Showing posts with label Cerenkov Radiation. Show all posts
Showing posts with label Cerenkov Radiation. Show all posts

Saturday, November 18, 2006

Result of Effective Changes in the Cosmos

"There comes a time when the mind takes a higher plane of knowledge but can never prove how it got there. All great discoveries have involved such a leap. The important thing is not to stop questioning." Albert Einstein (1879- 1955)




But the presence of an event horizon implies a finite Hawking temperature and the conditions for defining the S Matrix cannot be fulfilled. This lack of an S Matrix is a formal mathematical problem not only in string theory but also in particle theories.

One recent attempt to address this problem invokes quantum geometry and a varying speed of light. This remains, as they say, an active area of research. But most experts doubt that anything so radical is required.


What processes would allow you to see "faster then light entities" being shown as examples of that "cross over point?" That's part of the fun isn't it when you realize what some experiments are actually checking for? :)



So yes of course, you might think about "Cerenkov radiation" and from this, what is happening in today's world, that allows us lay people, never having seen or understood, but may now do so?

SNO
The Sudbury Neutrino Observatory is a collaborative effort among physicists from Canada, the U.K., and the U.S. Using 1,000 tons of so-called heavy water and almost 10,000 photon detectors, they measure the flux, energy, and direction of solar neutrinos, which originate in the sun. SNO, located 6,800 feet underground in an active Ontario nickel mine, can also detect the other two types of neutrinos, muon neutrinos and tau neutrinos. In 2001, just two years after the observatory opened, physicists at SNO solved the 30-year-old mystery of the "missing solar neutrinos." They found that the answer lies not with the sun—where many physicists had suspected that solar neutrinos undergo changes—but with the journey they take from the core of the sun to the Earth.


In the previous article I mention the "cross over point in LHC" and from this, the idea was born in mind, how the universe and the effectives rates of expansion could take place?



While it is a long shot, I thought since of layman status, what could it hurt but to speculate and see what thoughts further arise from this. Like any model perspective adopted, allows new thinking to emerge, where previously, none existed for me. So one tends to try and go with the flow and see where it ends up. At least that's what I do and now, others do too?


Blackhole Production in the Cosmos


Increase, in high energy collisions taking place, allows speed up of inflation?



So here is the jest of what allowed me to say that the effective rates of exchange in the cosmos had to have the physics related to show the reasons why the effective speed up of inflation has been detected.


Adapted from Dienes et al., Nuclear Physics B
Some theorists envision the universe as multidimensional space-time embedding a membranous entity, called a brane, also of multiple dimensions. Diagram depicts familiar 3-dimensional space (time not shown) as a vertical line. At every point along line, one extra dimension curls around with a radius (r) of no more that about 10–19 meter. Perpendicular to every point of the brane extends the bulk, another extra dimension.


Also I will give the idea of "photo/graviton association" and how "graviton in a can" allows perspective about the "effective field variations" that "may be" predicted in the vacuum as it produces new physics to emerge on the other side? Quite a mouthful I know.


The graviton is the quantum force carrier of gravity. In conventional quantum field theory, graviton processes with loops do not make sense because of incurable divergencies.


The idea then here is to understand the graviton production in particle collisions here produce some interesting "phenomena" as we see faster then light entities move beyond the confines of that "graviton in a can." So you get the jest then, that even if the boundary conditions are experimentally being tested here, the production of gravitons is very high.

So what allows faster then light entities to move beyond these confines if you did not understand the connection to the "perfect fluid" and the anomalistic nature this perfect fluid has for allowing such traversing beyond the standard model?

That's not all. The fact that space-time itself is accelerating - that is, the expansion of the universe is speeding up - also creates a horizon. Just as we could learn that an elephant lurked inside a black hole by decoding the Hawking radiation, perhaps we might learn what's beyond our cosmic horizon by decoding its emissions. How? According to Susskind, the cosmic microwave background that surrounds us might be even more important than we think. Cosmologists study this radiation because its variations tell us about the infant moments of time, but Susskind speculates that it could be a kind of Hawking radiation coming from our universe's edge. If that's the case, it might tell us something about the elephants on the other side of the universe.

Thursday, November 09, 2006

The Cosmic Connection to Climate


Cars and industrial activity contribute to the 7 gigatons of carbon dioxide released each year into the atmosphere.Credits: EuroNews

Some thoughts about this were being contemplates as I was slowly awaking this morning. I was actually thinking of one more image about seeing Gr being measured by how Grace is looking at and being used to look at the planet in other ways as well.



I'll add that later.

Variation of Cosmic ray flux and Global cloud coverage by Henri Svensmark and Eigil Friis-Christensen, 26 NOvember 1996

Some historical perspective about eight years ago below here raises question about what this cosmic connection might mean from a wider perspective.

CERN plans global-warming experiment(1998)

A controversial theory proposing that cosmic rays are responsible for global warming is to be put to the test at CERN, the European laboratory for particle physics. Put forward two years ago by two Danish scientists, Henrik Svensmark and Eigil Friis-Christensen, the theory suggests that it is changes in the Sun's magnetic field, and not the emission of greenhouse gases, that has led to recent rises in global temperatures.

Experimentalists at CERN will use a cloud chamber to mimic the Earth's atmosphere in order to try and determine whether cloud formation is influenced by solar activity. According to the Danish theory, charged particles from the Sun deflect galactic cosmic rays (streams of high-energy particles from outer space) that would otherwise have ionized the Earth's lower atmosphere and formed clouds.


Looking at this places some extra thinking about what could be taking place in the cosmos, effectively creating the circumstance "also" for changes with regard to earth's climate?



At what point would such intensity of the event in the cosmos cause the larger scenario to be played out, that it also, may have been a contributing factor to what we think about global warming here?



