Showing posts with label Black Holes. Show all posts
Showing posts with label Black Holes. Show all posts

Thursday, September 07, 2006

Quantum Hall Effect

This article below was set in motion by Stefan's article,"Pencils, Black Holes, and the Klein Paradox", at Backreaction. B will have to offer her perspective on the blackhole analogy. I offer mine.:)



The fractional quantum Hall effect continues to be influential in theories about topological order.


It is interesting to see the interconnecting links of recent between the different blogs on the internet in terms of what information is being relayed back and forth without some understading of what is going on?

Number theory is the type of math that describes the swirl in the head of a sunflower and the curve of a chambered nautilus. Bhargava says it's also hidden in the rhythms of classical Indian music, which is both mathematical and improvisational. He sees close links between his two loves -- both create beauty and elegance by weaving together seemingly unconnected ideas.

As part of a Morning Edition series exploring the intersection of art and science, NPR's Richard Harris reports on the beauty of mathematics, its ties to art -- and the man who straddles both worlds.


So you learn to see relations where one might not of have before. "Computerization techniques" that would help us understand new ways in which transmit information?

An Ultimate Theory in Physics?

Shahn Majid's research explores the world of quantum geometry, on the frontier between pure mathematics and the foundations of theoretical physics. He uses mathematical structures from algebra and category theory to develop ideas concerning the structure of space and time. His research philosophy drives a search for the right mathematical language for a unified expression for the ideas of quantum physics, founded on the notion of non-commutative geometry

While above I may have introduced the particular interest of Majid's in terms of beats in nature and number counting, it is with some understanding that "poetical desire" can have come "other issues" which rise up from schemas of nature?

The subject in its modern form has also been connected with developments in several different fields of both pure mathematics and mathematical physics. In mathematics these include fruitful interactions with analysis, number theory, category theory and representation theory. In mathematical physics, developments include the quantum Hall effect, applications to the standard model in particle physics and to renormalization in quantum field theory, models of spacetimes with noncommuting coordinates. Noncommutative geometry also appears naturally in string/M-theory. The programme will be devoted to bringing together these different streams and instances of noncommutative geometry, as well as identifying new emerging directions


So I mean if you are into the Riemann Hypothesis, you might wonder how such patterns sought by Ulam would have been of interest to people like Robert Laughlin and his ideas on "emergence." What "number systems" would arise from the first principle?

In a Pascalian sense" you might understand this now, as isssuing from some inherent "ordered" chaos?

Ulam's interest was on a high energy event( we know what that was, don't we?)? So what order can come out of such chaos?




This is the essence of the problems with transmitting information while paying witness to the origins of the math brought forward to the mind's eye from an understanding of the "birthing of new universes?"

Update:

I never saw his "site topic Monday, September 04, 2006 until yesterday "after" constructing my post.

Links to "previous posts linked in quantum hall effect" should give some idea about previous knowledge regardless of PP Cook's posting. Just wanted to set that straight.

See:

P. P. Cooks, "To Commute or not to Commute..."

Sunday, August 27, 2006

Numerical Relativity and Math Transference

Part of the advantage of looking at computer animations is knowing that the basis of this vision that is being created, is based on computerized methods and codes, devised, to help us see what Einstein's equations imply.

Now that's part of the effort isn't it, when we see the structure of math, may have also embued a Dirac, to see in ways that ony a good imagination may have that is tied to the abstractions of the math, and allows us to enter into "their portal" of the mind.

NASA scientists have reached a breakthrough in computer modeling that allows them to simulate what gravitational waves from merging black holes look like. The three-dimensional simulations, the largest astrophysical calculations ever performed on a NASA supercomputer, provide the foundation to explore the universe in an entirely new way.

According to Einstein's math, when two massive black holes merge, all of space jiggles like a bowl of Jell-O as gravitational waves race out from the collision at light speed.

Previous simulations had been plagued by computer crashes. The necessary equations, based on Einstein's theory of general relativity, were far too complex. But scientists at NASA's Goddard Space Flight Center in Greenbelt, Md., have found a method to translate Einstein's math in a way that computers can understand.


Already having this basis of knowledge availiable, it was important to see what present day research has done for us, as we look at these images and allow them to take us into the deep space as we construct measures to the basis of what GR has done for us in a our assumptions of the events in the cosmo.

But it is more then this for me, as I asked the question, on the basis of math? I have enough links here to show the diversity of experience created from mathematical structures to have one wonder how indeed is th efinite idealization of imagination as a endless resource? You can think about livers if you likeor look at the fractorialization of the beginning of anythng and wonder I am sure.

That has been the question of min in regards to a condense matter theorist who tells us about the bulding blocks of matter can be anything. Well, in this case we are using "computer codes" to simulate GR from a mathematical experience.

So you see now don't you?:)

Is Math Invented or Discovered?

The question here was one of some consideration, as I wondered, how anyone could have delved into the nature of things and come out with some mathematcial model? Taken us along with the predecessors of endowwment thinking(imagination). To develope new roads. They didn't have to be 6 0r 7 roads Lubos, just a assumation. Sort of like, taking stock of things.

So I may ask, "what are the schematics of nature" and the build up starts from some place. Way back, before the computer modeling and such. A means, by which we will give imagination the tools to carry on.

So the journey began way back and the way in which such models lead our perspectives is the "overlay" of what began here in the postulates and moved on into other worldy abstractions?

This first postulate says that given any two points such as A and B, there is a line AB which has them as endpoints. This is one of the constructions that may be done with a straightedge (the other being described in the next postulate).

Although it doesn't explicitly say so, there is a unique line between the two points. Since Euclid uses this postulate as if it includes the uniqueness as part of it, he really ought to have stated the uniqueness explicitly.

The last three books of the Elements cover solid geometry, and for those, the two points mentioned in the postulate may be any two points in space. Proposition XI.1 claims that if part of a line is contained in a plane, then the whole line is. In the books on plane geometry, it is implicitly assumed that the line AB joining A to B lies in the plane of discussion.


One would have to know that the history had been followed here to what it is today.

Where Non-euclidean geometry began, and who were the instigators of imaginitive spaces now that were to become very dynamic in the xyzt direction.

