Showing posts with label Complexity. Show all posts
Showing posts with label Complexity. Show all posts

Saturday, September 24, 2005

The Total Field

For me this title above strikes a cord somehow in the struggle and regard, leading in our comprehensions to the extension of the standard model. By bringing gravity into the picture and descibing the graviton teaming in the bulk of expression.



The general theory of relativity is as yet incomplete insofar as it has been able to apply the general principle of relativity satisfactorily only to grvaitational fields, but not to the total field. We do not yet know with certainty by what mathematical mechanism the total field in space is to be described and what the general invariant laws are to which this total field is subject. One thing, however, seems certain: namely, that the general principal of relativity will prove a necessary and effective tool for the solution of the problem for the toal field.
Out of My Later Years, Pg 48, Albert Einstein

Well now the reason why this paragraph strikes such a chord with me, has everything to do with the information that I have progressed through, in order to reach this vision Lisa Randall does not think one asa layman is capable of? Now I should be fair here, and I am not judging personalities, but the essence of the statements about "observation" and "vision".

Lisa Randall:
Most people think of "seeing" and "observing" directly with their senses. But for physicists, these words refer to much more indirect measurements involving a train of theoretical logic by which we can interpret what is "seen."


Now in my quest for comprehension, such building has gone on in my conceptual foundations, are ones that we are carefully lead through in theoretical developement. Ah so we see where such extensions have gone beyond th elayan's view then? To have such things of expression, in the computer world, as numerical relativity, is a nice way in which to round out the data and experience. But as she points out, we are talking about Physicists.

Lisa Randall:
Remarkably, we can potentially "see" or "observe" evidence of extra dimensions.


Those Russion Dolls

Well now. I have this strange picture in my head about "time variable images" we seen of the earth in measure, and such a statement above, by Einstein. It is information on the "total field" that struck immediately in my mind about all those things that lead one through to the comprehension of general relativity. It is indeed, about "gravity" and it indeed seen in the larger aspects of the cosmological scale. But then, how would such a thing take us down to scale in our look at quantum mechanical views. Other components of earth that efect time avraiableness and we are indeed driving this image of scale down to the component parts of our earth?



So I have this picture of earth here. I know its not so pretty, but it describes in greater context the world as you have not seen it before. This advancement in observation, is much more inherent in our culture now, that the grade with which we assign physicists and the lay persons, are really never that far apart. What was accomplished, was that leading infomration and theorectical developement paved the way for an "illustrous view" as to those I impart now. They were already there but never seen in context of each other and as a total field.



So now as I think about Lisa's words, I recognize more deeply the sigificance of how far our vision has been taken, not just in terms of the physicists view, but of how far we had been taken in layman terms as well. What then else retains this view about the total field that I had not show and in it writing, other images come to mind as follows.

So developing this sense in terms of relativity and views of Einstein in regards to the total filed had consequences in my mind about how we view things in new ways.

If conceived as a series of ever-wider experiential contexts, nested one within the other like a set of Chinese boxes, consciousness can be thought of as wrapping back around on itself in such a way that the outermost 'context' is indistinguishable from the innermost 'content' - a structure for which we coined the term 'liminocentric'.




Now it has to be understood, that the total field is one which has inclusiveness such as these boxes indicate, that such views of our blue marble earth, do not consider as we lay "one" over the top of another. Such extensions to our views of earth, lead me to understand the complexity of these views in ways that we had not considered before, and with such a synoptical view, what indeed shall this total field say about earth? So that's where I am at. Much like, Glast, in it's own synoptical view about the range of our vision.

So we have this frame of reference now to consider. Our apprehensions about earth(some who share the climatic valuation) that we can now say, that Inverse square law contains information in relation to "these boxes". That if taken to "new heights" our climatic valuations about this new view of earth, how shall we judge now, that such Kaluza Klein modes held in relation to the expanding nature of this point(circle) can have energy valuations assigned right from the supersymmetrical vision ofa beginning, to have phases (symmetry breaking)with which our views have been generated, in what we see of earth now?



While indeed then, "light had been joined to gravity" how shall we wrap again the views of this earth, in what is now a teaming in this new place, where differences exist in our views. Strengths and weaknesses, are measures in this new abstracted view?

So we have this total view in mind, about the "total field" and I have taken us to a a abstracted space within the idealization of what exists here now as earth arose from some beginning point. To what the earth encapsulates.

How we view then such comsological events has a greater story as we look deep into space, and see the valution of those same cosmological events streaming past all things in existance, that such a gravitational view has arrows pointing in a certain direction. To ideas about comsological expansion and such. This has gone to far I think about our place in this new abstracted view of the universe:)

Tuesday, June 28, 2005

Special Lagrangian geometry


Dr. Mark Haskins
On a wider class of complex manifolds - the so-called Calabi-Yau manifolds - there is also a natural notion of special Lagrangian geometry. Since the late 1980s these Calabi-Yau manifolds have played a prominent role in developments in High Energy Physics and String Theory. In the late 1990s it was realized that calibrated geometries play a fundamental role in the physical theory, and calibrated geometries have become synonymous with "Branes" and "Supersymmetry".

Special Lagrangian geometry in particular was seen to be related to another String Theory inspired phemonenon, "Mirror Symmetry". Strominger, Yau and Zaslow conjectured that mirror symmetry could be explained by studying moduli spaces arising from special Lagrangian geometry.

This conjecture stimulated much work by mathematicians, but a lot still remains to be done. A central problem is to understand what kinds of singularities can form in families of smooth special Lagrangian submanifolds. A starting point for this is to study the simplest models for singular special Lagrangian varieties, namely cones with an isolated singularity. My research in this area ([2], [4], [6]) has focused on understanding such cones especially in dimension three, which also corresponds to the most physically relevant case.