See this link here for further thoughts about the increase in the "lighthouse effect" and how such intensities may be considered in light of the following thoughts being demonstrated here.


This is not to dissuade people from thinking about the current considerations that are man made but raised questions in my mind about the consequences of other factors which may or may not be contributing to global climate changes.

A missing link in climate theory

The Danish National Space Center (DNSC) is a research center under the Ministry of Science, Technology and Innovation. The research activities include astrophysics, solar system physics, geodesy and space technology.
The experimental results lend strong empirical support to the theory proposed a decade ago by Henrik Svensmark and Eigil Friis-Christensen that cosmic rays influence Earth’s climate through their effect on cloud formation. The original theory rested on data showing a strong correlation between variation in the intensity of cosmic radiation penetrating the atmosphere and the amount of low-altitude clouds. Cloud cover increases when the intensity of cosmic rays grows and decreases when the intensity declines.

It is known that low-altitude clouds have an overall cooling effect on the Earth’s surface. Hence, variations in cloud cover caused by cosmic rays can change the surface temperature. The existence of such a cosmic connection to Earth’s climate might thus help to explain past and present variations in Earth’s climate.

Interestingly, during the 20th Century, the Sun’s magnetic field which shields Earth from cosmic rays more than doubled, thereby reducing the average influx of cosmic rays. The resulting reduction in cloudiness, especially of low-altitude clouds, may be a significant factor in the global warming Earth has undergone during the last century. However, until now, there has been no experimental evidence of how the causal mechanism linking cosmic rays and cloud formation may work.

‘Many climate scientists have considered the linkages from cosmic rays to clouds to climate as unproven,’ comments Eigil Friis-Christensen, who is now Director of the Danish National Space Center. ‘Some said there was no conceivable way in which cosmic rays could influence cloud cover. The SKY experiment now shows how they do so, and should help to put the cosmic-ray connection firmly onto the agenda of international climate research.’


Sunday, October 15, 2006

Part of Facing the Trouble With Physics

It might be that the laws change absolutely with time; that gravity for instance varies with time and that this inverse square law has a strength which depends on how long it is since the beginning of time. In other words, it's possible that in the future we'll have more understanding of everything and physics may be completed by some kind of statement of how things started which are external to the laws of physics. Richard Feynman


Faced with the task of showing the connection between string theory and reductionistic consideration is quite a task, as I am sure in most eyes? To me it just seems that everytime we adjust our view and include new views, what shall we say of "gamma ray detection" when we look at high energy photons describing the early universe for us?



Hey, it makes my heart jump too.

Here is a case, with which I like to make my point. Having someone corrected makes it that much better now to make comparisons like I do. The simple point of "order" enlightened greatly the situation for us, in what I am exemplifying here. We wil not forget the paper offered up after, in that comment thread either. Thanks

A realization 1; 2; 3 that QGP at RHIC is not a weakly coupled gas but rather a strongly coupled liquid has lead to a paradigm shift in the field. It was extensively debated at the “discovery” BNL workshop in 2004 4 (at which the abbreviation sQGP was established) and multiple other meetings since.

In the intervening three years we had to learn a lot, some new some from other ranches of physics which happened to have some experience with strongly coupled systems. Those range from quantum gases to classical plasmas to string theory. In short, there seem to be not one but actually two difficult issues we are facing. One is to understand why QGP at T ∼ 2Tc is strongly coupled, and what exactly it means.


In Extracting Beauty From Chaos I am recognizing this depth of perception enhancement that is supplied by JoAnne of Cosmic Variance. Would you rather look at "Seans moon" in gamma?

CERN planned a global-warming experiment in 1998?

Experimentalists at CERN will use a cloud chamber to mimic the Earth's atmosphere in order to try and determine whether cloud formation is influenced by solar activity. According to the Danish theory, charged particles from the Sun deflect galactic cosmic rays (streams of high-energy particles from outer space) that would otherwise have ionized the Earth's lower atmosphere and formed clouds.



What shall I say to you as SNO investigated the "cerenkov effect" from the cosmos ray particle collisions? Shall I speak about the "weather predictions" that arise. This is a interference and a "weak measure" of what is fast becoming the thought in my mind of the diversity of global painting, to include, that blue light as each of the detectors "pick" the overall pattern of high energy exchanges in the detectors as inherent image understanding. It has been transcribed from the "sun's energy value" and applied to high energy considerations?

"Atmospheric" neutrinos, produced by interactions of cosmic ray particles with the earth's atmosphere, might be useful for studying the properties of neutrinos. But if you're hunting sources of neutrinos in the universe, atmospheric neutrinos are nothing but noise.



Now, I may reference Glast indications here in the experimental validation of those high energy photons, gamma ray indication is a wonderful jesture to extending the depth of perception, as I have tried to do here by helping Q see the relevance of the quantum dynamical perception. From ,the beginning of this universe.

So we see where the " Window of the universe" has helped me to see in ways that we were not accustomed. It is "the physics" that has taken us there.

So, while the picture of JoAnnes is highlighted, the lesser of the views is the "gamma ray detection" while I have pointed to the neutrino here in experimentation.

Should we loose sight of what the KK tower exemplifies?



I am sorry about the "dead link picture to topology" but blogger does not go back to 2004 so that I can adjust it.

Now why would I then reference "quantum gravity" behind the picture of the KK tower, and the information about topology? Possibly, that we have for the first time thought here that the Navier-Stokes equations could have been applied at a fundamental level while thinking of what the QGP has given us, as we witness "cerenkov radiation" from a long line of reductionistic reasoning? Is this worth a million from the Clay Instituted by generalization alone?:)

If not, at least, if held in line with lagrangian views of gravitonic perceptions in the bulk as we phyically see the relation between the sun and earth?

