survey Telescope (LSST) is a proposed ground-based 8.4-meter, 10 square-degree-field telescope that will provide digital imaging of faint astronomical objects across the entire sky, night after night. In a relentless campaign of 15 second exposures, LSST will cover the available sky every three nights, opening a movie-like window on objects that change or move on rapid timescales: exploding supernovae, potentially hazardous near-Earth asteroids, and distant Kuiper Belt Objects. The superb images from the LSST will also be used to trace billions of remote galaxies and measure the distortions in their shapes produced by lumps of Dark Matter, providing multiple tests of the mysterious Dark Energy.



Two simulations of strong lensing by a massive cluster of galaxies. In the upper image, all the dark matter is clumped around individual cluster galaxies (orange), causing a particular distortion of the background galaxies (white and blue). In the lower image, the same amount of mass is more smoothly distributed over the cluster, causing a very different distortion pattern.


Here in this post the example of "how one may see" is further expounded upon to show how dark matter and dark energy are in action as a 90% aspect of the cosmos, while the remaining 10% is a discrete measure of what is cosmologically matter orientated. We don't loose sight of these relationships, but are helped to further develope them in terms of this gravitational relationship.

See:
  • Dark Matter in 3D
  • COSMOS Reveals the Cosmos
  • Tuesday, January 02, 2007

    The Sun's Before Us

    The Cosmic Ray of Creation

    We are "shadows" of the Sun's creations.


    Sometimes it good to go back to "the beginning" so that one can see the context of what exists in reality, has a much "greater story to tell" then what we of the real world live under.

    Those of science, have been focused in their own worlds. We just had to understand why they were so absorbed.

    "String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap. This increases the number of 'down' neutrinos detected. At the same time, the creation of black holes causes 'up' neutrinos to be caught in the Earth's crust, reducing the number of 'up' neutrinos. The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."


    Who is to know of what is sent to earth, and not understand, that what happens above us, also happens within the LHC?


    Jacque Distler:

    Travis Stewart reports that the LHC’s ATLAS detector has seen cosmic ray events, an excellent sign that things are working as they should.


    One does not have to think, or be insulted by "such stories" that have captured minds in our history. The "ideas of cultures" are pervaded by such religious practises and context, by the fascination of some greater being? Having worked with them long enough?

    As a scientist, you know your place in the world. Yet, you dream of such "fantastical stories." About things travelling through the little towns in Europe, as if, seeing the "Overlords of Science." Like some futuristic God making it's way through the town of some primitive era on earth. "Shocked people" looking from windows, as this enormous object in the "war of the worlds," has finally come upon us.

    The article traces in non-technical language the historical development of our understanding of nuclear fusion reactions as the source of stellar energy, beginning with the controversy over the age of the sun and earth between Darwin and Kelvin, and including the discovery of radioactivity, the experimental demonstration that four hydrogen nuclei are heavier than a helium nucleus, and the theoretical insights provided by Einstein, Gamow, and Bethe. The concluding sections concern solar neutrino experiments that were designed to test the theory of stellar evolution and which, in the process, apparently revealed new aspects of microscopic physics.


    It is important that one understands that such a thing having been studied by our scientists, is still a "noble thing." Where we learn to understand what these things could represent symbolically? Enlightenment possibly? When all the understanding of the "Neutrino overlords" are understood in their place and time.



    The winged sun was an ancient (3rd millennium BC) symbol of Horus, later identified with Ra.
    A solar deity is a god or goddess who represents the sun, or an aspect of it. People have worshipped the sun and solar deities for all of recorded history; sun worship is also known as heliolatry. Hence, many beliefs and legends have been formed around this worship, most notably the various myths containing the "missing sun" motif from around the world. Although many sources contend that solar deities are generally male, and the brother, father, husband and/or enemy of the lunar deity (usually female), this is not cross-culturally upheld, as sun goddesses are found on every continent. Some mythologists, such as Brian Branston, therefore contend that sun goddesses are more common worldwide than their male counterparts. They also claim that the belief that solar deities are primarily male is linked to the fact that a few better known mythologies (such as those of ancient Greece and Egypt) sometimes break from this rule. The dualism of sun/male/light and moon/female/darkness is found in many (but not all) European traditions that derive from Orphic and Gnostic philosophies, with a notable exception being Germanic mythology, where the Sun is female and the Moon is male.

    Sun worship is a possible origin of henotheism and ultimately monotheism. In ancient Egypt's Eighteenth Dynasty, Akhenaten's heretical Atenism used the old Aten solar deity as a symbol of a single god. The neolithic concept of a solar barge, the sun as traversing the sky in a boat, is found in ancient Egypt, with Ra and Horus. Proto-Indo-European religion has a solar chariot, the sun as traversing the sky in a chariot. At Roman Empire, a festival of the birth of the Unconquered Sun (or Dies Natalis Solis Invicti) was celebrated when the duration of daylight first begins to increase after the winter solstice, — the "rebirth" of the sun. In Germanic mythology this is Sol, in Vedic Surya and in Greek Helios and (sometimes) Apollo. Mesopotamian Shamash plays an important role during the Bronze Age, and "my Sun" is eventually used as an address to royalty. Similarly, South American cultures have emphatic Sun worship, see Inti. See also Sol Invictus.

    Monday, January 01, 2007

    Symmetries Can be Chaotically Complex



    Imagine in an "action of a kind" you start off from one place. A photon travelling through a slit of Thomas Young's, to get through "a world" to the other side. Sounds like some fairy tale doesn't it? Yet, "the backdrop" is where you started?


    Thomas Young (June 14, 1773 – †May 10,1829)
    was an English scientist, researcher, physician and polymath. He is sometimes considered to be "the last person to know everything": that is, he was familiar with virtually all the contemporary Western academic knowledge at that point in history. Clearly this can never be verified, and other claimants to this title are Gottfried Leibniz, Leonardo da Vinci, Samuel Taylor Coleridge, Johann Wolfgang Goethe and Francis Bacon, among others. Young also wrote about various subjects to contemporary editions of the Encyclopedia Britannica. His learning was so prodigious in scope and breadth that he was popularly known as "Phenomenon Young."



    Simplistically this "massless entity" is affected by the "geometrics of gravity?" Is affected from it's "first light." All the way to some "other point in reality" to some image, called the spectrum.

    I am dreaming. I am walking down the street and there is this "N category cafe."

    Imagine walking off the street into this very public venue and seeing the philosophy shared is also held to certain constraints. :)Philosophy? Yes, we all have our "points of view."

    Travelling the Good Life with Ease

    So in this travel how is one to see this "curve of light" or "slide" and we get this sense of what gravity can do.

    Imagine indeed, "a hole cosmological related" in the three body problem, it has to travel through, and we get this sense of "lensing and distortion," abstractually gravitationally induced?