I am execising the geometrical tendencies here in how Sylvester surfaces might have revealled the interior space of a Reimann sphere( Calabi Yau rotations exemplified and complete), while these points located on the sphere's surface, brane, reveal a deeper interactive force within this sphere. Again I am learning to see here, hopefully it's right. The bloggers out there who work in this direction are most helpful, P.P Cook, Lubos Motl and others, who help point the way.

Differences in the gravitational forces speak directly to dimensional relevances In Lagrangian, by association to the energy valuations? Euclids postulate from 1-4, had to be entertained in a new way, from a non-euclidean world of higher dimensions? It was well evident that supergravity, would find solace in the four dimensional relevances of spacetime? How did Kaluza and Klein get there? Cylinders?

Yet the dynamical world of the way in which the satelitte can move through space helps one to adjust to how these dynamcial avenues can propel this satelitte through that same space. Circular orits chaotically predictable, yet quite diverse shown in the poincare model representation, shows how bizzare the ability of the Lagrangian points become. Can one see well with this new abstractual quality?

Einstein's equations connect matter and energy (the right-hand side) with the geometry of spacetime (the left-hand side). Each superscript stands for one of the 4 coordinates of spacetime; so what looks like one equation is actually 4 x 4 = 16 equations. But since some are repeated there are really 10 equations. Contrast this with the single gravitational law of Newton! That alone gives a hint of the complexity of these equations. Indeed, they are amongst the most difficult equations in science. Happily, however, some exact solutions have been found. Below we discuss one such exact solution, the first, found in 1916 by Karl Schwarzchild.


So it was important to understand how this view was developed further. The semantics of mathematical expression was a well laid out path that worked to further our views of what could have been accompished in the world of spacetime, yet well knowing, that the dynamcial revealled a even greater potential?



So now you engaged the views inside and out, about bubble natures, and from this, a idea that is driven. That while Michio Kaku sees well from perspective, the bridge stood upon, is the same greater comprehension about abstract and dynamical processes in that same geometrical world. Beyond the sphere, within the sphere, and the relationship between both worlds, upon Lagrangian perspective not limited.

Placed within the sphere, and this view from a point is a amazing unfoldment process of views that topological inferences to torus derivtives from boson expressed gravitational idealizations removed themself from the lines of circles to greater KK tower representations?


The following is a description of some of the models for the hyperbolic plane. In order to understand the descriptions, refer to the figures. They may seem a bit strange. However, a result due to Hilbert says that it is impossible to smoothly embed the hyperbolic plane in Euclidean three-space using the usual Euclidean geometry. (Technical note: In fact it is possible to have a C^1 embedding into R^3, according to a 1955 construction of Nicolaas Kuiper, but according to William Thurston, the result would be "incredibly unwieldy, and pretty much useless in the study of the surface's intrinsic geometry."[William Thurston, "Three Dimensional Geometry and Topology," Geometry Center Preprint, 1991, p.43.]) Since there is no such smooth embedding, any model of the hyperbolic plane has to use a different geometry. In other words, we must redefine words like point, line, distance, and angle in order to have a surface in which the parallel postulate fails, but which still satisfies Euclid's postulates 1-4 (stated in the previous article). Here are brief descriptions of three models:



This process had to be thought of in another way? Point, line, plane, became something else, in terms of string world? M theory had to answer to the ideas of supergravity? How so? Great Circles and such? Topological torus forms defined, inside and out? Completed, when the circle become a boson expressed? A point on a brane now becomes something larger in perspectve? Thanks Ramond.

Monday, May 30, 2005

Microstates and Gravity


Strominger: That was the problem we had to solve. In order to count microstates, you need a microscopic theory. Boltzmann had one–the theory of molecules. We needed a microscopic theory for black holes that had to have three characteristics: One, it had to include quantum mechanics. Two, it obviously had to include gravity, because black holes are the quintessential gravitational objects. And three, it had to be a theory in which we would be able to do the hard computations of strong interactions. I say strong interactions because the forces inside a black hole are large, and whenever you have a system in which forces are large it becomes hard to do a calculation.



I was scanning over at Sean Carroll's blog and noticed his current article. It seems he is doing some kind of exorcism?:)

Entropy and intelligence


Consider the following system: a rectangular container filled part way with tiny spheres, some of them made of glass and some of brass. All the spheres have equal size, but the brass ones are heavier than the glass ones. Okay, now please tell me which of these configurations has the lowest entropy (or highest order, or greatest complexity, or whatever it is that you think only intelligence can bring into existence):


Now what was appealing to me here is the question of arrangement, and how chaotic systems might have been ruled by other consequences? Like gravity. So troubled by the analogy presented and distancing myself from some satanic feature of intelligent dsign, I wonder, what is going on here?


The animation shows schematically the behavior of the gas molecules in the presence of a gravitational field. We can see in this figure that the concentration of molecules at the bottom of the vessel is higher than the one at the top of the vessel, and that the molecules being pushed upwards fall again under the action of the gravitational field.


Now if I was to wonder about what would govern these thoughts, then indeed the question is raised that such intelligence is governed by a organizational ability that evolved from a better understanding of these graviational influences?

I am a junior here so the idea that such a exorcism would have been dispelled in this attempted has me wondering. Is there some greater design here in elminating the abilities of capable good thinking people and spooky actions, that have defied explanation?

A nice airplane ride is always fruitful to higher forms of thinking here? Time clocks, still exemplify some characteristics on molecular arangements? As well as Einstein and liethe impulsive qualites that such characters appeal to the scolastic heroes of our time, we are drawn by some inexplicable force to wonder about natures way?

