Showing posts with label Cosmology. Show all posts
Showing posts with label Cosmology. Show all posts

Sunday, January 28, 2007

Man Looking into Outer Space

"We all are of the citizens of the Sky" Camille Flammarion


In 1858, by the set of its relations, it will allow Camille Flammarion, the 16 years age, to enter as raises astronomer at the Observatory of Paris under the orders of Urbain the Glassmaker, at the office of calculations.


I was over at Cosmic Variance for a visit, and commented on the "woodcut" which is title by the name of the post above given by Camile Flammarion? Below a caption is produced with a



While Daniel ask spyder what the source of this was, I am quietly doing my own research, because I have used this image myself. What did it mean?



This picture is a copy of a "16 century woodcut" copied by Camille Flammarion in 1888.


The Flammarion woodcut. Flammarion's caption translates to "A medieval missionary tells that he has found the point where heaven and Earth meet..."
The widely circulated woodcut of a man poking his head through the firmament of a flat Earth to view the mechanics of the spheres, executed in the style of the 16th century cannot be traced to an earlier source than Camille Flammarion's L'Atmosphère: Météorologie Populaire (Paris, 1888, p. 163) [38]. The woodcut illustrates the statement in the text that a medieval missionary claimed that "he reached the horizon where the Earth and the heavens met", an anecdote that may be traced back to Voltaire, but not to any known medieval source. In its original form, the woodcut included a decorative border that places it in the 19th century; in later publications, some claiming that the woodcut did, in fact, date to the 16th century, the border was removed. Flammarion, according to anecdotal evidence, had commissioned the woodcut himself. In any case, no source of the image earlier than Flammarion's book is known.
See here for larger version "with caption" that has been translated above.

Now the interesting thing about woodcuts and what was found in my research, had to do with how "alchemical texts" can embody the "psychological process" that lent itself to the display the evolution in humanities thoughts.


Splendor Solis ("The Splendour of the Sun") is a well-known colorful alchemical manuscript. The earliest version, written in Middle German, is dated 1532-1535 and is housed at the Prussian State Museum in Berlin. It is illuminated on vellum, with decorative borders like a book of hours, beautifully painted and heightened with gold. The later copies in London, Kassel, Paris and Nuremberg are equally fine. In all twenty copies exist worldwide.


I will give an examples that have been retained by me, for understanding that allow me to speak on this. While I referred to the "enlightenment" and gave this answer above, I used it in context of how we see the cosmos now, given the understanding of the physics we are engaged in science.

While relativity was applied to the cosmos at large, now, quantumly defining the nature of this cosmos, is part of this achievement that I refer too in terms of enlightenment.

What are Woodcuts

In Europe, Woodcut is the oldest technique used for old master prints, developing about 1400, by using on paper existing techniques for printing on cloth. The explosion of sales of cheap woodcuts in the middle of the century led to a fall in standards, and many popular prints were very crude. The development of hatching followed on rather later than in engraving. Michael Wolgemut was significant in making German woodcut more sophisticated from about 1475, and Erhard Reuwich was the first to use cross-hatching (far harder to do than in engraving or etching). Both of these produced mainly book-illustrations, as did various Italian artists who were also raising standards there at the same period. At the end of the century Albrecht Dürer brought the Western woodcut to a level that has never been surpassed, and greatly increased the status of the single-leaf (ie an image sold separately) woodcut.

As woodcut can be easily printed together with movable type, because both are relief-printed, it was the main medium for book illustrations until the late-sixteenth century. The first woodcut book illustration dates to about 1461, only a few years after the beginning of printing with movable type, printed by Albrecht Pfister in Bamberg. Woodcut was used less often for individual ("single-leaf") fine-art prints from about 1550 until the late nineteenth-century, when interest revived. It continued to be important for popular prints until the nineteenth century in most of Europe, and later in some places


I refer to the psychological basis of what these woodcuts can mean from an early historical perspective. By studing methods used I came to learn of what this could mean "not from producing gold from lead" but of what this could mean in terms of applying ourselves and conducting our selves, as a commitment to being better human beings.

This new compound of thought is difficult to understand and apply in our everyday affairs. The Swiss psychiatrist C. G. Jung went perhaps further than any other researcher to extract the psychological wisdom embedded in alchemy and make it available to the modern world. Through his work we learn how alchemy can be used as a powerful means of psychological transformation, personal empowerment and spiritual adventure. Individuation is the real gold sought by true alchemists. Yet, for all his genius, Jung's writings are complex and oftentimes as difficult to read as the alchemical literature. A thorough knowledge of analytic psychology, theology, symbolism and mythology is required to appreciate the depth of Jung's insights. Adding to this challenge is the rapid rate that science and technology have advanced since Jung's death. We live in a New World. Especially with the findings of quantum physics -many of which validate old philosophical truths- the time is ripe for a fresh interpretation of alchemy and how we can apply its powerful recipes to the challenges of contemporary life.

Saturday, January 06, 2007

Mersenne Prime: One < the Power of two


It looks as though primes tend to concentrate in certain curves that swoop away to the northwest and southwest, like the curve marked by the blue arrow. (The numbers on that curve are of the form x(x+1) + 41, the famous prime-generating formula discovered by Euler in 1774.)


This is part of the education of my learning to understand the implications of the work of Riemann in context of the Riemann Hypothesis. Part of understanding what this application can do in terms helping us to see what has developed "from abstractions of mathematics," to have us now engaged in the "real world" of computation.

In mathematics, a power of two is any of the nonnegative integer powers of the number two; in other words, two multiplied by itself a certain number of times. Note that one is a power (the zeroth power) of two. Written in binary, a power of two always has the form 10000...0, just like a power of ten in the decimal system.

Because two is the base of the binary system, powers of two are important to computer science. Specifically, two to the power of n is the number of ways the bits in a binary integer of length n can be arranged, and thus numbers that are one less than a power of two denote the upper bounds of integers in binary computers (one less because 0, not 1, is used as the lower bound). As a consequence, numbers of this form show up frequently in computer software. As an example, a video game running on an 8-bit system, might limit the score or the number of items the player can hold to 255 — the result of a byte, which is 8 bits long, being used to store the number, giving a maximum value of 28−1 = 255.


I look forward to the help in terms of learning to understand this "ability of the mind" to envision the dynamical nature of the abstract. To help us develop, "the models of physics" in our thinking. To learn, about what is natural in our world, and the "mathematical patterns" that lie underneath them.