It is thus my mind has been held to the idea of the "conical flows[Volcanos, to jet engines in analogy of the laval nozzle]" as the energy is released for the dissemmination from the collider of nature enhanced, to all that follows from the cosmic particle interactions. Right to the neutrinos resulting from the fluidity of the QGP pertaining to viscosity?

What was not present before? Muon detectors hmmmm..... and the road from muon neutrinos too?? What am I missing here?

The muons are stopped by the rock. Impervious to all such obstacles, the muon neutrinos will leave the CERN tunnels and streak through the rock on their 732 kilometre journey to Italy.


Hold that picture of JoAnnes, while you think of Glast. In the determinates of the gamma ray detection, we have therefor faced the "Trouble with Physics?":)

Wednesday, October 11, 2006

What is Cerenkov Radiation?

...the creative principle resides in mathematics. In a certain sense therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed.Albert Einstein


Many do not recognize the process that unfolds in the developing perspectives about theoretics? Does one think it is divorced from reality that you could say, "hey this idea of course has no attachment to what exists and what we know exists and asks that you move forward with it."

Often you hear the "dreaded reference" to the AEther, and who can help but see where such revisions in thinking changed the society of scientists to put them on a new course?

Do you think the title was changed from the aether to the valuation of strings and the boson production evident in the bulk just to replay itself in the developing scenarios of our historical past? The past included a revision to the way we view that concept? That is it's effect in today's world. "The correction?"

As we know from Einstein’s theory of special relativity, nothing can travel faster than c, the velocity of light in a vacuum. The speed of the light that we see generally travels with a slower velocity c/n where n is the refractive index of the medium through which we view the light (in air at sea level, n is approximately 1.00029 whereas in water n is 1.33). Highly energetic, charged particles (which are only constrained to travel slower than c) tend to radiate photons when they pass through a medium and, consequently, can suddenly find themselves in the embarrassing position of actually travelling faster than the light they produce!

The result of this can be illustrated by considering a moving particle which emits pulses of light that expand like ripples on a pond, as shown in the Figure (right). By the time the particle is at the position indicated by the purple spot, the spherical shell of light emitted when the particle was in the blue position will have expanded to the radius indicated by the open blue circle. Likewise, the light emitted when the particle was in the green position will have expanded to the radius indicated by the open green circle, and so on. Notice that these ripples overlap with each other to form an enhanced cone of light indicated by the dotted lines. This is analogous to the idea that leads to a sonic boom when planes such as Concorde travel faster than the speed of sound in air


But we have to go back in history here to see where such influences have taken hold of the mind, from what was instituted in the neutrino search, to have the ideas swirl around and form new prospect researches, based on the ideas of women/men?



The story will follow here shortly. I would like to thank Paul on his early recognition of the bubble chamber events as they encourage research in 1998 to ponder the experiments in Cern to say?

Add your story so that this can be completed. I will add mine for a wonderful view of what research and developement does in regards to the way of "modelling to experiment."

Well since starting this blog entry there has only been two other examples that may be added to this entry as of today, yet, one by Commentor NC at Cosmic Variance while the other materialized over at Backreaction on the post done by Bee and Stefan.

A Look Back

Have a look at this image below first.



Variation of Cosmic ray flux and Global cloud coverage-a missing link in Solar-climate relationshipsby Henri Svensmark and Eigil Friis-Christensen, 26 NOvember 1996

So this is wonderful that in one way, where my mind rebukes the lashing out of Peter Woit by evidence of ICECUBe and my ir/relevant comments, could have found sustenance in how things are to be explained further? More physics ...wonderful.

But I want to go back historically to view, so that one sees what was a picture "written by Paul" and his trip to Canada, held an observation that sends us back in time experimentally to look at, to find out, what Cern was doing in 1998. Thanks Paul

You ready?

CERN plans global-warming experiment(1998)

A controversial theory proposing that cosmic rays are responsible for global warming is to be put to the test at CERN, the European laboratory for particle physics. Put forward two years ago by two Danish scientists, Henrik Svensmark and Eigil Friis-Christensen, the theory suggests that it is changes in the Sun's magnetic field, and not the emission of greenhouse gases, that has led to recent rises in global temperatures.

Experimentalists at CERN will use a cloud chamber to mimic the Earth's atmosphere in order to try and determine whether cloud formation is influenced by solar activity. According to the Danish theory, charged particles from the Sun deflect galactic cosmic rays (streams of high-energy particles from outer space) that would otherwise have ionized the Earth's lower atmosphere and formed clouds.


So what is this science based on?

The production of a high-intensity neutrino beam at CERN requires a complex facility. A proton beam produced and accelerated by the CERN accelerators is directed onto a graphite target to give birth to other particles called pions and kaons. These particles are then fed into a system comprising two magnetic horns which focus them into a parallel beam that is directed towards Gran Sasso. Next, in a 1000 metre-long tunnel, the pions and kaons decay into muons and muon neutrinos. At the end of this decay tunnel, an 18 metre thick block of graphite and metal absorbs the protons, pions and kaons that did not decay. The muons are stopped by the rock. Impervious to all such obstacles, the muon neutrinos will leave the CERN tunnels and streak through the rock on their 732 kilometre journey to Italy.


Now what does this have to do with Cerenkov radiation? Okay. I'm scratching my head now.

“CERN has a tradition of neutrino physics stretching back to the early 1960s,” said Dr Aymar, “this new project builds on that tradition, and is set to open a new and exciting phase in our understanding of these elusive particles.”


From the 1960's. Wow!

Imagine that someone might say to you that this is a "Rube Goldberg Machine" analogy as to what was the road leading to the understanding and the inclusiveness of microstate blackhole creation from particle collisions, as part of the continued story of the neutrino in action?

See:

  • So What Did I mean By Olympics?
  • Pulsars and Cerenkov Radiation
  • Evidence for Extra Dimensions and IceCube
  • Friday, August 11, 2006

    At What "Point" does the Universe Make itself Known?