All those who have written histories bring to this point their account of the development of this science. Not long after these men came Euclid, who brought together the Elements, systematizing many of the theorems of Eudoxus, perfecting many of those of Theatetus, and putting in irrefutable demonstrable form propositions that had been rather loosely established by his predecessors. He lived in the time of Ptolemy the First, for Archimedes, who lived after the time of the first Ptolemy, mentions Euclid. It is also reported that Ptolemy once asked Euclid if there was not a shorter road to geometry that through the Elements, and Euclid replied that there was no royal road to geometry. He was therefore later than Plato's group but earlier than Eratosthenes and Archimedes, for these two men were contemporaries, as Eratosthenes somewhere says. Euclid belonged to the persuasion of Plato and was at home in this philosophy; and this is why he thought the goal of the Elements as a whole to be the construction of the so-called Platonic figures. (Proclus, ed. Friedlein, p. 68, tr. Morrow)




These picture above, belongs to a much larger picture housed in the Raphael rooms in Rome. This particular picture many are familiar with as I use part of it as my profile picture. It is called the "Room of the Segnatura."



The point is, that if you did not know of the "whole picture" you would have never recognized it's parts?

Saturday, August 26, 2006

Beyond Spacetime?

As well as bringing the accelerator's counter-rotating beams together, LHC insertion magnets also have to separate them after collision. This is the job of dedicated separators, and the US Brookhaven Laboratory is developing superconducting magnets for this purpose. Brookhaven is drawing on its experience of building the Relativistic Heavy Ion Collider (RHIC), which like the LHC is a superconducting machine. Consequently, these magnets will bear a close resemblance to RHIC's main dipoles. Following a prototyping phase, full-scale manufacture has started at Brookhaven and delivery of the first superconducting separator magnets to CERN is foreseen before the end of the year.





Now some people do not like "alternate views" when looking at Sean's picture. But if you look at it, then look at the picture below, what saneness, sameness, could have affected such thinking?

Lisa Randall:
"You think gravity is what you see. We're always just looking at the tail of things."





So we look for computerized versions to help enlighten. To "see" how the wave front actually embues circumstances and transfers gravitonic perception into other situations.



Was this possible without understanding the context of the pictures shared? What complexity and variable sallows us to construct such modellings in computers?



Okay so you know now that lisa Randall's picture was thrown inhere to hopefully help uyou see what I am saying about gravitonic consideration.

Anything beyond the spacetime we know, exists in dimensional perspectives, and the resulting "condensative feature" of this realization is "3d+1time." The gravitonic perception is "out there?" :)

Attributes of the Superfluids

Now it is with some understanding that the "greater energy needed" with which to impart our views on let's say "reductionism" has pointed us in the direction of the early universe.

So we say "QGP" and might say, "hey, is there such a way to measure such perspectives?" So I am using the graph, to point you in the right direction.



So we talk about where these beginnings are, and the "idea of blackholes" makes their way into our view because of th reductionistic standpoint we encountered in our philosophical ramblings to include now, "conditions" that were conducive to microstate blackhole creation.

The energy here is beyond the "collidial aspects" we encounter, yet, we have safely move our perceptions forward to the QGP? We have encounter certain results. You have to Quantum dynamically understand it, in a macro way? See we still talk about the universe, yet froma microscopic perception.

Let's move on here, as I have.

If you feel it too uncomfortable and the "expanse of space quantumly not stimulating" it's okay to hold on to the railings like I do, as I walked close to the "edge of the grand canyon."

So here we are.

I gave some ideas as to the "attributes of the superfluids" and the history in the opening paragraph, to help perspective deal with where that "extra energy has gone" and how? So you look for new physics "beyond" the current understanding of the standard model.

So, it was appropriate to include the graviton as a force carrier? Qui! NOn?

Monday, August 21, 2006

Gravitational Wave Detectors are Best Described as "Sounds."


Weber developed an experiment using a large suspended bar of aluminum, with a high resonant Q at a frequency of about 1 kH; the oscillation of the bar after it had been excited could be measured by a series of piezoelectric crystals mounted on it. The output of the system was put on a chart recorder like those used to record earthquakes. Weber studied the excursions of the pen to look for the occasional tone of a gravitational wave passing through the bar...


You have to go back to what was initiated to help put perspective on what the analogies do for us today?

Plato:
Density measure(comparative to other things) as sound, would be nice. Which leads me to the ideals of Webber and his aluminum bars.


So you have it firmly set in mind, where gravitational waves are set in the whole scheme of things? What values would you practise if Bulk perspectives were to allow you to see gravitational waves in it's two extremes?




Gravitational waves are ripples in the fabric of space and time produced by cosmic violence, such as the the universe's big-bang creation and collisions of black holes. These waves carry information about the "dark side" of the universe that cannot be learned in any other way. The high-frequency gravitational-wave window onto the universe will be opened soon by LIGO (NSF's earth-based Laser Interferometer Gravitational Wave Observatory, which is now in operation and searching for waves). A lower-frequency window will be opened in ~2012 by LISA (the NASA/ESA Laser Interferometer Space Antenna). This lecture will describe LIGO, LISA, and what they may teach us about the universe and about warped spacetime


Where are gravitational waves very strong, and where they are very weak?

Well, do you think such "detachments are practised" when you look at the event? The "sound" is emitted at the "very beginning" and the sound is, "specific?"


We can't actually hear gravitational waves, even with the most sophisticated equipment, because the sounds they make are the wrong frequency for our ears to hear. This is similar in principle to the frequency of dog whistles that canines can hear, but are too high for humans. The sounds of gravitional waves are probably too low for us to actually hear. However, the signals that scientists hope to measure with LISA and other gravitational wave detectors are best described as "sounds." If we could hear them, here are some of the possible sounds of a gravitational wave generated by the movement of a small body inspiralling into a black hole.


When such "analogies" are held in mind, you learn to understand the history of gravitational wave research based on "experimental processes" that were adopted by some to push forward our perspective on the very nature and description "such sounds emitted" may refer too?



So I began to see the whole picture in relation to how we would assess the movement towards "reconstruction of information" that leads from recreating the event from statistical information gathered from our "computerized measures" extended out there, to views of the early universe?

How shall you construct information of "an event" that is unfolding? So scientifically indeed, "experimentalism" has to be taken to new heights with which to construct such views of the early universe.

If you understood the nature of curvature, and the dynamical nature you have imbued quantum views then why would you not accept the views that the quantum nature will impart to you the nature of gravity?

So by preparing oneself as to the ways in which the bulk is perceived, you now have this means with which to judge the events in the cosmos, not just as a after effect of what happened at the time but of the story unfolding from that time?

This doesn't excuse all that is left in the bulk for perspective, because you need to remember the very nature of all constructs have been left for you to look at, as you "rebuild these images" of what happened so long ago. Actually exist in the bulk right now as information?

So you understand Bekenstein Bound do you?