What use the mind's attempt to see mathematics in such models?

"Brane world thinking" that has a basis in Ramanujan modular forms, as a depiction of those brane surface workings? That such a diversion would "force the mind" into other "abstract realms" to ask, "what curvatures could do" in terms of a "negative expressive" state in that abstract world.

Are our minds forced to cope with the "quantum dynamical world of cosmology" while we think about what was plain in Einstein's world of GR, while we witness the large scale "curvature parameters" being demonstrated for us, on such gravitational look to the cosmological scale.

Mersenne Prime


Marin Mersenne, 1588 - 1648


In mathematics, a Mersenne number is a number that is one less than a power of two.

Mn = 2n − 1.
A Mersenne prime is a Mersenne number that is a prime number. It is necessary for n to be prime for 2n − 1 to be prime, but the converse is not true. Many mathematicians prefer the definition that n has to be a prime number.

For example, 31 = 25 − 1, and 5 is a prime number, so 31 is a Mersenne number; and 31 is also a Mersenne prime because it is a prime number. But the Mersenne number 2047 = 211 − 1 is not a prime because it is divisible by 89 and 23. And 24 -1 = 15 can be shown to be composite because 4 is not prime.

Throughout modern times, the largest known prime number has very often been a Mersenne prime. Most sources restrict the term Mersenne number to where n is prime, as all Mersenne primes must be of this form as seen below.

Mersenne primes have a close connection to perfect numbers, which are numbers equal to the sum of their proper divisors. Historically, the study of Mersenne primes was motivated by this connection; in the 4th century BC Euclid demonstrated that if M is a Mersenne prime then M(M+1)/2 is a perfect number. In the 18th century, Leonhard Euler proved that all even perfect numbers have this form. No odd perfect numbers are known, and it is suspected that none exist (any that do have to belong to a significant number of special forms).

It is currently unknown whether there is an infinite number of Mersenne primes.

The binary representation of 2n − 1 is n repetitions of the digit 1, making it a base-2 repunit. For example, 25 − 1 = 11111 in binary


So while we have learnt from Ulam's Spiral, that the discussion could lead too a greater comprehension. It is by dialogue, that one can move forward, and that lack of direction seems to hold one's world to limits, not seen and known beyond what's it like apart from the safe and security of home.

Thursday, December 28, 2006

First Stars Behind the Scene

There are several recognized processes from the early universe that leave relic effects setting the stage for galaxy formation and evolution. We deal here with the first generarion of stars, primordial nucleosynthesis, the epoch of recombination, and the thermal history of various cosmic backgrounds.


Part of understanding the time line is first knowing where the Pregalactic Universe exists in that time line.

Plato:
So given the standard information one would have to postulate something different then what is currently classified?

A new Type III (what ever one shall attribute this to definition), versus Type I, Type IIa?


The idea is to place the distant measure in relation to what is assumed of TYPE I, TypeIIa. It assumes all these things, but has to been defined further, to be a Type III. That's the point of setting the values of where this measure can be taken from.

I wrote someplace else the thought generated above. It is nice that the world of scientists are not so arrogant in some places, while some have been willing to allow the speculation to continue. Even amidst their understanding, that I was less then the scientist that they are, yet recognizing, I am deeply motivated to understanding this strange world of cosmology and it's physics.

When I wrote this title above I was actually thinking of two scenarios that are challenging the way I am seeing it.


Credit: NASA/WMAP Science Team
WMAP has produced a new, more detailed picture of the infant universe. Colors indicate "warmer" (red) and "cooler" (blue) spots. The white bars show the "polarization" direction of the oldest light. This new information helps to pinpoint when the first stars formed and provides new clues about events that transpired in the first trillionth of a second of the universe.


First of these, was in terms of the time line and what we know of the WMAP demonstration given to us of that early universe. I of course inject some of what I know by past research to help the general public understand what is being demonstrated from another perspective.

This is what happens as you move through different scientists(Wayne Hu) thoughts to see the world in the way they may see it. This concept can be quite revealing sometimes giving a profound effect to moving the mind to consider the universe in new ways.



"Lagrangian views" in relation may have been one result that comes quickly to my mind. Taking that chaldni plate and applying it to the universe today.



Even though in the context of this post, we may see the universe in a "simple experiment" not just demonstrating the "early universe," but the universe in it's "gravitational effect" from that evolution to matter defined now.

The Time Line


Credit: NASA/WMAP Science Team
The expansion of the universe over most of its history has been relatively gradual. The notion that a rapid period "inflation" preceded the Big Bang expansion was first put forth 25 years ago. The new WMAP observations favor specific inflation scenarios over other long held ideas.


Looking to the "far left" of the image we see the place where the cosmic background is being demonstrated, while to the "far right" we see the satellite which has helped measure what we know of the early universe. So this "distant measure" has allowed us to understand what is behind the scene of what we know of cosmology today of events, galaxies and such.

Second, what comes to mind is the Massive Blue Star of 100 Solar masses that would have been further out in terms of the billions of years that we may of sought in terms of our measures. So this would be of value I would assume in relation to model perspective and measures?

So the distance measure has been defined then by understanding the location of the cosmic background and the place where the Blue giants will have unfolded in their demise, to the creation of blackholes.


The processes in the Universe after the Big Bang. The radio waves are much older than the light of galaxies. From the distortion of the images (curved lines) - caused by the gravitation of material between us and the light sources - it is possible to calculate and map the entire foreground mass.Image: Max Planck Institute of Astrophysics
We don't have to wait for the giant telescope to get unparalleled results from this technique, however. One of the most pressing issues in current physics is to gain a better understanding of the mysterious Dark Energy which currently drives the accelerated expansion of the Universe. Metcalf and White show that mass maps of a large fraction of the sky made with an instrument like SKA could measure the properties of Dark Energy more precisely than any previously suggested method, more than 10 times as accurately as mass maps of similar size based on gravitational distortions of the optical images of galaxies.

Thursday, December 21, 2006

Hubble Finds Evidence for Dark Energy in the Young Universe



I had to go back to the article for some further reading.


These snapshots, taken by NASA's Hubble Space Telescope, reveal five supernovae, or exploding stars, and their host galaxies.

The arrows in the top row of images point to the supernovae. The bottom row shows the host galaxies before or after the stars exploded. The supernovae exploded between 3.5 and 10 billion years ago.