    According to the basic laws of physics, every wavelength of electromagnetic radiation corresponds to a specific amount of energy. The NIST/ILL team determined the value for energy in the Einstein equation, E = mc2, by carefully measuring the wavelength of gamma rays emitted by silicon and sulfur atoms.


    This, was encapsulated in a "point before time and space(?), that explodes again into your mind, as if some universe coming into being? How could that "be?"

    Like a bubble perhaps, or like a universe that has reached it furthest reaches, collapses again, and where does the universe lead us, but back to "this point"?? Some event that has unleashed it's potential and spoke about the geometrics of, and we found that it lead back to "the time" where the universe again began?

    When primary cosmic rays collide, what allowed the secondary particles to emerge? What is cerenkov light emitted? ICECUBE.



    They can trace back the gamma rays to the original source? The gamma rays are not affected by the magnetic field? This allows them to trace back the history of the particles back to the original source? How do "they know" where it came from?

    There was a time when the realization existed that particle creation had no relation to what the universe did in it's first three minutes of Weinberg? Now, it has become Microseconds? Are you convinced now?

    Let's assume that you are, so what allowed us to go back to what any moment could be produced given the right set of circumstances? That what is out there is is also inside?

    We had to be able to go back to the beginning of the universe did we not?

    So what use models serve if they can not be applied at many levels and now we see the trail of young theorists move to other realms, sociologically driven, where their abilities are better used on wall street or the likes, because it just didn't make sense anymore to try and delve into it.

    Everyone knows that human societies organize themselves. But it is also true that nature organizes itself, and that the principles by which it does this is what modern science, and especially modern physics, is all about. The purpose of my talk today is to explain this idea.


    Or to see the science used in a destruction of a kind, that it's reverberation magnified tens of times, could be used from one plane load? Laughlins "exemplified page" is forever haunting in what these magnifications can become from a condensed matter theorist point of view?

    So how do ideas enter the mind? You create the Blank slate and endeavour to write the formula for aspects of creation? What "energy values" are these?


    Many physical quantities span vast ranges of magnitude. Figures 0.1 and 0.2 use images to indicate the range of lengths and times that are of importance in physics.



    But it's more then that, to think that the energy chaotic, is in it's extremes, would have no "organizational skills" to begin to manifest itself in it's very guises, that one might ask, "what use any energy put too?"

    So this becomes the pattern? A Pattern of destruction?

    No, not always. It can become a pattern for peace.:) A balance found(?) of the exchange, that "things" could be in a state of "becoming?" Allows yo to move inthe world in a different way. You can grow, as you extend the antenna out there, and allow what is out there to come inside?

    Friday, June 09, 2006

    High Energy Particle Creations: PLacing the Universe into Perspective?

    "String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap."



    While it is a microstatic view of what began from the early universe, such model creations as to the viability of the time line, seems really important to me. THis is a layman's view of course amongst the towers of well educative minds. So I thought I would add it.

    Ah, it seems again, while thoughts are being held in mind, and some confusion on my part, the answers make themself known. It seems fate destines the mind's question, like an attractor of a kind? That all things come to those who wait?:)

    AIRES Cosmic Ray Showers


    The resource to the right index are really quite good, when it comes to Cosmus. I had forgotten why I had linked it, only to find how these particle creations are understood. Animations bountiful, to help the layman mind understand what is going on.

    Make sure you let the animation load below. Also, the significance of high energy particle creation of secondaries, while dissipative states exist in plamatic considerations, what effect again is being sited here in the questions of mind tha we see some result on earth here?

    The Pierre Auger Observatory in Malargue, Argentina, is a multinational collaboration of physicists trying to detect powerful cosmic rays from outer space. The energy of the particles here is above 1019eV, or over a million times more powerful than the most energetic particles in any human-made accelerator. No-one knows where these rays come from.


    As you move through this information, it is really wonderful that such summations having gone over again and again, seem to solidfy what exactly is being sought and is currently understood.

    It works that way sometime when you get a group of people together who have been through it all, and repeat all the current data they have for where exactly they are standing now. This thought of course is arisen from what Sean posted in regards to the PI institue in Canada and the group that got togehter there.

    Jack, one of the comentors of course is asking why this stufff is being repeated over and over again, and the answer above is basically what is necessary to initiate new thought provoking situations, to what is already known?

    That just seems to be the way of it.

    See:

  • Pulsars and Cerenkov Radiation


  • How Particles Came to Be?
  • Saturday, May 27, 2006

    So What Did I mean By Olympics?

    Original source of info on title above.

    And not, the "Olympics" of Lubos and Nima and others, preparing for LHC.

    At this site you will find the new black boxes and calibration samples for the LHC Olympics!




    The geometrical propensity of the energy needed in which to create this "jet" had to be consider in terms of a geometrical structure? Even though we could not say for certain what was taking place geometrically inside the blackhole?

    So, in order for any secondary particle creation to be considered, what line of developement would issue from such a scene, as a gravitational collapsing bubble, that Coleman-De Luccia instanton may have been surmizing, could in fact, lead to a new universe born? The impetus for inflation?

    New Beginnings?

    So, cosmic rays sources were needed in which to move the ideas that reductionism has encountered in it's "quark gluonic plasma state," as well as, recognizing the microstate blackhole production that is initiated from such sources?

    These images are held in relation to how article written in terms of the one below this, one gets the sense of how "high energy photons" are delivered to our place and time? Sources of cosmic particle tht would intiate particle collsions in our upper atmosphere?

    Scientists Detect New Kind of Cosmic Explosion


    Introduction of "new physics," was the main reason for how jet consideration had been talked about, between the gentlemen and I. Is it right, I am not sure? Having understood this relation in our talks on the Bose Nova, I was able of course to introduce the time and place of this "New Physics" in consideration(supersymmetrical-entropically it is very simple) and as a counter intuitive place of recogntion?