    So as we look at the cosmos what illusion is perpetrated on our minds as we look into the "great distance of measure" that somehow looking to the journey of "an event local," from our place on and about earth, has not been "chaotically entrained in some way, as we look deep into space?


    The Magic Square
    Plato:Like Pascal, one finds Albrecht has a unique trick, used by mathematicians to hide information and help, to exemplify greater contextual meaning. Now you have to remember I am a junior here in pre-established halls of learning, so later life does not allow me to venture into, and only allows intuitive trials poining to this solid understanding. I hope I am doing justice to learning.


    Moving in abstract spaces

    It was necessary to explain why I added "the image" to the right in my index.

    Some would think me so "esoteric" that I had somehow lost touch with the realities of science? That to follow any further discussion here "has to be announced" to save one's dignity? What ever?:)I am esoteric in that my views of the world come from a different place, not unlike your expression of where you had come from living your life. How would I come to know all that you are in a "single sentence." A single and very short equation? It's really not that easy is it?:)

    So I read you from all the things that you say and get the sense of who you are no different then what is implied in the language of poetic art implied carefully from choosing your words?

    Artistically Inclined?

    I tried to give some hint of the "ideas floating" around in my head. I understand quite well that my challenge has been to get those "images in my head" transmitted onto paper, in a way that one would not become confused as to what is being implied.

    So a good writer I may not be, a "not so good scientist" whose mathematics very ill equipped.

    Thus I am faced with these challenges in the new year? A "recognition" of trying to produce that clarity. Whether in "latex" the symbols of mathematics, it is quite a challenge for me, whilst all these things are still engaged in abstract views of reality.

    So someone like Clifford, may look at Robert by what he has written and say, "hey, my fellow scientists are indeed in trouble" from what Robert has learnt. So I Clifford will provide "the latex sandbox" for you to play in?

    It "appears" I am not alone. My struggle, are to be many a struggle.

    Art and the Abstract

    But to my amazement this morning in checking up the links associated of Clifford's, I was amazed to see the article of, Hooking Up Manifolds

    Now how interesting that what is being displayed there in terms of fun, mathematics, art, could have been so abstractly appealing? "Moving over these surfaces" in ways that one might never appreciated, had you not known about how one can look at the universe in the "two ways mentioned previously," and by simple experiment, transcend such things to art.

    Friday, December 29, 2006

    Wolf-Rayet star

    While I have started off with the definition of the Wolf-Rayet star, the post ends in understanding the aspects of gravity and it's affects, as we look at what has become of these Wolf-Rayet stars in their desimination of it's constituent properties.

    Similar, "in my thinking" to the expansion of our universe?


    Artist's impression of a Wolf-Rayet star
    About 150 Wolf-Rayets are known in our own Milky Way Galaxy, about 100 are known in the Large Magellanic Cloud, while only 12 have been identified in the Small Magellanic Cloud. Wolf-Rayet stars were discovered spectroscopically in 1867 by the French astronomers Charles Wolf and Georges Rayet using visual spectrometery at Paris Observatory.


    There are some thoughts manifesting about how one may have see this energy of the Blue giant. It's as if the examples of what began with great force can loose it's momentum and dissipate very quickly(cosmic winds that blow the dust to different places)?


    Illustration of Cosmic Forces-Credit: NASA, ESA, and A. Feild (STScI)
    Scientists using NASA's Hubble Space Telescope have discovered that dark energy is not a new constituent of space, but rather has been present for most of the universe's history. Dark energy is a mysterious repulsive force that causes the universe to expand at an increasing rate.


    What if the Wolf-Rayet star does not produce the jets that are exemplified in the ideas which begin blackhole creation. Is this part of blackhole development somehow in it's demise, that we may see examples of the 150 Wolf-Rayets known in our own Milky Way as example of what they can become as blackholes, or not.

    Quark to quark Distance and the Metric

    If on such a grand scale how is it thoughts are held in my mind to microscopic proportions may not dominate as well within the periods of time the geometrics develop in the stars now known as Wolf-Rayet. So you use this cosmological model to exemplify micro perspective views in relation to high energy cosmological geometrics.



    Plato:
    "Lagrangian views" in relation may have been one result that comes quickly to my mind. Taking that chaldni plate and applying it to the universe today.


    While I had in the previous post talked about how Lagrangian views could dominate "two aspects of the universe," it is not without linking the idea of what begins as a strong gravitational force to hold the universe together, that over time, as the universe became dominated by the dark energy that the speeding up of inflation could have become pronounced by discovering the holes created in the distances between the planets and their moons. Between galaxies.



    I make fun above with the understanding of satellites travelling in our current universe in relation to planets and moons, as well as galaxies. To have taken this view down to WMAP proportions is just part of what I am trying to convey using very simplistic examples of how one may look at the universe, when gravity dominated the universe's expansion versus what has happened to the universe today in terms of speeding up.


    LOOP-DE-LOOP. The Genesis spacecraft's superhighway path took it to the Earth-sun gravitational-equilibrium point L1, where it made five "halo" orbits before swinging around L2 and heading home.Ross


    If the distances between galaxies have become greater, then what saids that that the ease with which the speeding up occurs is not without understanding that an equilibrium has been attained, from what was once dominate in gravity, to what becomes rapid expansion?

    This book describes a revolutionary new approach to determining low energy routes for spacecraft and comets by exploiting regions in space where motion is very sensitive (or chaotic). It also represents an ideal introductory text to celestial mechanics, dynamical systems, and dynamical astronomy. Bringing together wide-ranging research by others with his own original work, much of it new or previously unpublished, Edward Belbruno argues that regions supporting chaotic motions, termed weak stability boundaries, can be estimated. Although controversial until quite recently, this method was in fact first applied in 1991, when Belbruno used a new route developed from this theory to get a stray Japanese satellite back on course to the moon. This application provided a major verification of his theory, representing the first application of chaos to space travel.

    Since that time, the theory has been used in other space missions, and NASA is implementing new applications under Belbruno's direction. The use of invariant manifolds to find low energy orbits is another method here addressed. Recent work on estimating weak stability boundaries and related regions has also given mathematical insight into chaotic motion in the three-body problem. Belbruno further considers different capture and escape mechanisms, and resonance transitions.

    Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for graduate students and researchers in the disciplines concerned as well as practitioners in fields such as aerospace engineering.

    Thursday, December 21, 2006

    Hubble Finds Evidence for Dark Energy in the Young Universe



    I had to go back to the article for some further reading.


    These snapshots, taken by NASA's Hubble Space Telescope, reveal five supernovae, or exploding stars, and their host galaxies.

    The arrows in the top row of images point to the supernovae. The bottom row shows the host galaxies before or after the stars exploded. The supernovae exploded between 3.5 and 10 billion years ago.