Self Organization of Matter

Likewise, if the very fabric of the Universe is in a quantum-critical state, then the "stuff" that underlies reality is totally irrelevant-it could be anything, says Laughlin. Even if the string theorists show that strings can give rise to the matter and natural laws we know, they won't have proved that strings are the answer-merely one of the infinite number of possible answers. It could as well be pool balls or Lego bricks or drunk sergeant majors.


See:

  • Quantum Microstates
  • Sunday, May 29, 2005

    "Lightening," as Strings, Strike?



    With a "supersymmetrical realization" capable of being disemminated in the brain? What could have manifested from it's beginning? To have nature exemplify this greater potential "for new airs to breath life " into other possibilties of minds constructs "real objects" and "things"?

    Are the brain matters limited in terms of this new math? A perspective on the origination of what this universe was before it settled into "the cosmic bands of creation," we know as matter constituents of a galaxy kind.

    Flower representation (plank epoch and guth's expansnonary universe) as a torodial expression of form? As the basis of this supersymmetrical realization, seen in mathematical enlightenment? Makes it hard ,to see how expansionistc views could have been missed in gaining this toposense?

    Mind Over Matter: Brain Waves Guide a Cursor's PathBy Rick WeissWashington Post Staff WriterMonday, December 13, 2004; Page A08


    Wolpaw's "thinking cap" sports 64 sensors (the polka dots) that detect electroencephalographic (EEG) signals generated by neurons. With a software program analogous to those used in voice-recognition programs, which "learn" people's verbal quirks over time, people can gain control over a cursor's movement in two dimensions by modulating signal intensities in certain regions of the brain, Wolpaw and co-worker Dennis McFarland reported in last week's early online edition of the Proceedings of the National Academy of Sciences.


    Now it's never easy to see how such tomographical initiatives of the brains complex firings, might have a issue with the way we do things? So early work here, and the ideas of cursor control stimulation from human contact rhythmns could exemplfy the greater complexity of control that the minds likes to extend from itself?

    No less the idea that calorimetric views would measure some event in particle reductionistic views, about how things work. As a picture, is taken. Views condensed into greater meaning from a huge outlay of supersymmetrical issues, into this crazy bands that streak across our mind sky?

    Here we have gone to extremes to say, "that the brain has a third arm" and we know how it works and we can use it?

    Monkeys Adapt Robot Arm as Their Own


    Image: Miguel Nicolelis, M.D., Ph.D., professor of neurobiology and co-director of the Center for Neuroengineering, Duke University Medical Center, with robot arm. PHOTO CREDIT: Duke University
    "In our new experiments, the idea is that by using vision and touch, we're actually going to create inside the brains of these animal a vivid perceptual image of what it is to have a third arm," he said.


    The greater complexity of a system would have known that the physiological coordination of views, could have, "photosynthesis processes"? Used chemcial derivatives endocronologically reduce to the euclidean view. While it existed, within this massive torodial view of the human body? Reduced it, to viable means of expression?


    So why is it so difficult to accept the idea "that if a Professor is walking across the room, that many of his students would congregate.:)" Just as they would in any other attempts at defining the nature of this reality?

    Hooft, Witten and now Lauglin himself understands, that we have face to face with a problem? By arguing "stuff", would we have divested ourselves of recognition of this Third Superstring Revolution? Of course not.:)



    BrainInfo Site

    Wednesday, May 25, 2005

    Blaise Pascal


    Blaise Pascal (June 19, 1623 – August 19, 1662)

    Born in Clermont-Ferrand (France), the young Pascal was introduced to mathematics and physics by his father. So precocious was his talent in these disciplines that he published his innovative Essai pour les coniques [Essay on conics] in 1632, at only sixteen. In 1631, he moved to Paris, where he frequented the intellectual circle of Marin Mersenne (1588-1648)—a forum for the discussion of the most topical scientific and philosophical questions. In 1644, he became interested in the technological aspects of scientific research, devising a calculating machine that could perform additions and subtractions. In 1646, he conducted path-breaking research on the vacuum and fluid dynamics. He devoted two major works to fluids—Équilibre des liqueurs [Equilibrium of liquids] and De la pesanteur de la masse d'air [On the weight of the mass of air]—written in 1651-1654, but not published until 1663. In 1653-1654, he composed some brief but seminal papers on combinatory calculus, infinitesimal calculus, and probability. Pascal repeated Evangelista Torricelli's experiment, using various liquids and containers of different shapes and sizes. This research, in addition to the publication of Expériences nouvelles touchant le vide [New experiments on the vacuum], culminated in the famous experiment performed in 1648 on the Puy-de-Dôme, in which he demonstrated that atmospheric pressure lessens with an increase in altitude.

    In parallel with his scientific pursuits, Pascal displayed a deep and abiding concern with religious and moral issues. In his youth, he espoused Jansenism and began to frequent the Port-Royal group. These contacts form the background to the Lettres provinciales (1656-1657) and the Pensées (published posthumously in 1670).


    I had to lay this out before I continued to speak to the world Lubos motl directs us too. In a way, these mathematical pursuance and comprehensions, are revealing, when they speak to the greater probability of discovering the root systems mathematically as well as philosophically. Cases in point, about compaction scenarios are self explanatory when it comes to energy determination and particle reductionism . This relationship to idealization of supergravity, points thinking to a vast overall comprehension suited to the culminations of a model employed such as string theory?

    But back to the point of focus here.

    Earlier derivation of Pascal's thinking, "are roads that even he was lead too," that we have this fine way in which to speak about the root of mathematical initiative, and these roots leading to mathematical forays into the natural world.