    Do the Bosenova

    Ketterle adds that attractions between atoms in a BEC could parallel the collapse of a neutron star so emulating the distant and massive in the laboratory too. The explosive collapse of a BEC, dubbed a "Bosenova" (pronounced "bose-a-nova") by Wieman releases only a tiny quantity of energy, just enough to raise the temperature of the BEC by 200 billionths of a degree. Supernovae release many times the energy
    .


    There are many links on, "new search paradigm page" to confirm this? Anyway on to what made me think of the "lighthouse(Link to tutorial site has been taken down, and belongs to Barb of http://www.airynothing.com) in the previous post" and brought me to thinking about this overall post here in general now.

    NASA's Hubble Space Telescope Yields Clear View of Optical Jet in Galaxy M87

    A NASA Hubble Space Telescope (HST) view of a 4,000 light-year long jet of plasma emanating from the bright nucleus of the giant elliptical galaxy M87. This ultraviolet light image was made with the European Space Agency's Faint Object Camera (FOC), one of two imaging systems aboard HST. This photo is being presented on Thursday, January 16th at the 179th meeting of the American Astronomical Society meeting in Atlanta, Georgia. M87 is a giant elliptical galaxy with an estimated mass of 300 billion suns. Located 52 million light-years away at the heart of the neighboring Virgo cluster of galaxies, M87 is the nearest example of an active galactic nucleus with a bright optical jet. The jet appears as a string of knots within a widening cone extending out from the core of M87. The FOC image reveals unprecedented detail in these knots, resolving some features as small as ten light-years across. According to one theory, the jet is most likely powered by a 3 billion solar mass black hole at the nucleus of M87. Magnetic fields generated within a spinning accretion disk surrounding the black hole, spiral around the edge of the jet. The fields confine the jet to a long narrow tube of hot plasma and charged particles. High speed electrons and protons which are accelerated near the black hole race along the tube at nearly the speed of light. When electrons are caught up in the magnetic field they radiate in a process called synchrotron radiation. The Faint Object Camera image clearly resolves these localized electron acceleration, which seem to trace out the spiral pattern of the otherwise invisible magnetic field lines. A large bright knot located midway along the jet shows where the blue jet disrupts violently and becomes more chaotic. Farther out from the core the jet bends and dissipates as it rams into a wall of gas, invisible but present throughout the galaxy which the jet has plowed in front of itself. HST is ideally suited for studying extragalactic jets. The Telescope's UV sensitivity allows it to clearly separate a jet from the stellar background light of its host galaxy. What's more, the FOC's high angular resolution is comparable to sub arc second resolution achieved by large radio telescope arrays.



    Black Hole-Powered Jet of Electrons and Sub-Atomic Particles Streams From Center of Galaxy M87


    "X" Structure at Core of Whirlpool Galaxy (M51)


    Spiral Gas Disk in Active Galaxy M87


    Black Hole in Galaxy M87 Emits Jet of High-Speed Electrons


    Compact Core of Galaxy M87


    Compact Core of Galaxy M87


    Optical Jet in Galaxy M87


    Thanks Paul.

    Friday, May 26, 2006

    Pulsars and Cerenkov Radiation

    Of course, I could be mistaken making such assumptions.

    Scientists May Soon Have Evidence for Exotic Predictions of String Theoryissued by Northeaster University

    "String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap. This increases the number of 'down' neutrinos detected. At the same time, the creation of black holes causes 'up' neutrinos to be caught in the Earth's crust, reducing the number of 'up' neutrinos. The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."


    So what is it we can learn about high energy photons. Kip Thorne was instrumental here in helping draw us a sequence of events in our cosmos and on the cosmic particle considerations? I couldn't help identify with this process.



    Of course in order to capture the effects of high energy photons we need a vast array of area in terms of detector status, that we might indeed capture them. So ICECUBE is a interesting perspective here?



    Now why would I combine these two things, and it is of course through a previous conversation that the ideas of high energy particles using our atmosphere for secondary particle realizations, could have capture the human eye so that one had to turn from the brightness? Look to the image below o pulsar sources for cosnideration.




    Now of course it is just being put here for a minute, while I try and get my thoughts together on this.

    But in the mean time, for those who understand what I am refering too, you might leave your comment and share what you think about this similarity? What may have been happening with "the light" as the snow boarders were doing their olympics?

    We see a pulsar, then, when one of its beams of radiation crosses our line-of-sight. In this way, a pulsar is like a lighthouse. The light from a lighthouse appears to be "pulsing" because it only crosses our line-of-sight once each time it spins. Similarly, a pulsar "pulses" because we see bright flashes every time the star spins.


    Linked qote and picture to tutorial site has been taken down, and belongs to Barb of http://www.airynothing.com

    Tuesday, March 21, 2006

    Why Higher Energies?

    I guess I don't have to tell anyone how confusing all this stuff is and the need for a consistent picture to arise out of it.

    New physics beyond the standard model of particle physics and parallel universes by Rainer Plaga

    top-quark masses - for which the standard model predicts such a decay - cannot be interpreted as evidence for new physics at low energy scales.


    The history of Risk Assessment, was a exercise into understanding the developing role as to what new physics should be? Strangelets and strange quarks arose from this?

    The search for the very small requires very high energies. The discoveries necessary for the electroweak unification were near the upper end of available energies in the current generation of particle accelerators. Establishing Grand Unification is beyond the practical limits of earthbound laboratories. This forces particle physicists to look outward to astrophysical phenomena which may have enough energy to shed some light on further attempts at unifying the four fundamental forces.




    This map defines the whole standard model and the phase transitions. We are talking about a "certain time" in the planck epoch. So what is happening "in" the Planck epoch?