    Astronomers used the supernovae to measure the expansion rate of the universe and determine how the expansion rate is affected by the repulsive push of dark energy, a mysterious energy force that pervades space. Supernovae provide reliable measurements because their intrinsic brightness is well understood. They are therefore reliable distance markers, allowing astronomers to determine how far away they are from Earth.

    Pinpointing supernovae in the faraway universe is similar to watching fireflies in your back yard. All fireflies glow with about the same brightness. So, you can judge how the fireflies are distributed in your back yard by noting their comparative faintness or brightness, depending on their distance from you.

    Only Hubble can measure these supernovae because they are too distant, and therefore too faint, to be studied by the largest ground-based telescopes.

    These Hubble observations show for the first time that dark energy has been a present force for most of the universe's history. A spectral analysis also shows that the supernovae used to measure the universe's expansion rate today look remarkably similar to those that exploded nine billion years ago and are just now seen by Hubble.

    These latest results are based on an analysis of the 24 most distant known supernovae, most of them discovered within the last three years by the Higher-z SN Search Team. The images were taken between 2003 and 2005 with Hubble's Advanced Camera for Surveys.



    Illustration of Cosmic Forces-Credit: NASA, ESA, and A. Feild (STScI)
    Scientists using NASA's Hubble Space Telescope have discovered that dark energy is not a new constituent of space, but rather has been present for most of the universe's history. Dark energy is a mysterious repulsive force that causes the universe to expand at an increasing rate.

    Investigators used Hubble to find that dark energy was already boosting the expansion rate of the universe as long as nine billion years ago. This picture of dark energy is consistent with Albert Einstein's prediction of nearly a century ago that a repulsive form of gravity emanates from empty space.

    Data from Hubble provides supporting evidence that help astrophysicists to understand the nature of dark energy. This will allow scientists to begin ruling out some competing explanations that predict that the strength of dark energy changes over time.

    Researchers also have found that the class of ancient exploding stars, or supernovae, used to measure the expansion of space today look remarkably similar to those that exploded nine billion years ago and are just now being seen by Hubble. This important finding gives additional credibility to the use of these supernovae for tracking the cosmic expansion over most of the universe's lifetime.

    "Although dark energy accounts for more than 70 percent of the energy of the universe, we know very little about it, so each clue is precious," said Adam Riess, of the Space Telescope Science Institute and Johns Hopkins University in Baltimore. Riess led one of the first studies to reveal the presence of dark energy in 1998 and is the leader of the current Hubble study. "Our latest clue is that the stuff we call dark energy was relatively weak, but starting to make its presence felt nine billion years ago."

    To study the behavior of dark energy of long ago, Hubble had to peer far across the universe and back into time to detect supernovae. Supernovae can be used to trace the universe's expansion. This is analogous to seeing fireflies on a summer night. Fireflies glow with about the same brightness, so you can judge how they are distributed in the backyard by their comparative faintness or brightness, depending on their distance from you. Only Hubble can measure these ancient supernovae because they are too distant, and therefore too faint, to be studied by the largest ground-based telescopes.

    Einstein first conceived of the notion of a repulsive force in space in his attempt to balance the universe against the inward pull of its own gravity, which he thought would ultimately cause the universe to implode.

    His "cosmological constant" remained a curious hypothesis until 1998, when Riess and the members of the High-z Supernova Team and the Supernova Cosmology Project used ground-based telescopes and Hubble to detect the acceleration of the expansion of space from observations of distant supernovae. Astrophysicists came to the realization that Einstein may have been right after all: there really was a repulsive form of gravity in space that was soon after dubbed "dark energy."

    Over the past eight years astrophysicists have been trying to uncover two of dark energy's most fundamental properties: its strength and its permanence. These new observations reveal that dark energy was present and obstructing the gravitational pull of the matter in the universe even before it began to win this cosmic "tug of war."

    Previous Hubble observations of the most distant supernovae known revealed that the early universe was dominated by matter whose gravity was slowing down the universe's expansion rate, like a ball rolling up a slight incline. The observations also confirmed that the expansion rate of the cosmos began speeding up about five to six billion years ago. That is when astronomers believe that dark energy's repulsive force overtook gravity's attractive grip.

    The latest results are based on an analysis of the 24 most distant supernovae known, most found within the last two years.

    By measuring the universe's relative size over time, astrophysicists have tracked the universe's growth spurts, much as a parent may witness the growth spurts of a child by tracking changes in height on a doorframe. Distant supernovae provide the doorframe markings read by Hubble. "After we subtract the gravity from the known matter in the universe, we can see the dark energy pushing to get out," said Lou Strolger, astronomer and Hubble science team member at Western Kentucky University in Bowling Green, Ky. Further observations are presently underway with Hubble by Riess and his team which should continue to offer new clues to the nature of dark energy.




    Credit: NASA, ESA, and A. Feild (STScI)

    Tuesday, December 19, 2006

    Cosmic ray spallation


    As this NASA chart indicates, 70 percent or more of the universe consists of dark energy, about which we know next to nothing
    Other explanations of dark energy, called "quintessence," originate from theoretical high-energy physics. In addition to baryons, photons, neutrinos, and cold dark matter, quintessence posits a fifth kind of matter (hence the name), a sort of universe-filling fluid that acts like it has negative gravitational mass. The new constraints on cosmological parameters imposed by the HST supernova data, however, strongly discourage at least the simplest models of quintessence.


    Of course my mind is thinking about the cosmic triangle of an event in the cosmos. So I am wondering what is causing the "negative pressure" as "dark energy," and why this has caused the universe to speed up.


    SNAP-Supernova / Acceleration Probe-Studying the Dark Energy of the Universe
    The discovery by the Supernova Cosmology Project (SCP) and the High-Z Supernova team that the expansion of the universe is accelerating poses an exciting mystery — for if the universe were governed by gravitational attraction, its rate of expansion would be slowing. Acceleration requires a strange “dark energy’ opposing this gravity. Is this Einstein’s cosmological constant, or more exotic new physics? Whatever the explanation, it will lead to new discoveries in astrophysics, particle physics, and gravitation.


    By defining the context of particle collisions it was evident that such a place where such a fluid could have dominated by such energy in stars, are always interesting as to what is ejected from those same stars. What do those stars provide for the expression of this universe while we are cognoscente of the "arrow of time" explanation.


    This diagram reveals changes in the rate of expansion since the universe's birth 15 billion years ago. The more shallow the curve, the faster the rate of expansion.


    So of course these thoughts are shared by the perspective of educators to help us along. But if one did not understand the nature of the physical attributes of superfluids, how would one know to think of the relativistic conditions that high energy provides for us?


    NASA/WMAP Scientific Team: Expanding Universe



    So recognizing where these conditions are evident would be one way in which we might think about what is causing a negative pressure in the cosmos.