    Diagram 6. Khu Shijiei triangle, depth 8, 1303.

    The so called 'Pascal' triangle was known in China as early as 1261. In '1261 the triangle appears to a depth of six in Yang Hui and to a depth of eight in Zhu Shijiei (as in diagram 6) in 1303. Yang Hui attributes the triangle to Jia Xian, who lived in the eleventh century' (Stillwell, 1989, p136). They used it as we do, as a means of generating the binomial coefficients.

    It wasn't until the eleventh century that a method for solving quadratic and cubic equations was recorded, although they seemed to have existed since the first millennium. At this time Jia Xian 'generalised the square and cube root procedures to higher roots by using the array of numbers known today as the Pascal triangle and also extended and improved the method into one useable for solving polynomial equations of any degree' (Katz, 1993, p191.)



    See I am somewhat starting with a disadvantage because buried in my head is the reasons for describing math more then it's intuitionist valuation in computer generated idealizations. It all of a sudden brings into perspective a deeper sense of the possibilities and probabilities?

    Here I am quickly reminded of Gerard t'hooft, and the thinking, about reductionistic views of information in computerized versions. Philosophically how can we have reduced information to such sizes and find the world a much more complex place. Would we not realize that such intuitionist attempts too have to undergo revisions as well?

    A Short History of Probability


    "A gambler's dispute in 1654 led to the creation of a mathematical theory of probability by two famous French mathematicians, Blaise Pascal and Pierre de Fermat. Antoine Gombaud, Chevalier de Méré, a French nobleman with an interest in gaming and gambling questions, called Pascal's attention to an apparent contradiction concerning a popular dice game. The game consisted in throwing a pair of dice 24 times; the problem was to decide whether or not to bet even money on the occurrence of at least one "double six" during the 24 throws. A seemingly well-established gambling rule led de Méré to believe that betting on a double six in 24 throws would be profitable, but his own calculations indicated just the opposite.


    Shall we quickly advantage to a age of reason where understand well the beginnings of mathematical systems and lead into Boltzman? But before I do that, I wanted to drawn attention to the deeper significance of this model appreciation.

    Discovering Patterns



    While we get some understanding here of what Pascal's triangle really is you learn to sense the idea of what culd have ever amounted to expressionand this beginning? Did nature tell us it will be this way, or some other form of expression?

    So overall the probability of expressionism has devloped the cncptual basis as arriving from soem place and not nothing. True enough, what is this basis of existance that we would have a philosphical war between the background versus non background to end up in stauch positional attitudes about how one should approach science here?

    So to me, I looked for analogies again to help me understand this idea of what could have ever arisen out of string theory that conceptually mad esense . Had a way in which to move forward, with predictable features? Is their sucha things dealing with the amount of information that we have in reductionsitic views. These views had to come to a end, and I will deal with this later.

    Of course now such idealization dealng with probabilties off course, forces me to contend with what has always existed and helps deal with this cyclcial nature. You have to assume soemthing first. That will be the start of the next post.

    But back to finishing this notion of probability and how the natural order of the universe would have said folow this way young flower, that we coud seen expansionism will not only be detailled in the small things, but will be the universe, in it's expression as well?


    The Pinball Game


    The result is that the pinball follows a random path, deflecting off one pin in each of the four rows of pins, and ending up in one of the cups at the bottom. The various possible paths are shown by the gray lines and one particular path is shown by the red line. We will describe this path using the notation "LRLL" meaning "deflection to the left around the first pin, then deflection right around the pin in the second row, then deflection left around the third and fourth pins".

    So what has happened here to force us to contend with certain issues that the root numbers of all things could have manifested, and said, "nature shall be this way?"


    Ludwig Boltzmann (1844-1906)

    In 1877 Boltzmann used statistical ideas to gain valuable insight into the meaning of entropy. He realized that entropy could be thought of as a measure of disorder, and that the second law of thermodynamics expressed the fact that disorder tends to increase. You have probably noticed this tendency in everyday life! However, you might also think that you have the power to step in, rearrange things a bit, and restore order. For example, you might decide to tidy up your wardrobe. Would this lead to a decrease in disorder, and hence a decrease in entropy? Actually, it would not. This is because there are inevitable side-effects: whilst sorting out your clothes, you will be breathing, metabolizing and warming your surroundings. When everything has been taken into account, the total disorder (as measured by the entropy) will have increased, in spite of the admirable state of order in your wardrobe. The second law of thermodynamics is relentless. The total entropy and the total disorder are overwhelmingly unlikely to decrease


    So what has happened that we see the furthest reaches of our universe? Such motivation having been initiated, had been by some motivator. Shall you call it intelligent design(God) when it is very natural process that had escaped our reasoning minds?

    So having reached it's limitation(boundry) this curvature of the universe, has now said, "such disorder having reached it's reductionistic views has now found it's way back to the beginning of this universe's expression? It's cyclical nature?

    This runs "contray to the arrow of time," in that these holes, have somehow fabricated form in another mode of thought that represents dimensional values? This basis from which to draw from, had to have energy valuations missing fromthe original expression? It had to have gone some place. Where is that?

    But I have digressed greatly, to have missed the point of Robert Lauglin's principals, "of building blocks or drunk sergeant majors", and what had been derived from the energy in it's beginning? To say the complexity of those things around us had to returned our thinking back to some concept that was palitable.

    Why the graduation to ISCAP, and Lenny's new book, is the right thing to do

    (LEONARD SUSSKIND:) What I mostly think about is how the world got to be the way it is. There are a lot of puzzles in physics. Some of them are very, very deep, some of them are very, very strange, and I want to understand them. I want to understand what makes the world tick. Einstein said he wanted to know what was on God's mind when he made the world. I don't think he was a religious man, but I know what he means.