Astronomers used the supernovae to measure the expansion rate of the universe and determine how the expansion rate is affected by the repulsive push of dark energy, a mysterious energy force that pervades space. Supernovae provide reliable measurements because their intrinsic brightness is well understood. They are therefore reliable distance markers, allowing astronomers to determine how far away they are from Earth.

Pinpointing supernovae in the faraway universe is similar to watching fireflies in your back yard. All fireflies glow with about the same brightness. So, you can judge how the fireflies are distributed in your back yard by noting their comparative faintness or brightness, depending on their distance from you.

Only Hubble can measure these supernovae because they are too distant, and therefore too faint, to be studied by the largest ground-based telescopes.

These Hubble observations show for the first time that dark energy has been a present force for most of the universe's history. A spectral analysis also shows that the supernovae used to measure the universe's expansion rate today look remarkably similar to those that exploded nine billion years ago and are just now seen by Hubble.

These latest results are based on an analysis of the 24 most distant known supernovae, most of them discovered within the last three years by the Higher-z SN Search Team. The images were taken between 2003 and 2005 with Hubble's Advanced Camera for Surveys.



Illustration of Cosmic Forces-Credit: NASA, ESA, and A. Feild (STScI)
Scientists using NASA's Hubble Space Telescope have discovered that dark energy is not a new constituent of space, but rather has been present for most of the universe's history. Dark energy is a mysterious repulsive force that causes the universe to expand at an increasing rate.

Investigators used Hubble to find that dark energy was already boosting the expansion rate of the universe as long as nine billion years ago. This picture of dark energy is consistent with Albert Einstein's prediction of nearly a century ago that a repulsive form of gravity emanates from empty space.

Data from Hubble provides supporting evidence that help astrophysicists to understand the nature of dark energy. This will allow scientists to begin ruling out some competing explanations that predict that the strength of dark energy changes over time.

Researchers also have found that the class of ancient exploding stars, or supernovae, used to measure the expansion of space today look remarkably similar to those that exploded nine billion years ago and are just now being seen by Hubble. This important finding gives additional credibility to the use of these supernovae for tracking the cosmic expansion over most of the universe's lifetime.

"Although dark energy accounts for more than 70 percent of the energy of the universe, we know very little about it, so each clue is precious," said Adam Riess, of the Space Telescope Science Institute and Johns Hopkins University in Baltimore. Riess led one of the first studies to reveal the presence of dark energy in 1998 and is the leader of the current Hubble study. "Our latest clue is that the stuff we call dark energy was relatively weak, but starting to make its presence felt nine billion years ago."

To study the behavior of dark energy of long ago, Hubble had to peer far across the universe and back into time to detect supernovae. Supernovae can be used to trace the universe's expansion. This is analogous to seeing fireflies on a summer night. Fireflies glow with about the same brightness, so you can judge how they are distributed in the backyard by their comparative faintness or brightness, depending on their distance from you. Only Hubble can measure these ancient supernovae because they are too distant, and therefore too faint, to be studied by the largest ground-based telescopes.

Einstein first conceived of the notion of a repulsive force in space in his attempt to balance the universe against the inward pull of its own gravity, which he thought would ultimately cause the universe to implode.

His "cosmological constant" remained a curious hypothesis until 1998, when Riess and the members of the High-z Supernova Team and the Supernova Cosmology Project used ground-based telescopes and Hubble to detect the acceleration of the expansion of space from observations of distant supernovae. Astrophysicists came to the realization that Einstein may have been right after all: there really was a repulsive form of gravity in space that was soon after dubbed "dark energy."

Over the past eight years astrophysicists have been trying to uncover two of dark energy's most fundamental properties: its strength and its permanence. These new observations reveal that dark energy was present and obstructing the gravitational pull of the matter in the universe even before it began to win this cosmic "tug of war."

Previous Hubble observations of the most distant supernovae known revealed that the early universe was dominated by matter whose gravity was slowing down the universe's expansion rate, like a ball rolling up a slight incline. The observations also confirmed that the expansion rate of the cosmos began speeding up about five to six billion years ago. That is when astronomers believe that dark energy's repulsive force overtook gravity's attractive grip.

The latest results are based on an analysis of the 24 most distant supernovae known, most found within the last two years.

By measuring the universe's relative size over time, astrophysicists have tracked the universe's growth spurts, much as a parent may witness the growth spurts of a child by tracking changes in height on a doorframe. Distant supernovae provide the doorframe markings read by Hubble. "After we subtract the gravity from the known matter in the universe, we can see the dark energy pushing to get out," said Lou Strolger, astronomer and Hubble science team member at Western Kentucky University in Bowling Green, Ky. Further observations are presently underway with Hubble by Riess and his team which should continue to offer new clues to the nature of dark energy.




Credit: NASA, ESA, and A. Feild (STScI)

Tuesday, December 19, 2006

Cosmic ray spallation


As this NASA chart indicates, 70 percent or more of the universe consists of dark energy, about which we know next to nothing
Other explanations of dark energy, called "quintessence," originate from theoretical high-energy physics. In addition to baryons, photons, neutrinos, and cold dark matter, quintessence posits a fifth kind of matter (hence the name), a sort of universe-filling fluid that acts like it has negative gravitational mass. The new constraints on cosmological parameters imposed by the HST supernova data, however, strongly discourage at least the simplest models of quintessence.


Of course my mind is thinking about the cosmic triangle of an event in the cosmos. So I am wondering what is causing the "negative pressure" as "dark energy," and why this has caused the universe to speed up.


SNAP-Supernova / Acceleration Probe-Studying the Dark Energy of the Universe
The discovery by the Supernova Cosmology Project (SCP) and the High-Z Supernova team that the expansion of the universe is accelerating poses an exciting mystery — for if the universe were governed by gravitational attraction, its rate of expansion would be slowing. Acceleration requires a strange “dark energy’ opposing this gravity. Is this Einstein’s cosmological constant, or more exotic new physics? Whatever the explanation, it will lead to new discoveries in astrophysics, particle physics, and gravitation.


By defining the context of particle collisions it was evident that such a place where such a fluid could have dominated by such energy in stars, are always interesting as to what is ejected from those same stars. What do those stars provide for the expression of this universe while we are cognoscente of the "arrow of time" explanation.


This diagram reveals changes in the rate of expansion since the universe's birth 15 billion years ago. The more shallow the curve, the faster the rate of expansion.