    Given the assumption that the matter in the universe is homogeneous and isotropic (The Cosmological Principle) it can be shown that the corresponding distortion of space-time (due to the gravitational effects of this matter) can only have one of three forms, as shown schematically in the picture at left. It can be "positively" curved like the surface of a ball and finite in extent; it can be "negatively" curved like a saddle and infinite in extent; or it can be "flat" and infinite in extent - our "ordinary" conception of space. A key limitation of the picture shown here is that we can only portray the curvature of a 2-dimensional plane of an actual 3-dimensional space! Note that in a closed universe you could start a journey off in one direction and, if allowed enough time, ultimately return to your starting point; in an infinite universe, you would never return.


    Of course it is difficult for me to understand this process, but I am certainly trying. If one had found that in the relativistic conditions of high energy scenarios a "similarity to a flattening out" associated with an accelerating universe what would this say about information travelling from the "origins of our universe" quite freely. How would this effect dark energy?

    In physics, a perfect fluid is a fluid that can be completely characterized by its rest frame energy density ρ and isotropic pressure p.

    Real fluids are "sticky" and contain (and conduct) heat. Perfect fluids are idealized models in which these possibilities are neglected. Specifically, perfect fluids have no shear stresses, viscosity, or heat conduction.

    In tensor notation, the energy-momentum tensor of a perfect fluid can be written in the form

    [tex] T^{\mu\nu}=(\rho+p)\, U^\mu U^\nu + P\, \eta^{\mu\nu}\,[/tex]



    where U is the velocity vector field of the fluid and where ημν is the metric tensor of Minkowski spacetime.

    Perfect fluids admit a Lagrangian formulation, which allows the techniques used in field theory to be applied to fluids. In particular, this enables us to quantize perfect fluid models. This Lagrangian formulation can be generalized, but unfortunately, heat conduction and anisotropic stresses cannot be treated in these generalized formulations.

    Perfect fluids are often used in general relativity to model idealized distributions of matter, such as in the interior of a star.


    So events in the cosmos ejected the particles, what geometrical natures embued such actions, to have these particle out in space interacting with other forms of matter to create conditions that would seem conducive to me, for that negative pressure?

    Cosmic ray spallation is a form of naturally occurring nuclear fission and nucleosynthesis. It refers to the formation of elements from the impact of cosmic rays on an object. Cosmic rays are energetic particles outside of Earth ranging from a stray electron to gamma rays. These cause spallation when a fast moving particle, usually a proton, part of a cosmic ray impacts matter, including other cosmic rays. The result of the collision is the expulsion of large members of nucleons (protons and neutrons) from the object hit. This process goes on not only in deep space, but in our upper atmosphere due to the impact of cosmic rays.

    Cosmic ray spallation produces some light elements such as lithium and boron. This process was discovered somewhat by accident during the 1970s. Models of big bang nucleosynthesis suggested that the amount of deuterium was too large to be consistent with the expansion rate of the universe and there was therefore great interest in processes that could generate deuterium after the big bang.

    Cosmic ray spallation was investigated as a possible process to generate deuterium. As it turned out, spallation could not generate much deuterium, and the excess deuterium in the universe could be explained by assuming the existence of non-baryonic dark matter. However, studies of spallation showed that it could generate lithium and boron. Isotopes of aluminum, beryllium, carbon(carbon-14), chlorine, iodine and neon, are also formed through cosmic ray spallation.



    Talk about getting tongue tied, can you imagine, "these fluctuations can generate their own big bangs in tiny areas of the universe." Read on.


    Photo credit: Lloyd DeGrane/University of Chicago News Office
    Carroll and Chen’s scenario of infinite entropy is inspired by the finding in 1998 that the universe will expand forever because of a mysterious force called “dark energy.” Under these conditions, the natural configuration of the universe is one that is almost empty. “In our current universe, the entropy is growing and the universe is expanding and becoming emptier,” Carroll said.

    But even empty space has faint traces of energy that fluctuate on the subatomic scale. As suggested previously by Jaume Garriga of Universitat Autonoma de Barcelona and Alexander Vilenkin of Tufts University, these fluctuations can generate their own big bangs in tiny areas of the universe, widely separated in time and space. Carroll and Chen extend this idea in dramatic fashion, suggesting that inflation could start “in reverse” in the distant past of our universe, so that time could appear to run backwards (from our perspective) to observers far in our past.

    Friday, December 15, 2006

    Johannes Kepler: The Birth of the Universe

    I measured the skies, now the shadows I measure,
    Sky-bound was the mind, earth-bound the body rests
    Kepler's epitaph for his own tombstone


    I always like to go back as well and learn the historical, for it seems to pave the way for how our good scientists of the day, use these times to begin their talks.

    From the outset, then, symmetry was closely related to harmony, beauty, and unity, and this was to prove decisive for its role in theories of nature. In Plato's Timaeus, for example, the regular polyhedra are afforded a central place in the doctrine of natural elements for the proportions they contain and the beauty of their forms: fire has the form of the regular tetrahedron, earth the form of the cube, air the form of the regular octahedron, water the form of the regular icosahedron, while the regular dodecahedron is used for the form of the entire universe. The history of science provides another paradigmatic example of the use of these figures as basic ingredients in physical description: Kepler's 1596 Mysterium Cosmographicum presents a planetary architecture grounded on the five regular solids.


    Perhaps on an "asymmetrical recognition" of what becomes the "matter distinctions" of form, from "another world perspective" to what beauty and harmony mean and housed within the definitions of symmetry.

    So while you may have been fast track by Lee Smolin in his lecture talk in Paris of 2006, think carefully about what the Platonic tradition means, and what is revealed of the "asymmetrical/entropically challenged views developed from the high energy sector.


    Johannes Kepler (December 27, 1571 – November 15, 1630)
    For instance, Kepler was explicit about the intellectual safeguards that, in his view, the Christian faith provided for scientific speculation. In connection with the apriorism of the world view of antiquity (a good example is the Platonic dictum Ex nihilo nihil fit—nothing is made from nothing), he wrote: "Christian religion has put up some fences around false speculation in order that error may not rush headlong" (Introduction to Book IV of Epitome astronomae copernicanae, c1620, in Werke Vol. VII p. 254).


    So even though Platonic contrast the Pythagorean views, Plato has an idea about what existed before all things manifested. So to think such solids could have made their way into the various forms, what were these descriptions, if not for the very idea of the birth of the universe of Kepler's time?


    Kepler's Platonic solid model of the Solar system from Mysterium Cosmographicum (1596)


    So in speaking to the information based on symmetries how could one have formed their perspectve and then lined up one line of thought with another?