Okay, keep going then with these views as they unfold, and as I have demonstrated them as I "portrait the universe" in the way that I see. It is difficult to get across as a painter, the language barrier, if it does not a have a mutual agreement to interpretation, then it has to be done on a experimental basis.

We all know that, Peter Woit.


The analogy with condensed matter physics was thus introduced to see if the asymptotic properties of the Hawking phonons emitted by an acoustic black hole, namely stationarity and thermality, are sensitive to the high frequency physics which stems from the granular character of matter and which is governed by a non-linear dispersion relation. In 1995 Unruh showed that they are not sensitive in this respect, in spite of the fact that phonon propagation near the (acoustic) horizon drastically differs from that of photons. In 2000 the same analogy was used to establish the robustness of the spectrum of primordial density fluctuations in inflationary models. This analogy is currently stimulating research for experimenting Hawking radiation. Finally it could also be a useful guide for going beyond the semi-classical description of black hole evaporation.

Thursday, August 03, 2006

BigFoot: The Anomalistic Reality?

The explanation of scientific development in terms of paradigms was not only novel but radical too, insofar as it gives a naturalistic explanation of belief-change. Thomas Kuhn




What can we say to those who practice science and have been told, no anomalistic conditions can exist in reality? How will they "act" when they have been shaken at the very roots, assuming, such a thing can happen to them as a "observer" of what is "real" to them?



What "if" their illusions have taken hold of them? What if, they jump into a river? Scientists are not like this? They see "everything?":)OuI! Non? They all looking for "truth" just like you, Lee Smolin. There are no causalities?

Nature in Analog Models

In condensed matter, one can construct systems where the propagation of long wavelength phonons (sound waves) is very similar to the propagation of a scalar field in a curved Lorentzian spacetime. Such systems are called 'analog models'. It is even possible to construct analogies to black holes in this manner, where the phonons that travel past a certain point cannot return. For example, consider a fluid where long wavelength phonons in the fluid propagate with speed cs, which is analogous to the speed of light in these models. Now put this fluid in a pipe and change the shape of the pipe such that the speed v of the fluid is faster than cs in one section and slower in an adjacent section. A phonon can travel "back against the current" only up to a certain point, where the the fluid speed equals cs. After that the fluid flow carries it down the pipe. This point in the pipe therefore mimics a black hole event horizon, from which nothing can escape. Other black hole features such as Hawking radiation are also present in these models. Since these models give an example of a system that has a fundamental structure at very short distances (where the fluid description breaks down), yet has a pseudo-Lorentz invariance at long distances.


So forget about paradigmal change, and Kuhn's perspective about revolutonary change? A precursor to how things have always been done, now change, to become? Such an example is needed to push perspective unless you want to stay the way you have always been?

Evidence of Dis-ease?



Have we gotten so far to assume "the sickness" had indeed been caused by such theoretics and a "ventured mysticism," that the fault lied in those who venture forth and offer perspective and some who lacked visional meaning?

So as a "painter" Dali added "dimension" to the tesserack of our talks?:)

The artists begun to believe in the "mystical reality of life" and in so having succumbed to the death of all that has been forsaken(education), it will be strings that will lie at the root cause of this troubling disease?

What "seeing" has overtaken all that we have currently surmized. Is it such an artist of people who help free us of our rigidity?

I am trying to be sensitive as well here.

Bigfoot Toe Analogy

Backreaction: Lee Smolin's Trouble with Physics

BEE said:
Last night I had a nightmare! Bigfoot knocked at my door and wanted to talk to me about the existence of the string theory landscape. Still on east-coast time, I wiped off the sweat from my forehead but couldn't fall asleep again. I switched on my laptop, and decided its time to post the review on Lee Smolin's new book.


I found this a very interesting perspective by "B" on the "Theory of Everything" and how this can manifest in the deeper part of the subconcious mind. Of course the mind tries to deal with the incredibility of the world? How shall we come to deal with it's anomalies, if "repeatability" will not sanction the observer?

The unexpectedly hot output, if its cause were understood and harnessed, could eventually mean that smaller, less costly nuclear fusion plants would produce the same amount of energy as larger plants.


QGP tunnelling? So where are these times being presented? What is accounting for the conditions which allow for such tunnelling? A cosmological preview perhaps which allows for "new physics" to emerge?

Instead of the Newtonian inverse square law you’ll have an inverse fourth power law. This signature is being looked for in the ongoing experiments.


What things will shock the scientist? Change the "foundational basis" of thinking about the quantum reality?

The affect these things(?) can have on any mind is amazing, and of course, getting all the information is very important(observing what is wrong), so, we can assess what the heck is going on?

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
"God bless me! but the Elephant
Is very like a WALL!"


The Second, feeling of the tusk,
Cried, "Ho, what have we here,
So very round and smooth and sharp?
To me 'tis mighty clear
This wonder of an Elephant
Is very like a SPEAR!"

The Third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up and spake:
"I see," quoth he, "the Elephant
Is very like a SNAKE!"

The Fourth reached out an eager hand,
And felt about the knee
"What most this wondrous beast is like
Is mighty plain," quoth he:
"'Tis clear enough the Elephant
Is very like a TREE!"

The Fifth, who chanced to touch the ear,
Said: "E'en the blindest man
Can tell what this resembles most;
Deny the fact who can,
This marvel of an Elephant
Is very like a FAN!"

The Sixth no sooner had begun
About the beast to grope,
Than seizing on the swinging tail
That fell within his scope,
"I see," quoth he, "the Elephant
Is very like a ROPE!"

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!


What is happening in the trouble minds of the scientists as we have come to learn of their struggles to deal with the anomalistic(animalistic)world? :)The Jaquar, the elephant(how shall we describe quantum gravity)?

Maybe it is a joke of "incredibility to some" knowing more then what we lay people know? Yet, with all that has been said here, where will you bury your experience? How shall it now manifest into your life? What will now "motivate" your science?



"Diamagnetic situation" and what creates these holes in what runs consistently, and we see where such instances "float" the disc. How strange, had you not have arisen from the tribal forest life? To view the situations of all "science life" to see and know more then what taken for granted as thplane flew over head on first take?

Einstein when given the compass saw something strange in his youth? We know better now what that was. All "lay people" are in their youth? All "lay people" can learn? As a "lay person" I will listen very hard to what you are saying.

Fantastic journies



A flight between "heaven and Earth?" Some cherish the Eagle for seeing.

"Warren Seagull" is a wonderful bird? :) Parodies, will break us free?