So of course these thoughts are shared by the perspective of educators to help us along. But if one did not understand the nature of the physical attributes of superfluids, how would one know to think of the relativistic conditions that high energy provides for us?


NASA/WMAP Scientific Team: Expanding Universe



So recognizing where these conditions are evident would be one way in which we might think about what is causing a negative pressure in the cosmos.

Given the assumption that the matter in the universe is homogeneous and isotropic (The Cosmological Principle) it can be shown that the corresponding distortion of space-time (due to the gravitational effects of this matter) can only have one of three forms, as shown schematically in the picture at left. It can be "positively" curved like the surface of a ball and finite in extent; it can be "negatively" curved like a saddle and infinite in extent; or it can be "flat" and infinite in extent - our "ordinary" conception of space. A key limitation of the picture shown here is that we can only portray the curvature of a 2-dimensional plane of an actual 3-dimensional space! Note that in a closed universe you could start a journey off in one direction and, if allowed enough time, ultimately return to your starting point; in an infinite universe, you would never return.


Of course it is difficult for me to understand this process, but I am certainly trying. If one had found that in the relativistic conditions of high energy scenarios a "similarity to a flattening out" associated with an accelerating universe what would this say about information travelling from the "origins of our universe" quite freely. How would this effect dark energy?

In physics, a perfect fluid is a fluid that can be completely characterized by its rest frame energy density ρ and isotropic pressure p.

Real fluids are "sticky" and contain (and conduct) heat. Perfect fluids are idealized models in which these possibilities are neglected. Specifically, perfect fluids have no shear stresses, viscosity, or heat conduction.

In tensor notation, the energy-momentum tensor of a perfect fluid can be written in the form

[tex] T^{\mu\nu}=(\rho+p)\, U^\mu U^\nu + P\, \eta^{\mu\nu}\,[/tex]



where U is the velocity vector field of the fluid and where ημν is the metric tensor of Minkowski spacetime.

Perfect fluids admit a Lagrangian formulation, which allows the techniques used in field theory to be applied to fluids. In particular, this enables us to quantize perfect fluid models. This Lagrangian formulation can be generalized, but unfortunately, heat conduction and anisotropic stresses cannot be treated in these generalized formulations.

Perfect fluids are often used in general relativity to model idealized distributions of matter, such as in the interior of a star.


So events in the cosmos ejected the particles, what geometrical natures embued such actions, to have these particle out in space interacting with other forms of matter to create conditions that would seem conducive to me, for that negative pressure?

Cosmic ray spallation is a form of naturally occurring nuclear fission and nucleosynthesis. It refers to the formation of elements from the impact of cosmic rays on an object. Cosmic rays are energetic particles outside of Earth ranging from a stray electron to gamma rays. These cause spallation when a fast moving particle, usually a proton, part of a cosmic ray impacts matter, including other cosmic rays. The result of the collision is the expulsion of large members of nucleons (protons and neutrons) from the object hit. This process goes on not only in deep space, but in our upper atmosphere due to the impact of cosmic rays.

Cosmic ray spallation produces some light elements such as lithium and boron. This process was discovered somewhat by accident during the 1970s. Models of big bang nucleosynthesis suggested that the amount of deuterium was too large to be consistent with the expansion rate of the universe and there was therefore great interest in processes that could generate deuterium after the big bang.

Cosmic ray spallation was investigated as a possible process to generate deuterium. As it turned out, spallation could not generate much deuterium, and the excess deuterium in the universe could be explained by assuming the existence of non-baryonic dark matter. However, studies of spallation showed that it could generate lithium and boron. Isotopes of aluminum, beryllium, carbon(carbon-14), chlorine, iodine and neon, are also formed through cosmic ray spallation.



Talk about getting tongue tied, can you imagine, "these fluctuations can generate their own big bangs in tiny areas of the universe." Read on.


Photo credit: Lloyd DeGrane/University of Chicago News Office
Carroll and Chen’s scenario of infinite entropy is inspired by the finding in 1998 that the universe will expand forever because of a mysterious force called “dark energy.” Under these conditions, the natural configuration of the universe is one that is almost empty. “In our current universe, the entropy is growing and the universe is expanding and becoming emptier,” Carroll said.

But even empty space has faint traces of energy that fluctuate on the subatomic scale. As suggested previously by Jaume Garriga of Universitat Autonoma de Barcelona and Alexander Vilenkin of Tufts University, these fluctuations can generate their own big bangs in tiny areas of the universe, widely separated in time and space. Carroll and Chen extend this idea in dramatic fashion, suggesting that inflation could start “in reverse” in the distant past of our universe, so that time could appear to run backwards (from our perspective) to observers far in our past.

Thursday, November 30, 2006

Megalithic carved stone balls from Scotland

With the discovery of sound waves in the CMB, we have entered a new era of precision cosmology in which we can begin to talk with certainty about the origin of structure and the content of matter and energy in the universe-Wayne Hu


I mean what influence might we have gained from looking at such ancient pieces?

The balls were located at the Ashmolean Museum, Oxford, UK at one time, so I do not know if they are still there.


Photo by Graham Challifour. Reproduced from Critchlow, 1979, p. 132.


Wednesday, November 22, 2006

Tunnelling in Faster then Light

Underneath this speculation of mine is the geometrical inclination of the universe in expression. If it's "dynamical nature is revealed" what allows us to think of why this universe at this time and junction, should be flat(?) according to the time of this universe in expression?

Omega=the actual density to the critical density

If we triangulate Omega, the universe in which we are in, Omegam(mass)+ Omega(a vacuum), what position geometrically, would our universe hold from the coordinates given?


Positive energy density gives spacetime of the universe a positive curvature. A sphere? Negative curvature a region of spacetime that is negative and curved like a saddle? For time travel, and travel into the past, you need a universe that has a negative energy density.

Thus the initial idea here to follow is that the process had to have a physics relation. This is based on the understanding of anti-particle/particle, and what becomes evident in the cosmos as a closed loop process. Any variation within this context, is the idea of "blackhole anti-particle expression" based on what can be seen at the horizon?



A anti-particle can be considered as a particle moving back in time? Only massless particle can travel faster then light. Only faster then light massless particles can travel back in time? So of course, I am again thinking of the elephant process of Susskind and the closed loop process of the virtual particle/anti-particle. What comes out of it?