    The thing right now that I want to understand is why the universe was made in such a way as to be just right for people to live in it. This is a very strange story. The question is why certain quantities that go into our physical laws of nature are exactly what they are, and if this is just an accident. Is it an accident that they are finely tuned, precisely, sometimes on a knife's edge, just so that the world could accommodate us?

    Friday, April 22, 2005

    Clementine Project Information


    Clementine was a joint project between the Strategic Defense Initiative Organization and NASA. The objective of the mission was to test sensors and spacecraft components under extended exposure to the space environment and to make scientific observations of the Moon and the near-Earth asteroid 1620 Geographos. The observations included imaging at various wavelengths including ultraviolet and infrared, laser ranging altimetry, and charged particle measurements. These observations were originally for the purposes of assessing the surface mineralogy of the Moon and Geographos, obtaining lunar altimetry from 60N to 60S latitude, and determining the size, shape, rotational characteristics, surface properties, and cratering statistics of Geographos.


    Look at Clementine and the moon. The way they measured gravity there( the satellite lag)? The geological perspective gained from mapping the moon? The frames of reference are thus quite dynamical when you use this perspective to gain new insights developed from the work of Einstein.

    Green Cheese?

    The Clementine gravity experiment used measurements of perturbations in the motion of the spacecraft to infer the lunar gravity field

    The complexity of measuring events in the cosmos, was to see information contained in what exists around us now. Using various locations they are trying to ascertain simultaneous correspondances in the signals from these cosmological locations, as a well as use the distance between these earth based locations.

    Gravity for instance, varies with Time

    Gravity is "flavor blind," so when a microscopic blackhole evaporates it produces all the Standard Model particles with equal probability. Once one accounts for spin and color, it turns out that particles produced when a blackhole decays are about 72 percent quarks and Gluons, 18 percent leptons, and the rest are bosons. Such a distinctive shower of particles would be hard to miss. So there is the possibility that the Pierre Auger Observatory will detect blackholes.
    Page 262, Out of this World, by Stephen Webb

    In a complex world of uncertainty this is hard to do, so you look for the ways to see how the cosmic rays create the situations for particle production. So you look for the origins of any number system that began, and how it was used to explain the natural world.

    An Excursion into the Dimensions of Numbered Systems

    An example here would be using Pascal's triangle. If you "blanket" using resonances pertaining to all number deveopements, then we might understand the harmonies created? Topological movements?

    In a euclidean world, the developing geometries will lead somewhere, but how did you every arrive from topological states to euclidean frames of reference? You had to understand the physics process.

    So from space to earth, the earth, a final physical state. But you understand that it existed in other states as well? That's where you learn to use the physics.

    Thursday, March 17, 2005

    Without Gravitational Waves, Spacetime is Flat?

    I know it is very difficult for some people to understand this translation to harmonical expressions(any horizon and what is to lie beyond?) and the way in which we would percieve this dynamcial nature, using the expressions of non-Euclidean geometries?



    We understood this creation of positive and negtaive in context of each other did we?

    Riemannian Geometry, also known as elliptical geometry, is the geometry of the surface of a sphere. It replaces Euclid's Parallel Postulate with, "Through any point in the plane, there exists no line parallel to a given line." A line in this geometry is a great circle. The sum of the angles of a triangle in Riemannian Geometry is > 180°.



    It is a strange thing to wonder how the heck one get's to translating harmonical oscillations in context of what we see expounded by Taylor and Hulse. To understand that at some point, the rotation around each other in distance, will decrease in time, and the oscillations will increase? What does this signal?:)



    You do not discard thnking about the cosmological nature, methods, that have been used to orientate the world view in such a way, where all of a sudden the complexity of this dynamical nature has moved your thinking to strength and weakness of those same gravitational wave explanations.


    Working closely with the experimental group, we use astrophysical, particle physics and superstring theory combined with observations to study gravitation and the origin and evolution of our universe.



    The beautiful consistency of the cosmological tests with the Lambda CDM theory for structure formation maybe is particularly impressive to me because I spent so much of the last 15 years studying alternatives; you can trace through astro-ph my history of proposals that were viable when submitted but soon ruled out by advances in measurements of the angular distribution of the 3K thermal background radiation. But the constraints from the cosmological tests are not yet much more numerous than the assumptions in Lambda CDM and related models; it's too soon to declare closure of the cosmological tests.

    Sunday, February 13, 2005

    HIgher Dimensions Without the Geometry?



    In Illusions and Miracles I became concerned with what the mind's capabilties which could encounter fifth dimensional views. That such examples were needed, and found in relation to Thomas Banchoff.

    Having understood the early development from Euclidean perspective, our furthered evolutionary developement of the geometries, were gained by moving beyond the fifth postulate. I became comfortable with a dynamical realization about our universe(Omega), and about the idealization of curvature in dynamical fields of supergravity.

    I made the statement that GR is reduced from the higher geometries and along with that view the understanding that things existed in earliers states of being. Robert Laughlin's views of complexity and symmetry breaking would reveal to me, that the matter states of form, were derived from "other states of existance". This is a fundamental realization of higher dimensional attributes revealled in the topologies/geometries. So from higher, and the continuity of, topological considerations to the firmly fixed realms of geometries in the forms? So from early universe to now, what views allow us to consider that symmetical breaking that has gone through phase transitions, to get from the planck epoch phase of our universe to today?

    Having come in contact with a new type of thinking in the realm of the geometries, it became very important to me to understand how this could have manifested early in our historical background? I followed it through GR in order for this to make sense, I continued to move and consider the higher dimensional relevance new models might use in their move to the abstracts realms of thinking.