Tuesday, July 25, 2006

Clifford and The Singularity

Horatiu is referring to a mathematical similarity between the physics of the real world, which govern RHIC collisions, and the physics that scientists use to describe a theoretical, “imaginary” black hole in a hypothetical world with a different number of space-time dimensions (more than the four dimensions — three space directions and time — that exist in our world). That is, the two situations require similar mathematical wrangling to analyze. This imaginary, mathematical black hole that Horatiu compares to the RHIC fireball is completely different from a black hole in the real universe; in particular, it cannot grow by gobbling up matter. In other words, and because the amount of matter created at RHIC is so tiny, RHIC does not, and cannot possibly, produce a true, star-swallowing black hole.


See:

  • So how far back to the beginning, and if we had thought supersymmetry could exist, would it be in the most perfect fluid?

    I place this picture and article above so that one keeps perspective about the similarites of the "micro versus the macro" perspective and "not" that the "disaster scenario" could create the "large blackhole?" But wait?

    I am thinking in terms of what could create "the situations" for what is coming into being. Is it acummulative? I am not sure from the "many colldial events" that one could see happen? Hence my focus, to what not ony is created in the "collidal event," but to the cosmic particle colllsions as well. How rare are these? I speak on the "history of strangelets" from that point.

    Anyway onward here.

    Clifford:
    Seriously his talk is all about the physics of certain type of spacetime singularites-such as the one that live's in our universe's past-and whether life can make sense of the idea of space and time coming into being after sucha singualrity, while not existing prior to that


    I should start off from a quote of Clifford's of Cosmic Variance, becuase of Q's insistance in regards to the descritpions of singularities and my lacking an understanding and somewhat confusion. I thought I would do some more research here.

    There are "certain assumptions" I am making and this is in regard to the a statement Clifford makes, is held as a question in my mind of what exists before anything can emerge into the spacetime? While he has called this beginning "spacetime" and reference "another state" before this, what is it? This is what holds my assumption and idea about what the singularity is doing.

    Lubos Motl:
    We need to get closer to the "theory of everything", regardless of the question whether the destination is a finite or infinite distance away. (And yes, the path should not be infinitely long because there is no physics "below" the Planck length.)


    I place this, too support what Clifford is saying in regards to the what is emergent into the spacetime from what I understand(Strings as a building block on the road too, not as the source of this "emergent property?"). Where do all these dimensional ideas then reside? You can't ignore this, or what Lubos "is saying" about talking about the past? Everytime one's perception changes, the hisory changes too? It forces you to look at the future in a new way?

    Not Newtonian

    It is certainly not the Newtonian version I am thinking about. People tend to think of these as diamonds(?) or something like that as a Pea? I tend away from that thinking, because it just doesn't chive with what is tramsmitted into what "being [is] in spacetime?," if you don't have a foundation from which to work?

    Call them coordinates and in it, the spactime emerges, and from that "okay" the looking at the arrow of time which implies to me a simplier supersymmetrical idea, looking back. So how did you get there? The outside/inside "quandry that stretches the mind capbailites" while chasing the "idea" as Brian Greene's Koan?

    There is something to be said in how "ideas emerge from all the information gathered and accumulated" spontaneousily bursts into a new form? The mind goes through a bit of a change? See's differently. Reinmann accomplishement along with those of the geometrical forbears(shoulder's of giants) help to change how we see geometrics.

    Briefly I pick up the Kurzwelian book on singularities, and find that a greate rperspective is need beyond what is espoused. A new stage in the thinking, beyond what society is thought to be headed. Some reject Kuhnian thinking but this is revolutionary to bme in what an dhow th emind proceeds in bringing down to earh the ideas that await to form in mind. Another place perhaps? A way of dipping the "toe" into the stream, and letting all that "informtaion" flow through you?

    A black hole in astrophysics often has two distinct meanings. The first is the black hole in a general relativistic sense - the extreme gravitational case with a singularity in space-time - while the second is a simpler Newtonian approach: a black hole is just a point mass. While both of these meanings are used, often interchangeably, throughout the literature, it is important to remember that no astrophysical observation has yet been made that can distinguish between the two; to date, the Newtonian point mass is all we need. In the future, with better X-ray observations and a detection of gravitational waves, this may change.



    First off I wrote the post Singularities should be rewritten as "a question" of what I was seeing inregards to our universe. What is in our universe's past. The reason for it's inflation. The reason for entropic valuations that become complicated and end in some chaos reasoning that Sean askes of those to solve in the Three body solution? I think this ahas already been done from what I understood so that push me towards lagragian perspective s and the other assumptions I have about this beginning and what existed before it?

    Here's what I write:

    Plato:
    If the initial states at the beginning of the universe are to be in concert with particle reductionism, and the particle creations that I have exemplified in how particles came into being, then, the understanding of what can be transmitted through the blackhole is extremely important as a valuation of what appears over time?


    So I have to say yes I am quantum characteristically driven to see this universe as it existed in a state held in our perceptions, of what it has become today. So of course I was looking back, with new knowledge of what the futre is to become. Why shouldn't it matter what help to draive this situation in the universe we have to day not hold perspectove abot what has emerged in the spacrtime as we know it?

    Strominger:
    The old version of string theory, pre-1995, had these first two features. It includes quantum mechanics and gravity, but the kinds of things we could calculate were pretty limited. All of a sudden in 1995, we learned how to calculate things when the interactions are strong. Suddenly we understood a lot about the theory. And so figuring out how to compute the entropy of black holes became a really obvious challenge. I, for one, felt it was incumbent upon the theory to give us a solution to the problem of computing the entropy, or it wasn't the right theory. Of course we were all gratified that it did.
  • Sunday, July 16, 2006

    Star Lite Public Outreach



    In regards to the QGP(Quark Gluon Plasma) I thought such a creation important from the ideas of what happens in assessing any beginning?



    This thought arose from what was revealled in terms of "Microstate blackhole" production and the circumstances from such gold ion collisions.

    If we are lead experimentally to such a place, then what may we say of "reductionistic circumstances" and it's relation to the beginning of the universe?



    In my GRand Quantum conjecture, such thinking to have established the origins of "quantum perception" along with the understanding of GR and it's curvatures?

    Who would of thought such "an application" and ignore what is driving the perspective around blackhole hole creation? It's "microstate properties?"

    Andy Strominger:
    This was a field theory that lived on a circle, which means it has one spatial dimension and one time dimension. We derived the fact that the quantum states of the black hole could be represented as the quantum states of this one-plus-one dimensional quantum field theory, and then we counted the states of this theory and found they exactly agreed with the Bekenstein-Hawking entropy.