    If such energies had recognized the current state of the superfluid created, then anomalies in "this scenario" would have allowed such "geometrical presence to be channelled" as part of the cyclical features contained in the expression of the universe?

    So you take this universe and apply the backhole on a cosmlogical scale eqaul to it's inflation, as a distance in the blackhole's radius? Such a crunch would have recognized the boundary conditions as a the furthest point this universe could have grown, from the original blackhole that created this universe?

    So what evidence is left? That the universe and it's "dark matter" as the false vacuum is creating the scenarios for the universe to have found it's temeperature today, started from some "other condition" seen in the planck epoch? Okay how did you get there?

    The bubble conditions would then have to existed in the superfluids? How would have geoemtrically arrived at such a "topology expressed" in this one universe?

    Professor Satyendra Nath Bose, the founder of Bose-Einstein statistics and the discoverer of the “Boson,” is well known as a giant in the world of physics and science as the man who, along with Albert Einstein, revolutionized the world of theoretical physics and showed the world a new way to imagine how the world works.


    The topological genus figure of the sphere, to a torus and it's rotation seen in characteristic, housed the equallibrium state arrived at, as to the channelling of that extra energy and the resulting "new physics" in the strange quarks created?

    So what is "that cylinder" created as the jet is expressed, in the gravitational collapse

    See: John Bahcall and the Neutrinos

    Thus, this cycle is completed in the bulk perspective? Would have created the situation again in strong concentrations? Why cosmologically the conditons are "many" and such evidence pointing to ICECUBE, as to the conditons beyond the standard model, leads to questions about "cerenkov radiation?"

    Is there no backreaction created, if we were to lets say look at the Laval nozzles, and understand that what is expressed in the standard model energy once ejected in the jet, would have had counter proposals manifest in the geomerical presence held to a whole universe. The Anti-matter? Non Qui

    Tuesday, March 07, 2006

    Have we seen (strange) quark matter?

    Well the very idea that such a thing could exist, has been part of the evolving information I had been going through. To be lead to the understanding, of what new Physics would emerge fromm cosmological and collidial events. That there are indeed showers of particles with which such events will let us know cannot be ignored.

    First Principle needed to recognize "the very state" that things would arise from. For Robert Laughlin, a condense matter theorist, it didn't mater what you called these building blocks, but any discrete measure had to be recognized it's energy value and tragectories would it not? Hence, the particle shower from a known state of existance, where "first principle" would emerged.

    So, any attempt to ignore the possibility of what emerges, and the foundational perspective, put forth in theory, has to help the understandng of what happens when such events do happen, either, micro perspectively or cosmologically.

    Any attempts to say that the standard model is not inclusive in this design, would be detrimental to the very statement any mathematican would say against, that simply erasing any connection, would have been futile to their creditbility?

    Strange Quark Matter TheoryTamas S. Biro

    Ladies and gentlemen, this is going to be the theoretical summary talk of the Strange Quark Matter 2003 conference. When I was alerted by the e-mail we all got, “prepare your transparencies”, I took this home-work exercise seriously. I have prepared quite a few pages before this conference. What can one know in advance, before listening to the talks?.

    First of all there is a general outline which a summary talk should follow. On the level of the basic theory one is supposed to conclude about the present status of the underlying theoretical concepts, one ought to emphasize important news, the novel aspects we are encountering, and finally it is useful to formulate in a possibly definite way, what our perspectives for further development are.


    So given the research that I had been going through, what is this strangelet subject that was developed, and I will post links that support the development of the fear with which such a thing arose. Was answered, by cosmological and collidial production of microstate blackhole events. Might the story and television series of blackholes been interrupted by such a dialogue, or had I furthered the plot for public consumption? To continue the fear?

    Would your scientist/mathematican friend tell you about such things and ways in which to expect information from experimental designs, as not leading into the desire of the essence of new physics?

    What began this assumption, was the idea that microstate blackholes were something of a danger, if we were to created them. That was the nightmare. The reality is, that this theoretically written state, is quite useful in terms of what can emerge from the idea of new physics, and had to include the standard model.

    To get to new physics you had to have the standard model as a basis, and to move from that point, any resulting shower and new information, like in ICECUBE, along with the historiy and research of neutrinos, points to what? Strangelets to what?

    Peter Woit dissassociated himself from that possibility, and if strings was to underly this view, what says, such advancements had not adhered to the demands of theoretcial proposition, that it now sees itself, as part and parcel of the planning for what else will emerge? Sees itself immersed in tachyon demonstration as a sign of cerenkov radiation as that blue light?

    So indeed I struggle with how such theorectical position might have told me what is going on, and this issue, is not to be ignored as long as it is remianing consistant with the developement from standard model presumptions.

    Paul first, and then I had been wondering about this issue right back in the beginning as it came to our attention. Steinberg and clarifications on what the microstate balckhole is was important, as it demonstrates the basis of work being done taking the energies and collidial events, to a new level of reductionistic perception. The microstate blackhole is the basis as far as I can tell.

    Now given the state of Quark Gluon Plasma, what happens when you see such things hhappeniing that you have to aassume a new theoretcial position like M theory that such D Brane assumptions talk abut the viscosity nature? What are the poperties that have emerged from the idea of the blackhole, as this new state of matter tells us something about superfluids and such?

    Does Peter understand these new developments? Does his own theoretical position from model assumption he also used, have correlates to current day information and research? It had been my hope, that his position would have created the dialogue necessary. I have enjoyed the mathematical adventures he has shown has developed further my perspective as shown, in the very last link below.

    In order to have the perspective and vision of the abstract world of the mathematics shown, you needed to know some things. They had to be couched in the history of all that we have learnt, and any modification in mathematical language, alters that perspective, if it relates to the very work you are doing on extending the standard model?