    Here I would interject the realization of string theory, and ask why such a rejection mathematically, would dimiss the subject of strings based on this dimensional realization, and then quickly disperse, string's relevance because of the higher dimensional significance brought to bear on the attribtues of the minds capabilties? Part of the develpement of the brains compacity was the realization that such images produced(higher topological math forms), could indeed symmetryically break to forms within the world. Forms within mind, that could lead to solification in the math? When is a Pipe a Pipe?:)

    This is what had troubled me most, noting Peter Woit's rejection of the value of his "anti" campaign of string theory evolution. Maybe, it was more then the idea of the subject and it's established views that he felt were as much part of the illusion as any other theory, that found itself unscientifically determined? Based on the constructs string theory developed? Maybe it was the funding biased felt towards this subject, and lack of, somewhere else. We wouldn't know this, because he had no alternative?

    Saturday, February 12, 2005

    What Pattern Emerges?

    Problem solvers have a way of getting to the heart of the issues, and unfortunately when ones engages competent minds like Peter Woit in the world? Whose sign post is,"anti-string with no explanation"? This is simple in the minds of the general public? It then becomes a rant, without a substantial basis? Why? Because he had no platform with which to refute?

    So this attempt was fruitless, in wondering why strings should not be.

    What I did find viable in looking for myself, is finding out where strings applicable features pervaded and what they were describing. Both bottum up and top down have to find approaches that emerge from a place that asks us to map this progress, and there is only one place that allows me to understand this operation.

    The spectrum.

    When you look at Glast operations this idealization of using the spectrum in cosmological discernation, helped to clarify why the move of strings to a cosmological operation platform was necessary from a experimental and scientific undertanding. Why was this move important?

    It had to do with the amounts of energy needed to explore the principles of reductionism? How could we extend reductionism to a cosmological question about the origins of our beginning? There were no limitations as to the question of the energy that could be displayed for us all to wonder on that cosmological pallete, and here Relativity Ruled.

    While complexity, asks us about the means of what is established in the forms, stands for us in our observations, as existing? Many people feel safe in what they can see?

    I looked for comparative features. Like how ideas could emerge and as a good example of what math could issue from the minds of those whose good observation could speak about natures manfestations.

    How good are the observatory minds of mathematicians? That would systematically describe for us this idealization of quantum reality and Relativity to join in a way that makes sense?

    Macroscopic and microcosmo perceptions joined?

    You say Time? Julian Barbour wants to do away with Time? Yet his goal is the same? He calls Time a human construct? What isn'taside from everythng else that we don't see? Science reveals a deeper truth?

    Killing Time

    Barbour posits that time is, in fact, an illusion - a measure imposed on the world by humanity. He explains this with the concept of a 'now', which he describes as a snapshot in time - a completely frozen, self-contained instant (much like a Polaroid photograph). Time is simply the measure of the space between two separate and unrelated 'nows.'



    BarryTo offer that I am an engineer and a sculpture with a carear of problem solving. To offer that making me understand the final solution is to achieve making it clear to anyone.

    I am somewhat like a philosopsher as you are, minus, the engineering, yet I am quite capable of peering past the veil that good minds construct.

    In the end, what is taken with you might be the realization that of all the thought forms we have estanblished and created. The illusion that we move through, hides a deeper truth, and we were emersed within it the whole time. Science, verified the anomalies that we saw?

    How much power then could we grant the mind who escapes this realization, to find that all the thoughts that have ever existed, were weighted with the gravity that held us to earth? That the forms, revealled a deeper realization of their beginnings?

    As the temperature cooled, the solification was final and so was the idealization that manifested from the idea.

    When is a pipe a pipe? Is a question about what supergravity reveals in the forms manifestation. Crystalization. What pattern emerges?


    Betrayal of Images" by Rene Magritte. 1929 painting on which is written "This is not a Pipe"


    Yet probablistic in nature, how could such things arrange themselves as they have?

    There is a deeper question here about the reality. If the idea is born in mind how would it not burn up, comparative to the beginning of our universe? Yet nature has supplied a good analogy of bubbles that form, rise to the surface, and this could have been information that arose from the fifth dimension? It all arose form the mind of the subconsious? It was always closer to the source. Why Ramanujan and Einsteins note taking in the subtle realms help to spur the incubation of reality to a deepr level of questions.

    People might say indeed, that this departure point from the sane world of forms, is the moving further into the illusions? But if we cannot find a way to free ourselves, then surely, one will accept the consequences of there reality, as they take it with them?:)

    Thursday, February 10, 2005

    Organization of Matter: The Theory of Everything

    I looked at Sean Carroll's blog on the thread on emergence and for me first principle was a dirty word to Robert Laughlin, and for many of us, the forms are the resulting framework of the organization of matter states, versus reductionistic attempts leading to the first building blocks of matter?



    Robert Betts Laughlin (born November 1, 1950) is a professor of Physics and Applied Physics at Stanford University. Along with Horst L. Störmer of Columbia University and Daniel C. Tsui of Princeton University, he was awarded the 1998 Nobel Prize in physics for his explanation of the fractional quantum Hall effect.

    Laughlin was born in Visalia, California. He earned a B.A. in Mathematics from UC Berkeley in 1972, and his Ph.D. in physics in 1979 at MIT, Cambridge, Massachusetts, USA. In the period of 2004-2006 he served as the president of KAIST in Daejeon, South Korea.

    Laughlin shares similar views to George Chapline, doubting the existence of black holes.