    I pointed out "Strominger" in this case to help direct the "existance of perception" simultaneously of what is being related, not only in our early universe, but from the understanding of what "quantum perception" is doing in relation to reductionistcally driven physics?

    Such a "relation and assumption of microstate blackholes," helps to direct supersymmetrical ideas, to what the "collapse of the blackhole is doing" in terms of the creation of this quark Gluon plasma state.

    Are they the same in terms of what happens in the cosmological blackhole and what is created in the collider?

    Ask a Astrophysicist

    The Question:Can you explain to me what quantum gravity is, and if so how does it relate to black holes?

    A quantum theory of gravity would involve particles passing 'gravitons' back and forth among themselves. This quantum theory would probably be a more accurate description of gravity, and might be accurate enough to describe the extreme conditions found at the center of a black hole.


    They both from what I have understood so far would have needed to account for the "classifications" Strominger had pointed out for us?

    What is Blackhole Entrophy?

    Suppose we have a box filled with gas of some type of molecule called M. The temperature of that gas in that box tells us the average kinetic energy of those vibrating molecules of gas. Each molecule as a quantum particle has quantized energy states, and if we understand the quantum theory of those molecules, theorists can count up the available quantum microstates of those molecules and get some number. The entropy is the logarithm of that number.

    When it was discovered that black holes can decay by quantum processes, it was also discovered that black holes seem to have the thermodynamic properties of temperature and entropy. The temperature of the black hole is inversely proportional to its mass, so the black hole gets hotter and hotter as it decays.


    One would have had to conclude that the "energy states" are very importnat here, as well as the nature, and the way such a process is related in terms of those reductionsitic energy derivations?

    Who is Boltzman? What is Chaos?

    In the presence of gravitational field (or, in general, of any potential field) the molecules of gas are acted upon by the gravitational forces. As a result the "concentration of gas molecules" is not the same at various points of the space and described by Boltzman distribution law:


    The "energy and decay(gravitonically considered and extended from the implication of GR)" have to be reconciled in our understanding of the blackhole, in regards to the nature of the microstate blackhole perceptions? The "evidentry" particle creations exemplify the energy distributions?

    Thursday, July 13, 2006

    GRand Quantum Conjecture



    My continued looked into the "fluids dynamics" had me wonder about the superfluid anomalies. How would the "sphere look" if it collapsed and allowed information to travel through it, based on what has been given here for perspective, when the "state of equillibrum" is arrived at?

    In regards to 3, let's just say the assumption is from a theoretcial standpoint, that microstate blackholes "are created." They are created in "cosmic particle collisions" as well?

    This is the premise from which I work, and how I gave "how particles are created," a beginning(dimensional referencing), and a basis from which all science becomes "evidentary" in the particle creations.

    Exotic physics finds black holes could be most 'perfect,' low-viscosity fluidVince Stricherz, University of Washington

    Son and two colleagues used a string theory method called the gauge/gravity duality to determine that a black hole in 10 dimensions -- or the holographic image of a black hole, a quark-gluon plasma, in three spatial dimensions -- behaves as if it has a viscosity near zero, the lowest yet measured.

    It is easy to see the difference in viscosity between a jar of honey or molasses at room temperature and a glass of water. The honey is much thicker and more viscous, and it pours very slowly compared with the water.

    Using string theory as a measuring tool, Son and colleagues Pavlo Kovtun of the University of California, Santa Barbara, and Andrei Starinets of the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, have found that water is 400 times more viscous than black hole fluid having the same number of particles per cubic inch.


    Your points in conclusion,I, II, III

    I-yes
    II-yes
    III- from my conclusions as well.

    Again in above quote, I am defining the leading perspective on blackholes as they are being theoretically defined now, and will be subject to experimentation soon?:)

    Now again "backreaction in the laval nozzle" is up for inspection here as we delve deeper into the nature of the blackhole.

    Nature in Analog Models

    Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).


    "Analogistical behaviors" help to push perspective, where before, our theoretical explorations had ran dry?

    Q:
    These wormhole like 'blackholes' do not lead to other pocket universes, unless we choose to call another sector of space a pocket universe, like Europeans first called the land across the Atlantic the 'New World' or Australia 'Another World' yet still clearly part of this World we call Planet Earth.


    If we are to think that the overall context can be apllied to this universe, then such evidence "should be obtainable" as to the nature of such a beginning? But even still, to your point and aspect within this universe, we are looking for accontable methods to such dark energy creation?

    Plato:
    Every picture held in mind is a link to other pictures


    Each event in regards to gravitational collapse would be indicative of what can be "put back into this universe" and sustain it?

    Lubos Motl:
    The mechanism behind sonoluminiscence remains a bit controversial. Claiming that a thermonuclear fusion occurs during sonoluminiscence is among the more conservative explanations. The physicist Claudia Eberlein argued that the correct explanation is that the imploding bubbles create sonic black holes and the flashes are the counterpart of Hawking radiation as the sonic black hole evaporates. You should not think that this is an example of a very, very low energy quantum gravity because the sonic black holes have no connection with the scales of gravity. It is not a supercollider in a glass of beer. But let me admit that as an undergrad, I was excited by this proposal, at least for a few minutes, but I apparently forgot the details of that encounter.


    So by developing this picture of the "bubble collapse in sonofusion", and let's forget about the energy produced from such bubbles and focus on the geometrics of such a collapse. That's my point.

    Lubos Motl:
    Janice Granhardt has pointed out a press release that is two days old and arguably much more serious and potentially far-reaching than the news about "sonofusion" we described yesterday.


    That is part of my conjecture as well as the "unification factor" in my GRand Quantum perceptions.:)That if you remember Kip thorne's plate 27 you will understand that information from the collapse had to be sent over a great distance for us to make sense of the geometrical dynamics that are unfolding from that time and place.

    So you look for the gravitational waves that Webber initiated, and Kip Thorne encouraged in our measures of what is actually being transmitted. Kip Thorne is the father of the LIGO program?

    You must remember gravitational waves have not yet been verified, yet the theory of GR implicitly tells and is about gravity. It was thus taken further in my conclusions having understood that the creation of this infomration would allow one someday "to map" this very collapse in terms of the gravitonic information left in the bulk?

    This is "Dimensional orientated" from a beginning(11dimensional view?), from which evidence is "the 3+1."

    That's outside the box thinking? :)Cosmologists work "inside," as Clifford of Cosmic Variance once said?