That's not all. The fact that space-time itself is accelerating - that is, the expansion of the universe is speeding up - also creates a horizon. Just as we could learn that an elephant lurked inside a black hole by decoding the Hawking radiation, perhaps we might learn what's beyond our cosmic horizon by decoding its emissions. How? According to Susskind, the cosmic microwave background that surrounds us might be even more important than we think. Cosmologists study this radiation because its variations tell us about the infant moments of time, but Susskind speculates that it could be a kind of Hawking radiation coming from our universe's edge. If that's the case, it might tell us something about the elephants on the other side of the universe.


So the anti-particle falls into the blackhole? How is it that I resolve this?? You can consider the anti-particle as traveling back in time. The micro perspective of the blackhole allows time travel backwards.


Getty Images
Although a 1916 paper by Ludwig Flamm from the University of Vienna [4] is sometimes cited as giving the first hint of a wormhole, "you definitely need hindsight to detect it," says Matt Visser of Victoria University in Wellington, New Zealand. Einstein and Rosen were the first to take the idea seriously and to try to accomplish some physics with it, he adds. The original goal may have faded, but the Einstein-Rosen bridge still pops up occasionally as a handy solution to the pesky problem of intergalactic travel.


There are two cases in which the thoughts about faster then light particles are created and this is the part where one tries to get it right so as not to confuse themselves and others.

Wormholes?

Plato:
So "open doorways" and ideas of "tunneling" are always interesting in terms of how we might look at an area like GR in cosmology? Look for way in which such instances make them self known.

Are they applicable to the very nature of quantum perceptions that such probabilities could have emerged through them? Held to "time travel scenarios" and grabbed the history of what had already preceded us in past tense, could have been brought again forward for inspection?


Sure I am quoting myself here, just to show one of the options I am showing by example. The second of course is where I was leading too in previous posts.

So I was thinking here in context of one example in terms of the containment of the "graviton in a can" is really letting loose of the information in the collision process, as much as we like this "boundary condition" it really is not so.

Another deep quantum mystery for which physicists have no answer has to do with "tunneling" -- the bizarre ability of particles to sometimes penetrate impenetrable barriers. This effect is not only well demonstrated; it is the basis of tunnel diodes and similar devices vital to modern electronic systems.

Tunneling is based on the fact that quantum theory is statistical in nature and deals with probabilities rather than specific predictions; there is no way to know in advance when a single radioactive atom will decay, for example.

The probabilistic nature of quantum events means that if a stream of particles encounters an obstacle, most of the particles will be stopped in their tracks but a few, conveyed by probability alone, will magically appear on the other side of the barrier. The process is called "tunneling," although the word in itself explains nothing.

Chiao's group at Berkeley, Dr. Aephraim M. Steinberg at the University of Toronto and others are investigating the strange properties of tunneling, which was one of the subjects explored last month by scientists attending the Nobel Symposium on quantum physics in Sweden.

"We find," Chiao said, "that a barrier placed in the path of a tunneling particle does not slow it down. In fact, we detect particles on the other side of the barrier that have made the trip in less time than it would take the particle to traverse an equal distance without a barrier -- in other words, the tunneling speed apparently greatly exceeds the speed of light. Moreover, if you increase the thickness of the barrier the tunneling speed increases, as high as you please.

"This is another great mystery of quantum mechanics."


Of course I am looking for processes in physics that would actually demonstrate this principal of energy calculated at the very beginning of the collision process, now explained in the detector, minus the extra energy that had gone where?



This is the basis for the "Graviton in a can" example of what happens in the one scenario.

Plato:
A Bose-Einstein condensate (such as superfluid liquid helium) forms for reasons that only can be explained by quantum mechanics. Bose condensates form at low temperature


Plasmas and Bose condensates

So in essence the physics process that I am identifying is shown by understanding that the "graviton production" allows that energy to be transmitted outside the process of the LHC?

This is the energy that can be calculated and left over from all the energy assumed in the very beginning of this collision process. Secondly, all energy used in this process would be in association with bulk perspective.

This now takes me to the second process of "time travel" in the LHC process. The more I tried to figure this out the basis of thought here is that Cerenkov radiation in a vacuum still is slower then speed of light, yet within the medium of ice, this is a different story. So yes there are many corrections and insight here to consider again.

The muon will travel faster than light in the ice (but of course still slower than the speed of light in vacuum), thereby producing a shock wave of light, called Cerenkov radiation. This light is detected by the photomultipliers, and the trace of the neutrinos can be reconstructed with an accuracy of a couple of degrees. Thus the direction of the incoming neutrino and hence the location of the neutrino source can be pinpointed. A simulation of a muon travelling through AMANDA is shown here (1.5 MB).


So while sleeping last night the question arose in my mind as to the location of where the "higgs field" will be produced in the LHC experiment? Here also the the thoughts about the "cross over point" that would speak to the idea here of what reveals faster then light capabilities arising from the collision process?

What are the main goals of the LHC?-
The LHC will also help us to solve the mystery of antimatter. Matter and antimatter must have been produced in the same amounts at the time of the Big Bang. From what we have observed so far, our Universe is made of only matter. Why? The LHC could provide an answer.

It was once thought that antimatter was a perfect 'reflection' of matter - that if you replaced matter with antimatter and looked at the result in a mirror, you would not be able to tell the difference. We now know that the reflection is imperfect, and this could have led to the matter-antimatter imbalance in our Universe.

The strongest limits on the amount of antimatter in our Universe come from the analysis of the diffuse cosmic gamma-rays arriving on Earth and the density fluctuations of the cosmic background radiation. If one asumes that after the Big Bang, the Universe separated somehow into different domains where either matter or antimatter was dominant, then at the boundaries there should be annihilations, producing cosmic gamma rays. In both cases the limit proposed by current theories is practically equivalent to saying that there is no antimatter in our Universe.


So we get the idea here in the collision process and from it the crossover point leaves a energy dissertation on what transpired from this condition and left the idea in my mind about the circumstances of what may have changed the the speed of the cosmos at varying times in the expansion process within our universe. So, this is where I was headed as I laid out the statement below.

Of course this information is based on 2003 data but the jest of the idea here is that in order to go to a "fast forward" the conditions had to exist previously that did not included "sterile neutrinos" and were a result of this "cross over."