    It is rather obvious that one does not need to prove the existence of sound in a solid, for it follows from the existence of elastic moduli at long length scales, which in turn follows from the spontaneous breaking of translational and rotational symmetry characteristic of the crystalline state [12]. Conversely, one therefore learns nothing about the atomic structure of a crystalline solid by measuring its acoustics Robert Laughlin



    So such a view of Robert Laughlin does not concern itself with what took place at the very beginning of the universe, but rather opposed to the higg's field, and the organizational process of matter, we might see of the professor crossing the room, there is real manifestation of the universe in the now. So I see where Professor Laughlin polarities are much different then high energy particle people?

    Complexity changes these views, from a reductionistic view, as in particle identification, to one of a expansionary nature, when looking at our universe now?

    Robert Laughlin is very helpful in showing us the complexity issue ballooning into a real world measure, of solid state and formative issues. But no where is this idealization asking what the basis of this existence is? Does it care?


    The Institute for Complex Adaptive Matter (ICAM) is a University of California multicampus research project devoted to revealing the principles by which matter, both living and inanimate, organizes itself to reveal surprising, emergent behavior.



    Certain assumptions make this universe and our perceptions of it, point to a reality. But in order to leave the confines of constructive formations and these ballooning attributes of universal expansionism, where are the seeds of its beginnings? Does it matter?

    Emergent Matter Project
    There is a huge potential public interest in learning about the frontier that connects inanimate matter, via quantum emergent properties such as magnetism, high temperature superconductivity, and quantum criticality, to the worlds of nanophysics and ultimately to biology and life itself.

    What Lies Beneath?


    Likewise, if the very fabric of the Universe is in a quantum-critical state, then the "stuff" that underlies reality is totally irrelevant-it could be anything, says Laughlin. Even if the string theorists show that strings can give rise to the matter and natural laws we know, they won't have proved that strings are the answer-merely one of the infinite number of possible answers. It could as well be pool balls or Lego bricks or drunk sergeant majors.



    ***


    See:
  • "Lego Block" Galaxies in Early Universe
  • Friday, February 04, 2005

    Symmetry and Symmetry Breaking

    Harmonices Mundi


    Symmetry considerations dominate modern fundamental physics, both in quantum theory and in relativity. Philosophers are now beginning to devote increasing attention to such issues as the significance of gauge symmetry, quantum particle identity in the light of permutation symmetry, how to make sense of parity violation, the role of symmetry breaking, the empirical status of symmetry principles, and so forth. These issues relate directly to traditional problems in the philosophy of science, including the status of the laws of nature, the relationships between mathematics, physical theory, and the world, and the extent to which mathematics dictates physics.


    This is cosmological question about what the universe has become? At earlier time in the Planck era, the symmetry theoretically speaking from a string perspective, is much different then it is in today's matter orientated world?

    High Energy particle identification, brings us much closer to the earlier views of the cosmo. Glast determinations, with Compton scattering help us to identify early photon interaction. These views are limited, although they give us a better window on the universe?



    Complexity changes these views, from a reductionistic view, as in particle identification, to one of a expansitory nature, when looking at our universe now?

    Thursday, January 20, 2005

    Is Everyone Declaring their Position Clearly?

    "Most string theorists are very arrogant," says Seiberg with a smile. "If there is something [beyond string theory], we will call it string theory."


    I am going to comment on Peter Woit's reference to the article called String Fellows he has highlight from the Guardian.

    Here's what Nathan Seiberg mentions and points to the difficulty of finding the means to describe the microstates of quantum geometry. I wanted to place his statement, in context of a poem earlier written. So I'll post his comment, and then link to the appropriate source for consideration. It's getting a little worn out already, without us constantly being reminded:)



    Nathan Seiberg, a colleague of Witten's at the IAS, uses the analogy of blind men examining an elephant to explain the course of string theory until 1995. "One describes touching a leg, one describes touching a trunk, another describes the ears," he says. "They come up with different descriptions but they don't see the big picture. There is only one elephant and they describe different parts of it."The Guardian


    Now I most definitely see there is a great wish to eliminate any familiarity with dimensional anaylsis in regards to Peter Woit, that I find many others now, all of a sudden clarfying for us the model distinctions that are being used, and I think Peter Woit understands this?

    Model Building

    I am not like the kind of people who would like to eliminate (and often they DO eliminate) every piece of data that is inconvenient to them. And moreover I think that John Ellis is an interesting person with inspiring ideas, and I have absolutely no reason to try to verbally eliminate him from some group---Posted by Luboš Motl at January 20, 2005 08:32 AM
    .

    In delving into the issue of dimenisons it has become pretty clear there are intelligent people who have paved the roads for us to count to the fourth dimension for sure and we have also heard, there is no such things as dimensions? So what the heck does this mean.

    Maybe a expanded version of dimension is needed? But if you do this, you might go beyond string theory?:) Which of course brings me to the issue, that if dimension is to be used to the fourth, then anything that goes beyond the fourth if not a dimension has to be something else? Of course giving room to grow being expounded here, tells us what is beyond string theory, to have said, we are going beyond the standard model?


    THOMAS BANCHOFF has been a professor of mathematics at Brown University in Providence, Rhode Island, since 1967. He has written two books and fifty articles on geometric topics, frequently incorporating interactive computer graphics techniques in the study of phenomena in the fourth and higher dimensions


    With John Ellis' reference to what took place at Cern in 2003 brings to a head the idea of dimension, as it has been expounded by Thomas in regards to computer screens?