    How then is such a gravitational heat generated from the boundary conditions(blackhole), which grows ever smaller in that collapse, and our energy valuations go higher to supersymmetical realizations? The present volume calculated in the extension of our universe would have to be in concert with the volume before such a collapse was to be expected?

    This "total energy value," assuming the universe is flat teeter's on the brink of ?:)

    Total dark energy would have to account for this and supernova events contributing as well as, particle collisions that go on all the time?

    So if space is not really empty, then what is it supposed to be filled with? Quantum harmonic oscillator and zeropoint?

    See:
  • Charlatan's Who Use Graviton
  • Friday, June 16, 2006

    The Fate of our Planet?

    Clifford at cosmic variance addresses a fundamental question about the need(?) to populate other planets, versus exploring?

    Clifford:
    And it would be nice if we did the exploration primarily out of curiosity and wonder, and not out of fear for our future


    But of course, as with any thread there is a diversion of thought, so I answer this, while still trying to understand what he meant by the timescale?

    A Blackhole ate my Planet?


    It's almost worth following the trail of "Risk Assessment" here. Some might remember James Blodgett?

    In recent years the main focus of fear has been the giant machines used by particle physicists. Could the violent collisions inside such a machine create something nasty? "Every time a new machine has been built at CERN," says physicist Alvaro de Rujula, "the question has been posed and faced."



    Of course, refering to "cosmic particle collisions",then to have the "issues of strangelets" explained away as well. I mean every journey is fraught with the anxieties of fear. Fear of the unknownas one progresses along the roads to new worlds?



    See:
  • RHIC Animations and Multimedia


  • Strangelet Search at RHIC by STAR Collaboration

    We report results of the first strangelet search at RHIC. The measurement was done using a triggered data-set that sampled 61 million top 4% most central (head-on) Au+Au collisions at $\sNN= 200 $GeV in the very forward rapidity region at the STAR detector. Upper limits at a level of a few $10^{-6}$ to $10^{-7}$ per central Au+Au collision are set for strangelets with mass ${}^{>}_{\sim}30$ GeV/$c^{2}$.

    So where do we stand with the fate of our planet?

    See:

  • Strangelets Do Not Exist?
  • Friday, June 09, 2006

    High Energy Particle Creations: PLacing the Universe into Perspective?

    "String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap."



    While it is a microstatic view of what began from the early universe, such model creations as to the viability of the time line, seems really important to me. THis is a layman's view of course amongst the towers of well educative minds. So I thought I would add it.

    Ah, it seems again, while thoughts are being held in mind, and some confusion on my part, the answers make themself known. It seems fate destines the mind's question, like an attractor of a kind? That all things come to those who wait?:)

    AIRES Cosmic Ray Showers


    The resource to the right index are really quite good, when it comes to Cosmus. I had forgotten why I had linked it, only to find how these particle creations are understood. Animations bountiful, to help the layman mind understand what is going on.

    Make sure you let the animation load below. Also, the significance of high energy particle creation of secondaries, while dissipative states exist in plamatic considerations, what effect again is being sited here in the questions of mind tha we see some result on earth here?

    The Pierre Auger Observatory in Malargue, Argentina, is a multinational collaboration of physicists trying to detect powerful cosmic rays from outer space. The energy of the particles here is above 1019eV, or over a million times more powerful than the most energetic particles in any human-made accelerator. No-one knows where these rays come from.


    As you move through this information, it is really wonderful that such summations having gone over again and again, seem to solidfy what exactly is being sought and is currently understood.

    It works that way sometime when you get a group of people together who have been through it all, and repeat all the current data they have for where exactly they are standing now. This thought of course is arisen from what Sean posted in regards to the PI institue in Canada and the group that got togehter there.

    Jack, one of the comentors of course is asking why this stufff is being repeated over and over again, and the answer above is basically what is necessary to initiate new thought provoking situations, to what is already known?

    That just seems to be the way of it.

    See:

  • Pulsars and Cerenkov Radiation


  • How Particles Came to Be?
  • Friday, May 26, 2006

    Pulsars and Cerenkov Radiation

    Of course, I could be mistaken making such assumptions.

    Scientists May Soon Have Evidence for Exotic Predictions of String Theoryissued by Northeaster University

    "String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap. This increases the number of 'down' neutrinos detected. At the same time, the creation of black holes causes 'up' neutrinos to be caught in the Earth's crust, reducing the number of 'up' neutrinos. The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."


    So what is it we can learn about high energy photons. Kip Thorne was instrumental here in helping draw us a sequence of events in our cosmos and on the cosmic particle considerations? I couldn't help identify with this process.



    Of course in order to capture the effects of high energy photons we need a vast array of area in terms of detector status, that we might indeed capture them. So ICECUBE is a interesting perspective here?



    Now why would I combine these two things, and it is of course through a previous conversation that the ideas of high energy particles using our atmosphere for secondary particle realizations, could have capture the human eye so that one had to turn from the brightness? Look to the image below o pulsar sources for cosnideration.




    Now of course it is just being put here for a minute, while I try and get my thoughts together on this.

    But in the mean time, for those who understand what I am refering too, you might leave your comment and share what you think about this similarity? What may have been happening with "the light" as the snow boarders were doing their olympics?

    We see a pulsar, then, when one of its beams of radiation crosses our line-of-sight. In this way, a pulsar is like a lighthouse. The light from a lighthouse appears to be "pulsing" because it only crosses our line-of-sight once each time it spins. Similarly, a pulsar "pulses" because we see bright flashes every time the star spins.


    Linked qote and picture to tutorial site has been taken down, and belongs to Barb of http://www.airynothing.com

    Monday, May 22, 2006

    Pattern Recognition

    Strominger:
    That was the problem we had to solve. In order to count microstates, you need a microscopic theory. Boltzmann had one–the theory of molecules. We needed a microscopic theory for black holes that had to have three characteristics: One, it had to include quantum mechanics. Two, it obviously had to include gravity, because black holes are the quintessential gravitational objects. And three, it had to be a theory in which we would be able to do the hard computations of strong interactions. I say strong interactions because the forces inside a black hole are large, and whenever you have a system in which forces are large it becomes hard to do a calculation.

    The old version of string theory, pre-1995, had these first two features. It includes quantum mechanics and gravity, but the kinds of things we could calculate were pretty limited. All of a sudden in 1995, we learned how to calculate things when the interactions are strong. Suddenly we understood a lot about the theory. And so figuring out how to compute the entropy of black holes became a really obvious challenge. I, for one, felt it was incumbent upon the theory to give us a solution to the problem of computing the entropy, or it wasn't the right theory. Of course we were all gratified that it did.