    See:

  • Quark Gluon Plasma II

  • Strangelets Form Gravitonic Concentrations

  • Strangelets in Cosmic Consideration

  • Cosmic Rays Collsions ad Strangelets Produced

  • Quark Stars

  • Accretion Disks

  • Evidence for Extra Dimensions and ICECUBE

  • All Particle of te Standard Model and Beyond
  • Wednesday, February 15, 2006

    Big Bang:One Man's Change of Heart

    Thanks Paul

    One definitely needs some perspective around this and how such information is given. I refer here for consideration, about perspective, and how it can be exploited for further consideration on what is emitted, and what manifests in weak gravitational field measure, as neutrino effects(quantum gravity).

    Microperspective and methods of examination, raise the issue fo cerenkov radiation and what it tells us about such interactive phases?

    Here in refractive consideration, ICECUBE, paints a different picture of what began somewhere else in cosmological high energy collisions. "Neutrinos and strangelets" are part of the developing scenario with which the universe has consequences, if held to the initial conditons of our universe. You had to know where to look for these.

    Plato:
    "Nothing" in stated form was and always is "nothing" which would have not allowed any further discussion. "Zero" in our conversation is a much different kind of thinking. I understood that as well. "Zero" would have been the equivalent to "i" in the Dirac's matrices?



    Physics at this high energy scale describes the universe as it existed during the first moments of the Big Bang. These high energy scales are completely beyond the range which can be created in the particle accelerators we currently have (or will have in the foreseeable future.) Most of the physical theories that we use to understand the universe that we live in also break down at the Planck scale. However, string theory shows unique promise in being able to describe the physics of the Planck scale and the Big Bang.


    I wanted to add this post, and to centralize some references that were found that helped form my perspective on "nothing." What! I guess I'm done?:)

    Seriously, this had to be confronted, and who better then from our layman perspectve, then the admission of a leaders in science, who can change theirs mind after some thinking?

    Cosmological Constant SeeSaw in Quantum CosmologyMichael McGuigan

    Lubos shares his perspective on linked section of titled paper above.

    One interpretation of the coupling of Wheeler-DeWitt functions is that it originates from topology changing effects. Topology change seems to be inevitable in quantum gravity. To treat topology change properly is a very complicated calculation using today’s mathematical tools.


    I wanted to add these links here for consideration, as well what link given by Paul for consideration in regards to Penrose, the figure of the man's change of heart that ighlight's this post. In Phase transitions the comments have been quite enlightening.

    Before the Big Bang BBC News, with Stephen Sackur
    Sir Roger Penrose has developed a new theory on what happened before the Big Bang.

    These pages were created by Jack "Turtle" Wong, Spring 1999

  • First of all, how do we think the universe began?

  • The Big Bang theory.

  • Resolving the inadequacies of the big bang theory.

  • The Hawking-Turok Instanton theory: Stephen Hawking's
    ideas.

  • The Hawking-Turok Instanton theory: Neil Turok's ideas.

  • The Hawking-Turok Instanton theory: the result of merging
    two interesting theories.

  • Is the search over?

  • Bibliography / Further Reading


  • See Also:



  • Cycle of Birth, Life, and Death-Origin, Indentity, and Destiny by Gabriele Veneziano

  • Ekpyroptic and cyclical models
  • Wednesday, February 08, 2006

    The Lowest Octave State

    Sometimes simple concepts, like something representing the lowest vibration mode of the string, the lowest octave helps in a sense helps to orientate what the particles mean, such as protons,neutrons and electrons. Where they exist now as they cosmic collsions meet and dissapte it's influence in our atmospheres, our planet.

    Yet Moshe speaking about sparticles has interesting relations in context of symmetry breaking, yet, without thinking about what experiments are now being listed, what value this lowest vibration mode? What value that leads us to think about this lower scale as evidence now held within our views.

    Clifford:
    We’ve got to remember what we assumed in order to get to the cirtical dimensions, and then revisit those assumptions every time we learn something new about the whole story


    Would be a consistent pattern, when new options and experimental consideration are introduced. In the case I listed above in ICECUBE.

    The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."


    I think this would be consistent on the level of what you are saying Clifford? Lay people like myself would understand this I think. While very aware of the higher energy considerations in context of reductionism, had taken us too dual blackhole considerations within the collisions taking place not just in the colliders.

    It presented opportunites in how we see what strings might have emplied in Cerenkov radiation? What is it that we should see in this relation, that strings would have said here is another opportunity?

    Cerenkov Radiation and the Blue Glow

    At full power (200 kilowatts), the UMR Reactor core produces approximately 6.4 trillion fissions per second. Each fission event liberates a tremendous amount of energy, a portion of which is carried away by fission products which then decay and produce high-energy beta particles. Often, these beta particles are emitted with such high kinetic energies that their velocities exceed the speed of light (3.0x108 meters per second) in water. When this occurs, photons, seen to the eye as blue light, are emitted and the reactor core "glows" blue.

    While no particle can exceed the speed of light in a vacuum, it is possible for particles to travel faster than light in certain mediums, such as water. The speed of light in a particular medium, v, is related to the speed of light in a vacuum, c, by the index of refraction, n, by v = c/n. Water has an index of refraction of 1.3, thus the speed of light in water is 2.3x108 meters per second. Therefore, beta particles with kinetic energies of 0.26 MeV travel at speeds in excess of 230 million m/s!


    It is important to remember somethings here. I am trying to hone in on the exact reasons for this idealization, to see in the ways that we do. Why the sky is blue in relation to the sun that shines and the Earth as it is ?:) How often has the child asked, while we had been witness to the very thing in our everyday waking lives.

    Thus we are quickly transported into the strange world of refractve indexes and such, as examples of what angle and departures these particle might take in their collisions courses. Yet we know as we look up that beyond the blue, it gets dark again Redshifting on the horizons as our sun sets.