    Philosophically, permutation symmetry has given rise to two main sorts of questions. On the one side, seen as a condition of physical indistinguishability of identical particles (i.e. particles of the same kind in the same atomic system), it has motivated a rich debate about the significance of the notions of identity, individuality, and indistinguishability in the quantum domain. Does it mean that the quantum particles are not individuals? Does the existence of entities which are physically indistinguishable although “numerically distinct” (the so-called problem of identical particles) imply that the Leibniz's Principle of the Identity of Indiscernibles should be regarded as violated in quantum physics? On the other side, what is the theoretical and empirical status of this symmetry principle? Should it be considered as an axiom of quantum mechanics or should it be taken as justified empirically? It is currently taken to explain the nature of fermionic and bosonic quantum statistics, but why do there appear to be only bosons and fermions in the world when the permutation symmetry group allows the possibility of many more types? French and Rickles (2003) offers an eccellent and updated overview of the above and related issues.

    Thursday, December 14, 2006

    Against Symmetry

    The term “symmetry” derives from the Greek words sun (meaning ‘with’ or ‘together’) and metron (‘measure’), yielding summetria, and originally indicated a relation of commensurability (such is the meaning codified in Euclid's Elements for example). It quickly acquired a further, more general, meaning: that of a proportion relation, grounded on (integer) numbers, and with the function of harmonizing the different elements into a unitary whole. From the outset, then, symmetry was closely related to harmony, beauty, and unity, and this was to prove decisive for its role in theories of nature. In Plato's Timaeus, for example, the regular polyhedra are afforded a central place in the doctrine of natural elements for the proportions they contain and the beauty of their forms: fire has the form of the regular tetrahedron, earth the form of the cube, air the form of the regular octahedron, water the form of the regular icosahedron, while the regular dodecahedron is used for the form of the entire universe. The history of science provides another paradigmatic example of the use of these figures as basic ingredients in physical description: Kepler's 1596 Mysterium Cosmographicum presents a planetary architecture grounded on the five regular solids.





    The basic difference that I see is the way in which Lee Smolin adopts his views of what science is in relation too, "Two traditions in the search for fundamental Physics."

    It is strange indeed to see perfection of Lee Smolin's comparison and having a look further down we understand the opening basis of his philosophical thoughts in regards to the title "against symmetry?"

    Some reviews on the "Trouble With Physics," by Lee Smolin

  • Seed Magazine, August 2006
  • Time magazine August 21, 2006
  • Discover Magazine, September 2006 &
  • Scientific American, September 2006
  • Wired September 2006:15 :
  • The Economist, Sept 14, 2006
  • The New York Times Book review, Sep 17, 2006 by Tom Siegfried
  • The Boston Globe, Sept 17, 2006
  • USA Today, Sept 19, 2006
  • The New York Sun, by Michael Shermer, Sept 27, 2006
  • The New Yorker,  by Jim Holt Sept 25,2006
  • The LA Times, by K C Cole, Oct 8, 2006
  • Nature,
  • by George Ellis (Nature 44, 482, 5 Oct. 2006)
  • San Fransisco Chronicle , by Keay Davidson, Oct 13, 2006
  • Dallas Morning News, by FRED BORTZ, Oct 15, 2006
  • Toronto Star, by PETER CALAMAI, Oct 15, 2006


  • But before I begin in that direction I wanted people to understand something that is held in the mind of the "condense matter theorist." In terms of the building blocks of nature. This is important basis of understanding, that any building block could emergent from anything, we had to identify where this symmetry existed, before it manifested in the "matter states of reality."

    Everyone knows that human societies organize themselves. But it is also true that nature organizes itself, and that the principles by which it does this is what modern science, and especially modern physics, is all about. The purpose of my talk today is to explain this idea.


    So it is important to understand what is emergent and what exists in the "theory of everything" if it did not consider the context of symmetry? AS a layman trying to get underneath the thinking process of any book development, it is important to me.

    Symmetry considerations dominate modern fundamental physics, both in quantum theory and in relativity. Philosophers are now beginning to devote increasing attention to such issues as the significance of gauge symmetry, quantum particle identity in the light of permutation symmetry, how to make sense of parity violation, the role of symmetry breaking, the empirical status of symmetry principles, and so forth. These issues relate directly to traditional problems in the philosophy of science, including the status of the laws of nature, the relationships between mathematics, physical theory, and the world, and the extent to which mathematics dictates physics.


    The idea here then is to find super strings place within context of the evolving universe, in terms of, "the microseconds" and not the "first three minutes" of Steven Weinberg.

    So it is important to see the context with which this discussion is taking place, in terms of the high energy and from that state of existence to what entropically manifests into the universe now.

    Confronting A Position Adopted By Lee Smolin


    A sphere with three handles (and three holes), i.e., a genus-3 torus.

    This is only "one point of contention" that was being addressed at Clifford Johnson's Asymptotia.

    Jacques Distler :

    This is false. The proof of finiteness, to all orders, is in quite solid shape. Explicit formulæ are currently known only up to 3-loop order, and the methods used to write down those formulæ clearly don’t generalize beyond 3 loops.

    What’s certainly not clear (since you asked a very technical question, you will forgive me if my response is rather technical) is that, beyond 3 loops, the superstring measure over supermoduli space can be “pushed forward” to a measure over the moduli space of ordinary Riemann surfaces. It was a nontrivial (and, to many of us, somewhat surprising) result of d’Hoker and Phong that this does hold true at genus-2 and -3.


    There is no doubt that the "timeliness of statements" can further define, support or not, problems that are being discussed. I don't mind being deleted on the point of the post above, because our good scientist's are getting into the heat of things. I am glad Arun stepped up to the plate.

    Part of finally coming to some head on debate, was seeing how Peter Woit along with Lee Smolin were being challlenged for their views, while there had been this ground swell created against a model that was developed, like Loop quantum gravity was developed. One of the two traditions in search for the fundamental physics. Loop qunatum Gravity and String theory(must make sure there is the modification to M theory?) Shall this be included?


    Click on link Against symmetry (Paris, June 06)

    But as they are having this conversation, it is this openness that they have given of themselves that we learn of the intricacies of the basis of arguments, so the public is better informed as to what follows and what has to take place.


    Against symmetry (Paris, June 06)

    So while this issue is much more complex then just the exchange there, I have not forgotten what it is all about. Or why one may move from a certain position after they have summarize the views they had accumulated with regards to the subject of String/M theory as a model that has out lived it's usefulness, in terms of not providing a experimental frame work around it.

    Sunday, December 10, 2006

    Universal Library

    Commerce is of trivial import; love, faith, truth of character, the aspiration of man, these are sacred.Ralph Waldo Emerson




    "It is perhaps the oldest university in the world."


    Can you imagine if one might have been restricted from the museums of history, based on what another might have thought of the person? To encourage such ideas to blossom, that it is understood the garden has to provide a source from which things can grow. Why not circumvent all views other then one's own, and you shall own those person's too.

    If we are to keep one in "ignorance of life" then why not circumvent them to what the world is for them in "their sections and houses on earth? Keep them, to the culture, and not allow for the greater dialogue between these cultures?