So what is the jest of my thought here that I would go to great lengths here to speak about the ideas of what happens within the cosmos to change those varying times of expansion? It has to do with the Suns and the process within those suns that give the dark energy some value, in it's anti- gravity nature to align our selves and our thinking to the cosmological constant of Einstein. If we juggle the three ring circus we find that the curvature parameters can and do hold thoughts govern by the cosmological constant?

It is thus equally important to identify this "physics process" that would allow such changes in the cosmos. So that we can understand the dynamical nature that the cosmos reveals to us can and does allow aspect of its galaxies within context of the universe to increase this expansive process while we question what drives such conditions.

Thursday, November 16, 2006

Three Ring Circus: Dark Energy

"Observations always involve theory."Edwin Hubble


Hopefully some day, I will be accepted as a student of this universe, and it's intrigue?



Sometimes it is necessary to understand that having come to different consclusion about the geometry of this universe that underneath the complexity of these equations a schematic drawing of reality is unfolding? I think this is where Einstein's success came from? So assume from this point a supersymmetrical view of the universe?

You can check out Wayne Hu's site for further info on computer simulation below


A simulation of large-scale structure
formation
As the Universe expands, galaxies become more and more distant from each other. For an observer, such as ourselves, it appears that all other galaxies fly away from us. The further the galaxy, the faster it appears to recede. This recession affects the light emitted by the distant galaxies, stretching the wavelengths of emitted photons due to the Doppler redshift effect. The distance between galaxies is proportionalto the measure of this effect 1+z, where z is what astronomers call redshift. The redshift can be measured for each object if its spectrum is measured.


All three geometrical positions demonstrated below each held the cosmologists to views of our universe. But we now know that Einstein may have been right. What allows us to think this way?

Sorry about the quality of artistic rendition. But you get the jest right?

Why is the universe speeding up, and what does this mean geometrically? There has to be some physics going on that would explain this? What may this be?

Current evidence shows that neutrinos do oscillate, which indicates that neutrinos do have mass. The Los Alamos data revealed a muon anti-neutrino cross over to an electron neutrino. This type of oscillation is difficult to explain using only the three known types of neutrinos. Therefore, there might be a fourth neutrino, which is currently being called a "sterile" neutrino, which interacts more weakly than the other three neutrinos.


Of course this information is based on 2003 data but the jest of the idea here is that in order to go to a "fast forward" the conditions had to exist previously that did not included "sterile neutrinos" and were a result of this "cross over."

If we look back to the measures of supernova Ia measure and find that in that time measure there were differences in the inflationary aspect of that universe, then, the universe today would have allowed us to consider the universe quite capable of changing it's speed of inflation.

While indeed we had held to inverse square law in our assumptions, what shall we do now? As you know, spending a couple of years on my own, I am learning, and yes, it shows sometimes. The "idea back then" presented by Savas Dimopoulos of Stanford University. "This gives us a totally new perspective for addressing theoretical and experimental problems," is what was understood in any theoretical development by scientists then and today?

Inverse Fourth Power Law


Savas Dimopoulos of Stanford University
Instead of the Newtonian inverse square law you’ll have an inverse fourth power law. This signature is being looked for in the ongoing experiments.


Also, I wouldn't one to think that the experimental process had been defunct what we are doing with Cosmic ray collision processes, to not include it with what the LHC is doing as well. Not only have we created the conditions for it in LHC we recognize as a natural process.

While we know of the components of our universe distributed we understand that their is a part of this whole thing that is casing some questions about what we had thought held to the big bomb's inverse square law rules.

What is causing the Speed increase?

While indeed the layman here speculates, it made more sense if we can now explain what is going on. It has been a long journey in terms of comprehension development but I must say it has been rewarding.



So while indeed I show cosmos particle showers here, it is to point out something that helps to fuel the idea behind the speeding up and slowing down of the universe? Cross over production demonstrate in LHC serves also to speak to the fluctuations in "differing speeds of inflation" in our cosmos?

The "crossover" is a point in the collision process of LHC. So by creating these conditions in the LHC, we have effectively recognized where the "new physics" will emerged from. Also, it presents the opportunity for the "first time here" to address what the effects of the LHC will do for us in terms of what has been presented in terms of the dark energy announced below.



So as close as we came to discerning the mass of the neutrino, what have we now come to know? That their could be "a form" of dark matter? The "point here" was to look for the crossover that was taking place and presenting the opportunities for "new physics" to emerge.

The Los Alamos data revealed a muon anti-neutrino cross over to an electron neutrino. This type of oscillation is difficult to explain using only the three known types of neutrinos.


I have some "thought bubbles" percolating to the surface awareness of my mind(a philosopher?), so we will have to see what strange brew materializes. This is a post in developmental mode.

Scientists using NASA's Hubble Space Telescope have discovered that dark energy is not a new constituent of space, but rather has been present for most of the universe's history. Dark energy is a mysterious repulsive force that causes the universe to expand at an increasing rate. Investigators used Hubble to find that dark energy was already boosting the expansion rate of the universe as long as nine billion years ago. This picture of dark energy is consistent with Albert Einstein's prediction of nearly a century ago that a repulsive form of gravity emanates from empty space. Data from Hubble provides supporting evidence to help astrophysicists to understand the nature of dark energy. This will allow them to begin ruling out some competing explanations that predict that the strength of dark energy changes over time.



The title itself of this blog post is not to make fun of what is happening in cosmology right now with the new announcement today. It is about "forcing the mind" to look at "Friedman's equation" in each of the rings. Now the thought is the "whole show" is the Einstein cosmsological constant circus and entertainment, that is happening simultaneously.

Yet it is the idea of the "oscillating nature" behind the geometrical principals that is what I am speculating about.

But thanks to good professor below there is an more in depth explanation shared.



Maybe with the development of the vision, "beyond the spacetime" we had come to know and love, we have now come to a unique point in time? That we understand the greater "depth of the universe" is now open for questions about it's inherent nature?

Friday, November 10, 2006

Lisa Randall on Xtra Dimensions

In physics, Randall-Sundrum models imagine that the real world is a higher-dimensional Universe described by warped geometry. More concretely, our Universe is a five-dimensional anti de Sitter space and the elementary particles except for the graviton are localized on a (3 + 1)-dimensional brane or branes.

The models were proposed in 1999 by Lisa Randall and Raman Sundrum while studying technicolor models.



With the online chat yesterday I'll have to look in on Sabine Hossenfelder and Stefan's of Backreaction blog entry in this regard to look at it more in depth.