    Today, however, we do have the opportunity not only to observe phenomena in four and higher dimensions, but we can also interact with them. The medium for such interaction is computer graphics. Computer graphic devices produce images on two-dimensional screens. Each point on the screen has two real numbers as coordinates, and the computer stores the locations of points and lists of pairs of points which are to be connected by line segments or more complicated curves. In this way a diagram of great complexity can be developed on the screen and saved for later viewing or further manipulation


    As a reality greatly expanded from what the internet used to be, refering to the Cern Article. If you accept the conceptualization of higher dimension then indeed the work that Thomas moved into, was mind expanding and thought provoking in regards to the animations and reality in front of you with this two dimensional screen?

    So has this computer screen okayed the analogy to the fifth dimension?

    So What is this Dimenisonal Archetecture Built On?

    3-d: no hidden dimensions 1/R2 in F = G(m1 x m2)(1/R2)
    4-d: one “ “ 1/R3 replaces 1/R2
    5-d: two “ “ 1/R4 “
    6-d: three “ “ 1/R5 “

    and so on.

    The rule is that for n hidden dimensions the gravitational force falls off with the inverse (n + 2 ) power of the distance R. This implies that as we look at smaller and smaller distances (by banging protons together in particle accelerators) the force of gravity should look stronger and stronger. How much stronger depends on the number of hidden dimensions (and how big they are). There may be enough hidden dimensions to unify the all the forces (including gravity) at an energy level of around 1 TeV (1012 eV), corresponding to around 10-19 meters. This would be a solution to the hierarchy problem of the vast difference in energy scale between the three standard gauge forces and gravity. This is already partly solved by supersymmetry (as mentioned previously); but this new idea would be a more definitive solution--if it were the right solution!




    Sunday, November 21, 2004

    Quantum Gravity

    Here is one of two methods that help explain. The next post will follow tomorrow if I have time. The complexity of the pictures involved is linked down below in Fig 15-17. This will give some generalizations that I had been looking too, to comprehend the model of strings and its geometrical discriptions.

    Continuity



    Topology is the branch of mathematics concerned with the ramifications of continuity. Topologist emphasize the properties of shapes that remain unchanged no matter how much the shapes are bent twisted or otherwise manipulated.

    Such transformations of ideally elastic objects are subject only to the condition that, for surfaces, nearby points remain close together in the transforming process. This condition effectively outlaws transformations that involve cutting and gluing. For instance a doughnut and a coffee cup are topologically equivalent. One can be transformed continuously into the other. The hole in the doughnut will be preserved as the hole in the handle of the coffee cup.











    Topology becomes an important tool in superstring when it is treated as quantum mechanical object. This branch of mathematics is concerned with smooth, gradual, continuous change of geometric shape. For example, a square can be continuously deformed into a circle by pushing in the corners and rounding the sides. The essential rule is that no new hole can be created in the new form by tearing. Some topological equivalent objects are shown in Figure 15-17.

    Unfortunately I lost the link to this quote and if someone could remember seeing this, I hope you will let me know.

    We expect that the divergences of quantum gravity would similarly be resolved by introducing the correct short-distance description that captures the new physics. Although years of effort have been devoted to finding such a description, only one candidate has emerged to describe the new short-distance physics: superstrings. Vibrational modes

    This theory requires radically new thinking. In superstring theory, the graviton (the carrier of the force of gravity) and all other elementary particles are vibrational modes of a string (figure 1). The typical string size is the Planck length, which means that, at the length scales probed by current experiments, the string appears point-like.

    The jump from conventional field theories of point-like objects to a theory of one-dimensional objects has striking implications. The vibration spectrum of the string contains a massless spin-2 particle: the graviton. Its long wavelength interactions are described by Einstein's theory of General Relativity. Thus General Relativity may be viewed as a prediction of string theory!


    This highlighted print tells us a lot, about the higher dimensional values assigned to spacetime as being a result. If we were to entertain the holographical consideration of these higher spaces manifesting into the spacetime curvature, that we have come to know and love, then we have indeed not only used Klein to travel to the fifth dimension but have come back home, to what GR represents for us a sa tangible?

    Friday, November 19, 2004

    The Butterfly Effect



    The "Butterfly Effect" is the propensity of a system to be sensitive to initial conditions.Such systems over time become unpredictable,this idea gave rise to the notion of a butterfly flapping it's wings in one area of the world,causing a tornado or some such weather event to occur in another remote area of the world.

    Where do these ideas of weather exist, before they find themselves funneling into man's framework, called the brain?

    It was Socrates' turn to look puzzled.
    "Oh, wake up. You know what chaos is. Simple deterministic dynamics leading to irregular, random-looking behavior. Butterfly effect. That stuff."
    Of course, I know that," Socrates said in irritation. "No, it was the idea of dynamic logic that was puzzling me. How can logic be dynamic


    In contemplating the essence of the ideas of complexity it became increasingly clear to me, that the ideas manifesting and philosophies that were looking at this, could be recognized in tell tale signs of international terrorism of the worst kind.

    The final image of the twin towers in panel shown, before, such a contemplative action, spoke to such complexities. Had we been able to see what effect this action had, we might have then said look, indeed, where is it's origination. The reveberations, "symbolically," not only shook the foundation, but was started long before and continue to this day.

    Whether the state of the nation or of the world community, such attempts to disrupt, left signatures with it's ideological thinking, that became the trademark of expansive and multple effects, as if, reverberating from a initial idea. Community and science spoke freely. Had we let evil loose, from such conceptualizations?

    This raises a much deeper and fundamental question then, about the nature of reality that would emerge in this Third Superstring Revolution, that such conceptualization are now open and free. That questions of self organization, had fundamental thoughts governing it's growth all along.

    These ideas always existed then, in the bulk, but waited, for the right channel to express themselves? Like beget's like, and manifests into form?

    You see?