    I mean sure we can say to ourselves, "that one day I was very ignorant" and I had all these speculative ideas about the "Golden Ratio," but then, I learnt the math and the truth of it all?

    But while we were being crazy......?:) Ahem!

    Namagiri, the consort of the lion god Narasimha. Ramanujan believed that he existed to serve as Namagiri´s champion - Hindu Goddess of creativity. In real life Ramanujan told people that Namagiri visited him in his dreams and wrote equations on his tongue.


    In "past life bleed throughs," it was very important to realize that while speaking in context of "overlapping," the underlying archetecture allowed for expression of those different interpretive assignments I had given. These were significant for me, because it help me to realize the "mapping" that we can unconsciously have revealled in such "experience dream/real patterns," that had one not be aware it, would have escape one's notice as a mundane realization.

    You had to understand how "geometrical seeing" is held in context of Dirac's wording, to know that this tendency to draw lines at the basis of consciousness, was also evident in Feynman's toy model construction. It is something that we do, do.

    So what did I learn?

  • 1. That it revealled a model for consciousness, from the reality of the day, to the transcendant.


  • 2. That it housed an experience in the way it can overlapped using "1" as a central pattern of emergence.


  • 3. That present day models now use this schematic are psychologically endowed in speculation(liminocentrically structured), but has a basis in fact, as I am showing it here.


  • "Betrayal of Images" by Rene Magritte. 1929 painting on which is written "This is not a Pipe"

    What sense would any of this "cognitive idealization" make, if one did not have some model in which to present, and know, that it was the underlay of all experience, and that the time of our day, might see us use it in topologically in different ways?

    I used Sklar for this example.

    But more then this what use is "Pascal Triangle" if we did not understand the emergence of "patterned numbers" from some initial beginning and cognitive realization, had we not recognized Pascal's model intepretation?



    With no know emergent principals, or geometry arising from inside the blackhole, it was important that the basis of expression be realized as a pattern forming recognitive valuation? Is it right? I am not sure, but part of the developing model application had me wonder about how we could have encapsulated the cyclical nature of, what was collapsing into the singularity, was now actually, the motivational force for the developing new universe?

    When it was discovered that black holes can decay by quantum processes, it was also discovered that black holes seem to have the thermodynamic properties of temperature and entropy. The temperature of the black hole is inversely proportional to its mass, so the black hole gets hotter and hotter as it decays.


    So it was important to know the basis of D brane recognitive values, in how the blackhole is interpreted?

    Saturday, May 13, 2006

    Sonofusion Analogies in Geometric design?



    Every picture held in mind is a link to other pictures? The larger context of the universe, is now seen in how our minds evolving such a reality through such thought constructs( it's bits and pieces) that it is not just words and equations any more, but the understanding that this picture can includes more then one thousand words of discriptive power.

    It had to be really compelling that such thoughts illustrated here, had a whole geometric history underneath it. Some might of thought it again as "ad hoc," but the truly deeper perception exists whether they like to think it does not.

    Lubos reminds one that no such geoemtry exists or new phsyics in this place, but it had to come from somewhere, no matter what you called the constituents of this reality.

    What is Quantum Gravity?

    Quantum gravity is the field devoted to finding the microstructure of spacetime. Is space continuous? Does spacetime geometry make sense near the initial singularity? Deep inside a black hole? These are the sort of questions a theory of quantum gravity is expected to answer. The root of our search for the theory is a exploration of the quantum foundations of spacetime. At the very least, quantum gravity ought to describe physics on the smallest possible scales - expected to be 10-35 meters. (Easy to find with dimensional analysis: Build a quantity with the dimensions of length using the speed of light, Planck's constant, and Newton's constant.) Whether quantum gravity will yield a revolutionary shift in quantum theory, general relativity, or both remains to be seen.


    Some would like to think themselves "so pure" that they could not plant their own poison?

    It is a hard thing to remain pure in our feelings of sharing, once our egos intrude and we fight each other, for some dominance like some animal uneducated, while we dawn such clothing of the civilized being?

    While earlier entries have been spoken to in terms of, what analogies can do for us in what and how we like to portray the world. Such analogies do have to be carefully considered. It okay if we speak around each other whie we move peception forward. We do not "own" any of it?:)

    Lubos's last statement of the blog entry made here and linked here is of course most correct, and an understanding of the early universe? It is very hard to to see how such dynamical world could fit our views of a reality, as we peer into, with our imaginations.

    With my imagination?

    If One thought about creativity and the undertanding of where these deeper insights of the soul reside and emerge from, how could they emerge from the very origins, while holding the views, peering deep into space? Peering deeply, into the space inside?

    So fanciful creatures we are, that we create all these models and thought constructs to help us along to concretize what the thought construct could do for us, as a measure and yardstick of that reality? So we might playfully use such analogies to open the mind to another possibility?

    Sonofusion - star in a jar

    Lubos Motl:
    The authors admit that the number of events is not enough to build a power plant. However, there is some controversy whether the number of fusion events is what the authors say or whether it is lower by a few dozens of orders of magnitude, as implied by physics.

    The mechanism behind sonoluminiscence remains a bit controversial. Claiming that a thermonuclear fusion occurs during sonoluminiscence is among the more conservative explanations. The physicist Claudia Eberlein argued that the correct explanation is that the imploding bubbles create sonic black holes and the flashes are the counterpart of Hawking radiation as the sonic black hole evaporates. You should not think that this is an example of a very, very low energy quantum gravity because the sonic black holes have no connection with the scales of gravity. It is not a supercollider in a glass of beer. But let me admit that as an undergrad, I was excited by this proposal, at least for a few minutes, but I apparently forgot the details of that encounter.


    Yes, your last statement sums it up Lubos.

    Now, why had such model had been gainfully employed in my analogies?

    The need for a leading construct and all the geometries to be included in a particluar way? Would they match the very expressions of our universe?

    While education would indeed detail the complications and ideas around such models, it is not without simplicity, that such understanding could be pictured first( Dirac comes to mind(?)), and then contain the thousand words, equations, that are to come afterward? This all evolves forma universal expressinand idea I have about how such expression are contained inthe new expressions we see of this universe.

    So it is by looking for this thread of thought and emerging property of such thought, that we would have to trace it back? How would you do that if you did not believe in your interactiveness with the universe at large. An "deductive/inductive," relation with reality that one may have morphed in the exchange from "one moment to the next?" Becoming.

    This is a evolving thread of growth that somehow goes on in our ever education and open mind,least we be restraint by our very own convictions and said, "here is where I lie?"