    While the historical blend here is being extolled, I of course have current thoughts about this in todays world of the internet.


    Reconstruction of one of the storage rooms of the Library of Alexandria. From Carl Sagan's Cosmos (1980),
    The Royal Library of Alexandria in Alexandria, Egypt, was once the largest library in the world. It is generally thought to have been founded at the beginning of the 3rd century BC, during the reign of Ptolemy II of Egypt. It was likely created after his father had built what would become the first part of the library complex, the temple of the Muses — the Musaion (from which is derived the modern English word museum).

    It has been reasonably established that the library, or parts of the collection, were destroyed by fire on a number of occasions (library fires were common enough and replacement of handwritten manuscripts was very difficult, expensive and time-consuming). To this day the details of the destruction (or destructions) remain a lively source of controversy. The Bibliotheca Alexandrina was inaugurated in 2003 near the site of the old library.


    Now you know that I believe that the resource for such potentials is very capable in anyone's hands. That if they would like to draw from such a resource, that maybe it has to be physical for them. So, they may go to the library.Yet there is the "sublty of the intangile" that is not accepted by those who are "deeply physical" about what they can accept, so they can accept such libraries.

    Then again one might think twice about what is in the library of the internet? Yet, it is not without the "subtleness of the intangible" that we see where the "good thoughts/ideas can issue from the expert and the lay person alike. That such things become part of the library of the internet.

    How do we know in our heart when such information is true? That we can rest assure that such dangers of misleading do not take us into their world? Do they some how control you by what they like to hear?

    Innatism is a philosophical doctrine introduced by Plato in the socratic dialogue Meno which holds that the mind is born with ideas/knowledge, and that therefore the mind is not a tabula rasa at birth. It asserts therefore that not all knowledge is obtained from experience and the senses. Innatism is the opposite of empiricism.

    Plato claimed that humans are born with ideas/forms in the mind that are in a dormant state. He claimed that we have acquired these ideas prior to our birth when we existed as souls in the world of Forms. To access these, humans need to be reminded of them through proper education and experience.


    Or are we gifted with this innatism about what is good in all people, while there are those who would become rich by such restrictions of a "software selection."

    The French librarian Gabriel Naudé wrote:

    And therefore I shall ever think it extreamly necessary, to collect for this purpose all sorts of books, (under such precautions, yet, as I shall establish) seeing a Library which is erected for the public benefit, ought to be universal; but which it can never be, unlesse it comprehend all the principal authors, that have written upon the great diversity of particular subjects, and chiefly upon all the arts and sciences; [...] For certainly there is nothing which renders a Library more recommendable, then when every man findes in it that which he is in search of


    I mean, if we were restricted to the ability to retrieve from the massive amounts of data being presented, do you think it a good thing to restrict people from being able to develope their intellect? Learn more?

    Friday, November 24, 2006

    Status of "Warp Drive"

    Time is of your own making;
    its clock ticks in your head.
    The moment you stop thought
    time too stops dead.
    Angelus Silesius


    The plot created here in this post in this fictional sense(?) so that I too may deal with the issues of time travel?

    Of course time travel is on my mind for reason that some may not suspect, yet it is with "past history" that we are "embedded with knowledge" from our past attempts. From these, if knowledge is acquired for each soul, then how is it that it sat for for the day to be awaken properly? Where did we begin?


    Two main difficulties arise from Plato's view of Transmigration. First, Plato says that we have knowledge of universals because of the experiences of our souls in past lives. However, whence comes the knowledge of the first soul? In purely Platonic theory, it must have had no knowledge at all, and hence Plato's concept of transmigration as the basis for innate knowledge fails. A second difficulty lies in explaining the varying, and especially the apparently increasing number of incarnated souls over history.


    So this knowledge is somewhere? Is it as if we move our focus on the Tonal, and we see differently, or, that by profound shifts in our perspective on model apprehension, that we see anew?


    Sir Isaac Newton



    If we had been changed then, had it been from the Tabula Rusa being blank?

    It is as if, "the cosmologist has been detained," bewteen the beginning and end of this universe, yet, shall not ask, "what is it" and, "how did it begin?" That it's very existance it came from nothing, thus, shall never end? How illogical is this?

    Plato:One of the things that appeared so strange to me was in how we could look at gravitational variances with scientific means. As we know now, this is being accomplished in ways that test the minds imagination, as to how we would apply these features here to earth, and beyond. Timespeak

    How "warped the mind then," to create such a controversy. Use this to exemplify a point about creativity? Have I some how degraded "the wording" to show that "what is possssible" is indeed the imaginary mind that likes to play tricks, whilst it developes this whole new train of thought? Simultaneity?


    Francis Bacon (1561 - 1626)


    Sir William Shakespeare



    Sir Francis Bacon, disguised by "Shakespearean thought," was just an actor of "creativity," portraying a role of a political man? Yet, the thoughts extended, as if this man was in another place and time? Is it that easy? This story true?

    Plato:Creativity? Ways in which we allow "information" to travel through? Play the game? Allow "ingenuity" as the "poetic river that flows" to the surface on you, from everything, or, the blank slate?

    Is it useless knowledge then or that science requires this blank slate to allow us to deliver on the basis of science? Each starting position, that we write clearly and hence know that from that time forward, what is being built upon?

    Time travel

    Plato:Thus the initial idea here to follow is that the process had to have a physics relation. This is based on the understanding of anti-particle/particle, and what becomes evident in the cosmos as a closed loop process. Any variation within this context, is the idea of "blackhole anti-particle expression" based on what can be seen at the horizon?Tunneling in Faster then Light


    Warp Drives", "Hyperspace Drives", or any other term for Faster-than-light travel is at the level of speculation, with some facets edging into the realm of science. We are at the point where we know what we do know and know what we don’t, but do not know for sure if faster than light travel is possible.

    The bad news is that the bulk of scientific knowledge that we have accumulated to date concludes that faster than light travel is impossible. This is an artifact of Einstein’s Special Theory of Relativity. Yes, there are some other perspectives; tachyons, wormholes, inflationary universe, spacetime warping, quantum paradoxes...ideas that are in credible scientific literature, but it is still too soon to know if such ideas are viable.

    One of the issues that is evoked by any faster-than-light transport is time paradoxes: causality violations and implications of time travel. As if the faster than light issue wasn’t tough enough, it is possible to construct elaborate scenarios where faster-than-light travel results in time travel. Time travel is considered far more impossible than light travel.


    So previous(Tunneling in Faster than Light) to this post, I tried to show where my thinking was currently held in regards to anti-particle/particle, as examples of what is happening in LHC.

    Also, I cleared the air of what was held in mind in terms of the Cerenkov radiation transported ahead of, in faster then light medium capabilities as the blue light. This does not remove my speculations in terms of what is happening in probing the "perfect fluid" and the dissipative effect of microstate blackhole creation. What happens in that moment of high energy collision processes.