    Cosmological particles exsit that are free of our atmosphere. What say these things in that environ, while it is dark? What shall we say of these things when the sun influences dances on our outer atmosphere?

    Wikipedia and the Uses of Cerenkov Radiation(8 Feb 2006)

    When a high-energy cosmic ray interacts with the Earth's atmosphere, it may produce an electron-positron pair with enormous velocities. The Cherenkov radiation from these charged particles is used to determine the source and intensity of the cosmic ray, which is used for example in the Imaging Atmospheric Cherenkov Technique (IACT), by experiments such as H.E.S.S. and MAGIC. Similar methods are used in very large neutrino detectors, such as the Super-Kamiokande.


    So I am again drawn back to the state of the earth's gravitational field, with which this planet being weak, lets us see particle states that it does? How shall I keep in mind, that such circumstance free of refractive indexes( a vacuum)speed of light wil mett the chance to have faster then light capabilties, in a blue glow? Have I then nailed the reasons why such concepetualization take to the two extrmes of what vison had garnered for us, and the circles meaningwhile it signfied this interchangeability?

    Ah, my more layman head. :)Like a Koan supplied to tax the mind, a simple statement is drawn out, over and over again, while in time, the mind becomes flooded with so many possibilities with a flash of light. What is this Koan, that I speak of?

    Brian Greene:
    How can a six-foot tall human being 'fit' inside such an unbelievably microscopic universe? How can a speck of a universe be physically identical to the great expanse we view in the heavens above


    Don't worry Clifford, while Brian Greene might have been the spokesperson for all scientist actors, it is still with some benefit that we undertand how the abstract mind releases itself, but for a short time. While the influence of nature has its way with us. Whilst we had been so intensely looking, the break from the work, allowed the culmination to seep through in a simple jesture of understanding. That seems to be the way of it.

    Tuesday, February 07, 2006

    Evidence for Extra Dimensions and IceCube

    ...the creative principle resides in mathematics. In a certain sense therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed.
    Albert Einstein

    Sometimes if we paid attention enough, the neurons seem to fire appropriately and the detachment of the ideas seemingly distant from one another, become illuminated and connected? Imagine it taking place in Clifford's other office.

    Foundations Study Guide: Philosophy of Mathematics by David S. Ross, Ph.D.

    The philosophy of mathematics is the philosophical study of the concepts and methods of mathematics. It is concerned with the nature of numbers, geometric objects, and other mathematical concepts; it is concerned with their cognitive origins and with their application to reality. It addresses the validation of methods of mathematical inference. In particular, it deals with the logical problems associated with mathematical infinitude.

    Among the sciences, mathematics has a unique relation to philosophy. Since antiquity, philosophers have envied it as the model of logical perfection, because of the clarity of its concepts and the certainty of its conclusions, and have therefore devoted much effort to explaining the nature of mathematics.


    Such a cognitive fucntion then would be important as these math symbols arose in our minds. Possible new mathematical models in which to describe the nature we see around us. So one makes sure they have a pad and pencil, while they ventured away from the regime, with which the mind has been so intensely engaged?

    Now being so far from the understanding of these mathematics, I can only hope to understand the concepts as they unfold in a geometrical insight, while I try to make sure I understand them in relation to abstract thinking.

    SNO on the go – at last!


    Over the past 30 years, five different experiments have sought to measure the flux of these elusive particles from the Sun (produced by the same nuclear processes that make it shine) and have consistently come up short of theoretical predictions. One explanation is that the neutrinos emitted ‘oscillate’ into another variety of neutrino which past experiments could not detect.


    Within the IceCube collaboration the Univ. of Uppsala and the Univ. of Berkeley have joined the DESY initiative. The DESY team is also in close contact to the groups in Europe, the USA and Asia which are working on acoustic detectors for Neutrino-Telescopes installed in water. Details on the different projects have been presented on the First Workshop on Acoustic Cosmic Ray and Neutrino Detection held at Stanford in September 2003.




    The muon will travel faster than light in the ice (but of course still slower than the speed of light in vacuum), thereby producing a shock wave of light, called Cerenkov radiation. This light is detected by the photomultipliers, and the trace of the neutrinos can be reconstructed with an accuracy of a couple of degrees. Thus the direction of the incoming neutrino and hence the location of the neutrino source can be pinpointed. A simulation of a muon travelling through AMANDA is shown here (1.5 MB).


    Some understanding of the dual nature of blackholes is needed here in order to understand what is "produced" and how this is "spread out."

    "String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap. This increases the number of 'down' neutrinos detected. At the same time, the creation of black holes causes 'up' neutrinos to be caught in the Earth's crust, reducing the number of 'up' neutrinos. The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."





    Before engaging article below it is important that the differences be noted between strangelets(strange quarks), and the distortions in neutrino properties. If it is understood the microstate blackholes are created, then the dispersion of other particle in the atmosphere give us indications and consequences gained from dual nature of the blackhole.

    I am confused here, and this point of interactive consideration is holding my mind as to why both these situations together are important. The difficulty may come from from the immediate association, while reocgnition of these two have been raised from the event and collision.

    Earth punctured by tiny cosmic missilesBy Robert Matthews, Science Correspondent
    (Filed: 12/05/2002)

    Strangelets - sometimes also called strange-quark nuggets - are predicted to have many unusual properties, including a density about ten million million times greater than lead. Just a single pollen-size fragment is believed to weigh several tons.

    They are thought to be extremely stable, travelling through the galaxy at speeds of about a million miles per hour. Until now, all attempts to detect them have failed. A team of American scientists believes, however, that it may have found the first hard evidence for the existence of strangelets, after scouring earthquake records for signs of their impact with Earth.



    See:

  • Cosmic Ray Collisions and Strangelets Produced