Photograph by Phil Knott
Click to view for a larger version.
So you intuitively believe higher dimensions really exist?

I don't see why they shouldn't. In the history of physics, every time we've looked beyond the scales and energies we were familiar with, we've found things that we wouldn't have thought were there. You look inside the atom and eventually you discover quarks. Who would have thought that? It's hubris to think that the way we see things is everything there is.

If there are more than three dimensions out there, how does that change our picture of the universe?


The very ideas are of extra dimensions are very progressive, and are not without some history. Some people will label anything as crackpot, without understanding the history of these discussions."




Physics strings us along by Margaret Wertheim of LAtimes.com

In the latest, hottest Big Science tome — the delightfully titled "Warped Passages" — Harvard physicist Lisa Randall describes the idea that the universe we see around us is but one tiny part of a vast reality that may include an infinite number of other universes. Randall is an expert on both cosmology and that arcane branch of particle physics known as string theory. By marrying the two fields, she and her colleagues have formulated a picture in which our universe may be seen as a soap-film-like membrane (a "braneworld") sitting inside a much larger space: the bulk. According to general relativity, the universe we live in has four dimensions: three of space and one of time. Randall's work extends this framework and posits the existence of a fifth dimension. The fifth dimension is the bulk, and within its immeasurably expanded space, there is no reason to assume that ours is the only cosmos.

Friday, November 03, 2006

Back to the Beginning of Time



While some of us who had been engaged in a little prehistory examination of earliest QGP states as glast determination of high energy photons, the question, "to Be or not to be," how could we not ask what Professor Susskind offered up for examination under the title, "the elephant and the event horizon?"

What happens when you throw an elephant into a black hole? It sounds like a bad joke, but it's a question that has been weighing heavily on Leonard Susskind's mind. Susskind, a physicist at Stanford University in California, has been trying to save that elephant for decades. He has finally found a way to do it, but the consequences shake the foundations of what we thought we knew about space and time. If his calculations are correct, the elephant must be in more than one place at the same time.


I think there is still this far reaching philosophical question about what really started time? If "nothing" existed then how could we assume anything could arise from it?

While empirically Aristotle has lead the thinking, you know how I think don’t you:) Do you see me stand apart from Aristotle?




So I resolve this question in my own mind, even if I do refer to Gabriele Veneziano and his introduction of what began as string theory.

How could I resolve "anything" that has been taken down to the very first microseconds, while recognizing the value of anything "underneath the guise of building blocks of matter," and have said, "that this is the theory of everything?"

It only helped us to the point of the singularity, but it is much different then a complete death. The whole time reductionistic thinking has dominated the move back in history, there were other things going on, that us simple lay people were not aware of. Maybe for some scientists too?:)


Colliding galaxies, NGC 4676, known as "The Mice" (credit: Credit: NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA )
The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope, scheduled for launch in 2013. JWST will find the first galaxies that formed in the early Universe, connecting the Big Bang to our own Milky Way Galaxy. JWST will peer through dusty clouds to see stars forming planetary systems, connecting the Milky Way to our own Solar System. JWST's instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range.

JWST will have a large mirror, 6.5 meters (21.3 feet) in diameter and a sunshield the size of a tennis court. Both the mirror and sunshade won't fit onto the rocket fully open, so both will fold up and open only once JWST is in outer space. JWST will reside in an orbit about 1.5 million km (1 million miles) from the Earth.

JWST Science

The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of The Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems.


So again, we are being lead by science here to look ahead to what plans for the future may have influenced, or caused the decsisons they did, on another trip to refurbish the Hubble Space Telescope?

The Dark Ages of the UniverseBy Abraham Loeb

What makes modern cosmology an empirical science is that we are literally able to peer into the past. When you look at your image reflected off a mirror one meter away, you see the way you looked six nanoseconds ago--the light's travel time to the mirror and back. Similarly, cosmologists do not need to guess how the universe evolved; we can watch its history through telescopes. Because the universe appears to be statistically identical in every direction, what we see billions of light-years away is probably a fair representation of what our own patch of space looked like billions of years ago.


So then I am at a loss to explain that what happened billions of years ago near the beginning of this universe, could have ever been created in this universe now? Some body may say to you, "that the beginning of time and the distance of the beginning of the universe to now, has no correlation?"

If the circumstance are to be created in our colliders, then what said that mass determinations will ever arise from our research into the HiGG's, is not relevant, to what can be created in this space and time now?

Remember, everywhere you look in the cosmos this possibility exists. The WMAP is indictive of what I am saying.

So you say, the beginning of the universe and "the time created" to produce the particles of new physics, has no correlation into how this universe came into being?

Perhaps you may like to read Stephen Hawkings perspective on the beginning of time?

The conclusion of this lecture is that the universe has not existed forever. Rather, the universe, and time itself, had a beginning in the Big Bang, about 15 billion years ago. The beginning of real time, would have been a singularity, at which the laws of physics would have broken down. Nevertheless, the way the universe began would have been determined by the laws of physics, if the universe satisfied the no boundary condition. This says that in the imaginary time direction, space-time is finite in extent, but doesn't have any boundary or edge. The predictions of the no boundary proposal seem to agree with observation. The no boundary hypothesis also predicts that the universe will eventually collapse again. However, the contracting phase, will not have the opposite arrow of time, to the expanding phase. So we will keep on getting older, and we won't return to our youth. Because time is not going to go backwards, I think I better stop now.

Thursday, November 02, 2006

Understanding the Tonal


Sir Isaac Newton


So, you have your units, and the powers of ten?

Distances shorter than 1 µm 1 micrometre (micron)
Items with lengths between 1-10 µm (microns)
1.55 µm — wavelength of light used in optical fibre
6 µm — anthrax spore
6-8 µm — diameter of a human red blood cell
7 µm — diameter of the nucleus of typical eukaryotic cell
7 µm — width of strand of spider web
1-10 µm — diameter of typical bacterium
about 10 µm — size of a fog, mist or cloud water droplet



While I may have a complicated image for you to digest here, what values would you assign what you had never previously seen?

Would you change in the dynamics of your thinking had you known that all the results of the "thought process" had it's effect too?

Kandinsky, himself an accomplished musician, once said Color is the keyboard, the eyes are the harmonies, the soul is the piano with many strings. The artist is the hand that plays, touching one key or another, to cause vibrations in the soul. The concept that color and musical harmony are linked has a long history, intriguing scientists such as Sir Isaac Newton. Kandinsky used color in a highly theoretical way associating tone with timbre (the sound's character), hue with pitch, and saturation with the volume of sound. He even claimed that when he saw color he heard music.