    Wednesday, November 22, 2006

    Tunnelling in Faster then Light

    Underneath this speculation of mine is the geometrical inclination of the universe in expression. If it's "dynamical nature is revealed" what allows us to think of why this universe at this time and junction, should be flat(?) according to the time of this universe in expression?

    Omega=the actual density to the critical density

    If we triangulate Omega, the universe in which we are in, Omegam(mass)+ Omega(a vacuum), what position geometrically, would our universe hold from the coordinates given?


    Positive energy density gives spacetime of the universe a positive curvature. A sphere? Negative curvature a region of spacetime that is negative and curved like a saddle? For time travel, and travel into the past, you need a universe that has a negative energy density.

    Thus the initial idea here to follow is that the process had to have a physics relation. This is based on the understanding of anti-particle/particle, and what becomes evident in the cosmos as a closed loop process. Any variation within this context, is the idea of "blackhole anti-particle expression" based on what can be seen at the horizon?



    A anti-particle can be considered as a particle moving back in time? Only massless particle can travel faster then light. Only faster then light massless particles can travel back in time? So of course, I am again thinking of the elephant process of Susskind and the closed loop process of the virtual particle/anti-particle. What comes out of it?

    That's not all. The fact that space-time itself is accelerating - that is, the expansion of the universe is speeding up - also creates a horizon. Just as we could learn that an elephant lurked inside a black hole by decoding the Hawking radiation, perhaps we might learn what's beyond our cosmic horizon by decoding its emissions. How? According to Susskind, the cosmic microwave background that surrounds us might be even more important than we think. Cosmologists study this radiation because its variations tell us about the infant moments of time, but Susskind speculates that it could be a kind of Hawking radiation coming from our universe's edge. If that's the case, it might tell us something about the elephants on the other side of the universe.


    So the anti-particle falls into the blackhole? How is it that I resolve this?? You can consider the anti-particle as traveling back in time. The micro perspective of the blackhole allows time travel backwards.


    Getty Images
    Although a 1916 paper by Ludwig Flamm from the University of Vienna [4] is sometimes cited as giving the first hint of a wormhole, "you definitely need hindsight to detect it," says Matt Visser of Victoria University in Wellington, New Zealand. Einstein and Rosen were the first to take the idea seriously and to try to accomplish some physics with it, he adds. The original goal may have faded, but the Einstein-Rosen bridge still pops up occasionally as a handy solution to the pesky problem of intergalactic travel.


    There are two cases in which the thoughts about faster then light particles are created and this is the part where one tries to get it right so as not to confuse themselves and others.

    Wormholes?

    Plato:
    So "open doorways" and ideas of "tunneling" are always interesting in terms of how we might look at an area like GR in cosmology? Look for way in which such instances make them self known.

    Are they applicable to the very nature of quantum perceptions that such probabilities could have emerged through them? Held to "time travel scenarios" and grabbed the history of what had already preceded us in past tense, could have been brought again forward for inspection?


    Sure I am quoting myself here, just to show one of the options I am showing by example. The second of course is where I was leading too in previous posts.

    So I was thinking here in context of one example in terms of the containment of the "graviton in a can" is really letting loose of the information in the collision process, as much as we like this "boundary condition" it really is not so.

    Another deep quantum mystery for which physicists have no answer has to do with "tunneling" -- the bizarre ability of particles to sometimes penetrate impenetrable barriers. This effect is not only well demonstrated; it is the basis of tunnel diodes and similar devices vital to modern electronic systems.

    Tunneling is based on the fact that quantum theory is statistical in nature and deals with probabilities rather than specific predictions; there is no way to know in advance when a single radioactive atom will decay, for example.

    The probabilistic nature of quantum events means that if a stream of particles encounters an obstacle, most of the particles will be stopped in their tracks but a few, conveyed by probability alone, will magically appear on the other side of the barrier. The process is called "tunneling," although the word in itself explains nothing.

    Chiao's group at Berkeley, Dr. Aephraim M. Steinberg at the University of Toronto and others are investigating the strange properties of tunneling, which was one of the subjects explored last month by scientists attending the Nobel Symposium on quantum physics in Sweden.

    "We find," Chiao said, "that a barrier placed in the path of a tunneling particle does not slow it down. In fact, we detect particles on the other side of the barrier that have made the trip in less time than it would take the particle to traverse an equal distance without a barrier -- in other words, the tunneling speed apparently greatly exceeds the speed of light. Moreover, if you increase the thickness of the barrier the tunneling speed increases, as high as you please.

    "This is another great mystery of quantum mechanics."


    Of course I am looking for processes in physics that would actually demonstrate this principal of energy calculated at the very beginning of the collision process, now explained in the detector, minus the extra energy that had gone where?



    This is the basis for the "Graviton in a can" example of what happens in the one scenario.

    Plato:
    A Bose-Einstein condensate (such as superfluid liquid helium) forms for reasons that only can be explained by quantum mechanics. Bose condensates form at low temperature


    Plasmas and Bose condensates

    So in essence the physics process that I am identifying is shown by understanding that the "graviton production" allows that energy to be transmitted outside the process of the LHC?

    This is the energy that can be calculated and left over from all the energy assumed in the very beginning of this collision process. Secondly, all energy used in this process would be in association with bulk perspective.

    This now takes me to the second process of "time travel" in the LHC process. The more I tried to figure this out the basis of thought here is that Cerenkov radiation in a vacuum still is slower then speed of light, yet within the medium of ice, this is a different story. So yes there are many corrections and insight here to consider again.

    The muon will travel faster than light in the ice (but of course still slower than the speed of light in vacuum), thereby producing a shock wave of light, called Cerenkov radiation. This light is detected by the photomultipliers, and the trace of the neutrinos can be reconstructed with an accuracy of a couple of degrees. Thus the direction of the incoming neutrino and hence the location of the neutrino source can be pinpointed. A simulation of a muon travelling through AMANDA is shown here (1.5 MB).


    So while sleeping last night the question arose in my mind as to the location of where the "higgs field" will be produced in the LHC experiment? Here also the the thoughts about the "cross over point" that would speak to the idea here of what reveals faster then light capabilities arising from the collision process?

    What are the main goals of the LHC?-
    The LHC will also help us to solve the mystery of antimatter. Matter and antimatter must have been produced in the same amounts at the time of the Big Bang. From what we have observed so far, our Universe is made of only matter. Why? The LHC could provide an answer.

    It was once thought that antimatter was a perfect 'reflection' of matter - that if you replaced matter with antimatter and looked at the result in a mirror, you would not be able to tell the difference. We now know that the reflection is imperfect, and this could have led to the matter-antimatter imbalance in our Universe.