    Wednesday, May 10, 2006

    How Particles Came to be?

    The First Few Microseconds, by Michael Riordan and Willaim A. Zajc
    For the past five years, hundreds of scientists have been using a powerful new atom smasher at Brookhaven National Laboratory on Long Island to mimic conditions that existed at the birth of the universe. Called the Relativistic Heavy Ion Collider (RHIC, pronounced "rick"), it clashes two opposing beams of gold nuclei traveling at nearly the speed of light. The resulting collisions between pairs of these atomic nuclei generate exceedingly hot, dense bursts of matter and energy to simulate what happened during the first few microseconds of the big bang. These brief "mini bangs" give physicists a ringside seat on some of the earliest moments of creation.
    During those early moments, matter was an ultrahot, superdense brew of particles called quarks and gluons rushing hither and thither and crashing willy-nilly into one another. A sprinkling of electrons, photons and other light elementary particles seasoned the soup. This mixture had a temperature in the trillions of degrees, more than 100,000 times hotter than the sun's core.


    What was the initial energy that distributed the particle natures to have "microstate blackholes" created, while the conditions for other experiments are considered?

    There are some things we need to know and I will show this shortly. I know certain people believe I am "ad hocing," but how would you get to the source of the thoughts, if one did not consider the conditions in which thought forms were created? So while we lok at the high energy collision of cosmic particles what are some of the things to watch for?

    Forbush Decrease


    Scott E. Forbush discovered the surprising inverse relationship between solar activity and cosmic rays


    How would you not know, while the timeline has been explained, and a place for such expression would reveal such conditions to have them displayed, that we could think of them from such a beginning?

    Where is that? Maybe you had to know about RHIC to understand the full notion of such a superfluids created, to know that such a condition became counter-intutive because of the new physics that it could present?




    What is dissapated and how did it get there as other particle conditions are realized? Remember, the initial energy of such a expression was in a more simplified state, before it became as complex as it did in entropic realizations.

    New state of matter more remarkable than predicted -- raising many new questions


    The four detector groups conducting research at the Relativistic Heavy Ion Collider (RHIC) -- a giant atom “smasher” located at the U.S. Department of Energy’s Brookhaven National Laboratory -- say they’ve created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In peer-reviewed papers summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC’s heavy ion collisions appears to be more like a liquid.

    “Once again, the physics research sponsored by the Department of Energy is producing historic results,” said Secretary of Energy Samuel Bodman, a trained chemical engineer. “The DOE is the principal federal funder of basic research in the physical sciences, including nuclear and high-energy physics. With today’s announcement we see that investment paying off.”


    As a product of mind could it be reborn, or burn up, and we are only discussing the philosophical considerations. Phenix, or was that Phoenix, like the bird? Rising from the flames and a renewal, as part of the creation of new conditions?

    Scientists May Soon Have Evidence for Exotic Predictions of String Theoryissued by Northeaster University


    "String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap. This increases the number of 'down' neutrinos detected. At the same time, the creation of black holes causes 'up' neutrinos to be caught in the Earth's crust, reducing the number of 'up' neutrinos. The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."

    Thursday, April 27, 2006

    Comprehending New Physics?

    Scientists May Soon Have Evidence for Exotic Predictions of String Theory issued by Northeaster University

    "String theory and other possibilities can distort the relative numbers of 'down' and 'up' neutrinos," said Jonathan Feng, associate professor in the Department of Physics and Astronomy at UC Irvine. "For example, extra dimensions may cause neutrinos to create microscopic black holes, which instantly evaporate and create spectacular showers of particles in the Earth's atmosphere and in the Antarctic ice cap. This increases the number of 'down' neutrinos detected. At the same time, the creation of black holes causes 'up' neutrinos to be caught in the Earth's crust, reducing the number of 'up' neutrinos. The relative 'up' and 'down' rates provide evidence for distortions in neutrino properties that are predicted by new theories."


    Well, having tried to understand what this might entail, I have engaged from a layman perspective, my interest in string theory, to see if I could indeed to get to the "heart of the matter." :)

    Moving to higher energies, the expected fluxes of neutrinos become smaller, that even a cubic kilometer detector is not able to detect them. Larger volumes can be achieved by replacing optical sensors by acoustic detection. The reason is that acoustic waves can propagate over larger distances than light and allow wide spacing of detectors, and therefore larger detector volumes.



    So having understood the high energy interactions above us, what said that the lower energies would have not been followed to some "end?" What "new physics" would have said that what was produced in the sun, and what energy particles emitted into the space, would thusly be recognized in the collidial events. Would have been traced to evidence, as some theorectical conclusion might have evailed of itself?



    INtuitive recourse and back.

    What that might mean is a philosophical endeavor of mine own, although not well schooled, had existed somewhere deep in the oblivion of the soul encased here. The schooling that has gone on in thesense of out reach programs show by the articles listed by cosmic varaince, respectvely of the two organizations, are very important to me.

    What made them f cosmic variance not think I had been doing this kind of stuff on my own years before and in my attempts now, encouraging society to take hold of it's destiny responsibly, and not let it be overtaken by captialistic visionaries, that were out to line their own pocket, then share their philosophies with us while we wroked life and it's responsiblities?

    While gone for a bit on my own personal views about Intuition and the kind, it is time to get back to work. Understand where people are going with the theoretical model developed, called "String/M Theory, and try access what valuable insights had been developed "forward" in respect of what those extra dimensions might mean in study "now."

    An "arrow of time" thing, that has confused me greatly, even though entropically I understood the resulting universe had become very complex, while at one time, in maybe some supersymmtrical realization, it was much simpler?

    Gellman siad it very well earlier on in this blog, by his introduction of what constitued complexity, and this was well within some measurable idealization.

    About My personal Beliefs

    Sure I could cover it all with the mystic of my personal views and may mislead, having surmized somethings about it. This could be thought as disasterous, when not providing the complete picture that had taken me to the things that I think about.

    Truly after studing for a lot of years, although not creditialed, I would like to say too, that society and the developement of the social construct is very important to me as well. What is left "out there" for consideration, should be academically correct.

    So I stay very close to the front of, and thinking of scientists who work their respective fields.

    This is not to say that I had not developed my own respective views, as if raised religiously, that I would abandon my own beliefs about what God might mean to me.

    Just that I continue to act responsibly, as a humanist, and undertanding well the social construct of religion, as my own biographical sketch is well defined in this area, I too became a free thinker. Would like to move ahead as best the human being can be, as I learn to understand our roles in society, our responsibilites in regards to "education and truth to reason" as best as possible.