Will scientists ever understand "this application" that when applied to the statements of their thinking, and "voiced from their reasons," that if not supported properly, can cast a wide and ugly shadow over the whole process?


Wassily Kandinsky-Yellow, Red, Blue
1925; Oil on canvas, 127x200cm; Centre Georges Pompidou, Paris


Well as you know, most of us cannot help our backgrounds as we talk about the sciences, or the ways in which we will attack science, based on the knowledge we have accumulated. These give the pursuit's a certain "flavor" based on the approach and meaning being conveyed? As one tries to paint this picture for us.

In my case, about the effects of "what the sun may mean as a central theme."

While based on previous knowledge of the things that help to form an idea about the tonal, vague and mystique, less then the desire of science, it does not reduce what affect is raised here?

I may indicate the very human being in it's colored thinking, but want to look at the science process itself. Nor do I wish to be blinded by such clarity that I be stopped on the road to knowledge accumulated of old age, that the path may indeed finally produced some fruit to bear.

The Sun then, becomes a powerful image/mediator of all the things that we will learn as we look at it's effects. These are as if, in the mind once settled to their private views, try to help through expression want to paint a picture of the world in it's mysterious ways.

Tone color is also often used as a synonym. People who experience synesthesia may see certain colors when they hear particular instruments. Helmholtz used the German Klangfarbe (tone color), and Tyndall proposed its English translation, clangtint. But both terms were disapproved of by Alexander Ellis who also discredits register and color for their pre-existing English meanings (Erickson 1975, p.7).


So while I debate the nature of what the tonal means, it is not without recognizing it's source that we could take in all that we know, may find of our views have now changed some? Try and deny it, and such theoretical models, have not without it's recourse said, that you remain the same in your views, and have not outwardly changed anything?

German photographer and artist Karl E. Deckart is known for his thorough, precise, and beautiful work both in photography through the microscope and with macro camera systems. This gallery of interference photographs made with soap films is a testament to both Deckart's skill as a photographer and his understanding of the physical phenomena that surround our everyday lives.

Staunch in our positions and thinking, while holding to the familiar, we may provide for a much more colorful picture, yet, find the principals by which we stand, do not have to change while held by sciences. It's as if, we have "crossed the wires," that the way in which we now see has had color added to it? While previously in cosmology, it was still a very beautiful picture, is, still a beautiful picture.

Plato:
Sometimes we might need visual aids. So, I thought I would add this in relation to the question, on how would we see these dimensions, if we accept the gravitons in the bulk? Aug 7, 2004 3:46 pm


I added this comment to Backreaction's post because of the way in which my attempts at theoretical modeling had me trying to make sense of the world that had been so abstractly painted.

While one can indeed convolute the world with so much articulation and example, what use the "whole story" if it could not indeed be reduced to the one equation/the physics, that would help us make sense?

Thursday, October 19, 2006

Central Theme is the Sun



A lot of times people do not understand the effects something can have and after we see these effects, we wonder how did we ever miss the importance of what layed underneath this process in Physics.


Richard Feynman-Dancing With Neutrinos-Nova



Much as we looked at the stars above, the views became much clearer with hubble and such, that we see the depth is necessary as we quantum dynamically learn to see with a greater comprehension.

481 MeV muon neutrino (MC) produces 394 MeV muon which later decays at rest into 52 MeV electron. The ring fit to the muon is outlined. Fuzzy electron ring is seen in yellow-green in lower right corner. This is perspective projection with 110 degrees opening angle, looking from a corner of the Super-Kamiokande detector (not from the event vertex). Option -show_non_hit was used to show all PMTs. Color corresponds to time PMT was hit by Cerenkov photon from the ring. Color scale is time from 830 to 1816 ns with 15.9 ns step. The time window was widened from default to clearly show the muon decay electron in different color. In the charge weighted time histogram to the right two peaks are clearly seen, one from the muon, and second one from the delayed electron from the muon decay. Size of PMT corresponds to amount of light seen by the PMT. PMTs are drawn as a flat squares even though in reality they look more like huge flattened golden light bulbs.


Now it is important to me that when I seen the relationships of physics extolling itself in nature, I wanted to understand how this evidence came to be. But, before I lay what nature has shown me, I wanted to explain a little further what I am starting put together in my head, about what has become common in our understanding, was not easily so from a theoretical/concept/idea standpoint. That it was indeed "progressive/reductionistic" as our views became ever more progressive as we see the same picture of the cosmo(astrophysics) in an ever widening view of understanding.

The neutrino detector for the Super-Kamiokande experiment in Japan contains ultrapure water surrounded by an array of thousands of photo-tubes, arranged to catch the flashes of light from neutrino interactions in the water. In 1998, researchers at "Super-K" found evidence for a small mass for neutrinos coming to earth from particle interactions in cosmic rays. If neutrinos, until recently thought to be massless, actually do have a mass, the implications will be profound, not only for particle physics but for astronomy and cosmology. At right is the MINOS collaboration at the Department of Energy’s Fermilab, before a slice of the 10,000-ton detector they will build to capture neutrino interactions. The MINOS experiment will use beams of accelerator-produced neutrinos by Fermilab's Tevatron to investigate neutrino mass.


Now the lesson above is quite simplistic in the sense that what was once held in theoretical views could/would have made it's way into the depths of how we see things now in nature. So in having understood that process, I wanted to show two more that you might be interested in?


Astronaut's view of the Aurora Australis, or southern lights, from aboard Space Shuttle Discovery 1991 (Courtesy: NASA)


The picture below here is what I see from my backyard when mist and rain has fallen.



So here you have it. A couple of views of nature that have been exemplifed in our search for understanding. What does this all reveal to you? Well, that's the continung saga of what the depth of perception has endowed all us human beings, as we look ever deeper into the nature of the cosmo, and the beginning of this universe.

While we had been given the Sun to look at in one of it's diverse ways, I wanted and did show that meeting the views of how we look at things. That it had been extended, by understanding the "valuation of the energy" as it has ensued from the very heart of what that burning sun is. How we gain immediate results, not ony in the particle showers, but of what evidence we have lain before us, as the physical outcome, as we look from space, and how, we look from earth.

See:

  • SOLAR B and Van Ellen Belts