    The strongest limits on the amount of antimatter in our Universe come from the analysis of the diffuse cosmic gamma-rays arriving on Earth and the density fluctuations of the cosmic background radiation. If one asumes that after the Big Bang, the Universe separated somehow into different domains where either matter or antimatter was dominant, then at the boundaries there should be annihilations, producing cosmic gamma rays. In both cases the limit proposed by current theories is practically equivalent to saying that there is no antimatter in our Universe.


    So we get the idea here in the collision process and from it the crossover point leaves a energy dissertation on what transpired from this condition and left the idea in my mind about the circumstances of what may have changed the the speed of the cosmos at varying times in the expansion process within our universe. So, this is where I was headed as I laid out the statement below.

    Of course this information is based on 2003 data but the jest of the idea here is that in order to go to a "fast forward" the conditions had to exist previously that did not included "sterile neutrinos" and were a result of this "cross over."


    So what is the jest of my thought here that I would go to great lengths here to speak about the ideas of what happens within the cosmos to change those varying times of expansion? It has to do with the Suns and the process within those suns that give the dark energy some value, in it's anti- gravity nature to align our selves and our thinking to the cosmological constant of Einstein. If we juggle the three ring circus we find that the curvature parameters can and do hold thoughts govern by the cosmological constant?

    It is thus equally important to identify this "physics process" that would allow such changes in the cosmos. So that we can understand the dynamical nature that the cosmos reveals to us can and does allow aspect of its galaxies within context of the universe to increase this expansive process while we question what drives such conditions.

    Saturday, November 18, 2006

    Bacon is Shakespeare?

    A modern day puzzle, becomes, blogger world signatures? Taken to a, "Whole....nother....Level.



    Creativity? Ways in which we allow "information" to travel through? Play the game? Allow "ingenuity" as the "poetic river that flows" to the surface on you, from everything, or, the blank slate?

    What kind of person are you who reveals them self in the words chosen, or the picture highlighted? Humor, as a deeper response for those who look beyond the confines of words, and laugh? We just intuitively get it?

    What use that language?

    Tragedies, where allowed "the other to speak," and let loose all the mournings of words lost, are covered by our heart's responses? "Released." The soul without it's burdens, carries on. Not really.

    Describes the "fictional" in face of the real, while "highlighting the injustices" performing characters, as individual/politicians saved? Another place, and time?


    Francis Bacon, De Dignitate et Augmentis Scientiarum, 1623.


    The knowledge of Cyphering, hath drawne on with it a knowledge relative unto it, which is the knowledge of Discyphering, or of Discreting Cyphers, though a man were utterly ignorant of the Alphabet of the Cypher, and the Capitulations of secrecy past between the Parties. Certainly it is an Art which requires great paines and a good witt and is (as the other was) consecrate to the Counsels of Princes: yet notwithstanding by diligent prevision it may be made unprofitable, though, as things are, it be of great use. For if good and faithfull Cyphers were invented & practised, many of them would delude and forestall all the Cunning of the Decypherer, which yet are very apt and easie to be read or written: but the rawnesse and unskilfulnesse of Secretaries, and Clarks in the Courts of Princes, is such, that many times the greatest matters are Committed to futile and weake Cyphers.
    But it may be, that in the enumeration, and, as it were, taxation of Arts, some may thinke that we goe about to make a great Muster-rowle of Sciences, that the multiplication of them may be more admired; when their number perchance may be displayed, but their forces in so short a Treatise can hardly be tried. But for our parts wee doe faithfully pursue our purpose, and in making this Globe of Sciences, we would not omitt the lesser and remoter Ilands. Neither have we (in our opinion) touched these Arts perfunctorily, though cursorily; but with a piercing stile extracted the marrow and pith of them out of a masse of matter. The judgement hereof we referre to those who are most able to judge of these Arts. For seeing it is the fashion of many who would be thought to know much, that every where making ostentation of words and outward termes of Arts, they become a wonder to the ignorant, but a derision to those that are Masters of those Arts: we hope that our Labours shall have a contrarie successe, which is, that they may arrest the judgment of every one who is best vers'd in every particular Art; and be undervalued by the rest . As for those Arts which may seeme to bee of inferior ranke and order, if any man thinke wee attribute too much unto them; Let him looke about him and hee shall see that there bee many of speciall note and great account in their owne Countrie, who when they come to the chiefe City or feat of the Estate, are but of mean ranke and scarcely regarded: so it is no marvaile if these sleighter Arts, placed by the Principall and supreme Sciences, seeme pettie things; yet to those that have chosen to spend their labours and studies in them, they seeme great and excellent matters. And thus much of the Organ of Speech. -- Francis Bacon, The Advancement and Proficience of Learning, p 257-71, Book VI, 1640.


    Sciences current work in Cryptography? A Vast difference then what is reveal in the Shakespearean language? Maybe, it is here, where I see the questions of Susskind's thought experiment about the elephant in two places?

    We've learnt in the natural sciences that the key to understanding can often be found if we lift certain dividing lines in our minds. Newton showed that the apple falls to the ground according to the same laws that govern the Moon's orbit of the Earth. And with this he made the old differentiation between earthly and heavenly phenomena obsolete. Darwin showed that there is no dividing line between man and animal. And Einstein lifted the line dividing space and time. But in our heads, we still draw a dividing line between "reality" and "knowledge about reality", in other words between reality and information. And you cannot draw this line. There is no recipe, no process for distinguishing between reality and information. All this thinking and talking about reality is about information, which is why one should not make a distinction in the formulation of laws of nature. Quantum theory, correctly interpreted, is information theory.


    So we find the methods to determine the beginning(Tabula Rusa) and what had always existed in a ideological discourse about which was before "form?"

    Innatism is a philosophical doctrine introduced by Plato in the socratic dialogue Meno which holds that the mind is born with ideas/knowledge, and that therefore the mind is not a tabula rasa at birth. It asserts therefore that not all knowledge is obtained from experience and the senses. Innatism is the opposite of empiricism.

    Plato claimed that humans are born with ideas/forms in the mind that are in a dormant state. He claimed that we have acquired these ideas prior to our birth when we existed as souls in the world of Forms. To access these, humans need to be reminded of them through proper education and experience.


    So shall one then debate about what existed in the beginning of this universe, if we are presented with the thought that we are already born with knowledge and ideas? That we should start from such a blank slate? So then for you, nothing existed before? Or has something philosophically and profoundly, always existed?

    This means you can never discard what you set in motion, only that what you started has consequences, and moves into the next life? So we try and do it right in this one. We accept the burden/choice for growth, and learn.

    But this is a personal choice. We do not in face of "what lies in the dormant state" disregard empiricism. You see Plato and Aristotle together, don't you?

    So we come to what is of value after we have learn about Cerenkov radiation and what did not exist before, now exists? Time travel? How is this possible in the scenario of LHC? Have we accepted faster then light entities in our assessment of what goes beyond the speed of light? Then I have to show how this is so?