Showing posts with label Aurora. Show all posts
Showing posts with label Aurora. Show all posts

Thursday, September 28, 2006

SOLAR B and Van Ellen Belts

SCIENCE GOALS OF SOLAR-B
To determine the mechanisms responsible for heating the corona in active regions and the quiet Sun.




There are of course reasons why you want to keep these perspectives together.

While I have been extolling the virtues of Grace satelitte systems and climate it has been noticed that the developing framework of science here is also important and has been recognized in regards to what we don't see, and what happens in the Sun/Earth relation.


Univ. of Iowa
Space physicist James Van Allen, shown here in a University of Iowa photo, was best-known for discovering the radiation belts that now bear his name.


For me, my "philosphical views" take me to the "basis of all life", and the valuation I have see in how we related things, emotively, mentally, and spiritually with the planet and the lifeforms on it.

I couldn't help be amazed at the direction of my research over time, and the value the Van Ellen Belts serve as a model, to the human structure as a schema of what goes on in relation to earth's spherical body interactions.

Shall I dare point out this thought?

Shall I carry it over to the human being, or the computer screen, that is affected by....? Communciations, that are interrrupt by the value of what the Sun casts off in it's corona?

Helioseismology

The science studying wave oscillations in the Sun is called helioseismology. One can view the physical processes involved, in the same way that seismologists learn about the Earth's interior by monitoring waves caused by earthquakes. Temperature, composition, and motions deep in the Sun influence the oscillation periods and yield insights into conditions in the solar interior.


I keep the "image" in the right index for such a reason.

The Coming Season of the Aurora Borealis.



Helioseismology became of interest to me, and the way in which we can percieve this relation. To be able topercieve when the events were to be most illuminating. So yes, I was always enthrall by what I could myself see in space, as I watched going into the fall months as the "aurora borealis danced" in the color displays. To know what was going on in that Sun/Earth relation.

Last night, under the stars, we looked through my "construction technique of the roof" of the Gazebo, as it divided the night sky of stars into eight sections. We relaxed in the hotub, under a beautiful display of the cosmo.

Thursday, March 23, 2006

Remembrance

You must understand that the areas with which I had been dealing are highly rigourous. Imagine the purity with which these subjects deal. Now pale in comparison are the controls and experimental validation processes, I see in psychological information and experimentaion. Relying on subject associative mapping relevances in the brain, would this lead to a conclusive model assumption in the neural correlate to consciousness?

Memory echoes in brain's sensory terrain by Bruce Bower
Images of brain show areas that become most active during perception of pictures (a and c, in green) and sounds (e, in yellow). Small arrows point to sites of greatest activity during recall of pictures (b and d) and sounds (f).
Wheeler, Petersen, Buckner/Washington Univ


So vast indeed the thinking mind and it's capabilities, that one might not see the interlinking/backtrackig of the brain in it's neuronical flavours, as to the time and day of each event?



Yet analysis is there as you look through the information, as to the basis of what might have instigated a "modulation" of the senses. Holographical, in nature possibly? If these faculties are impaired and death ensued, would it seem so unlikely that physical functions, would have had to been elevated in some way? Especially if relgated to that memory. What value "images" in mind?


A synesthetic 'Master of Memory' (Mark Ellis) makes a fateful choice after dancing with a stranger (Stephanie Morgenstern), in the unusual wartime romance Remembrance.


Image by Joy von Tiedemann and Mark Morgenstern
Toronto, 1942. ALFRED GRAVES has the curse of perfect memory. It’s born of a rare condition, synesthesia, that fuses his five senses. He can’t see something without also tasting it, hearing its colour, feeling its scent — it’s overwhelming. He protects himself by living cautiously, touring his one-man memory show. One night, AURORA LUFT is in the audience. They share a drink, a dance … then she confesses she was sent to recruit him to a top-secret spy training camp near Whitby, Ontario. Privately, and against orders, she warns him not to come: “It’s not your kind of work.” But it’s too late. Alfred feels changed. Ready for anything. He signs up.


To me this exercise is a exploration of the abilites of what "might have happened." The ideas of ingenuity and production of mind, to establish new perceptions beyond the current uses of math/physics we are currently encountering.

I have no ready answers, just the continue interest and understanding of what new can be brought to the areas heading the forefront of science. What accomplishments, model assumption might do for forming new areas, which to us is with this creativity impulse.

Speak, Memory
Vladimir Nabokov (1899-1977); novelist, poet, scholar, translator, and lepidopterist (he enjoyed chasing and collecting butterflies). A cosmopolitan Russian-born émigré whose linguistic facility, erudite style, and eloquent prose helped to establish him as one of the most brilliant and respected literary figures of the 20th century. Nabokov's best-known novel, Lolita (1955), shocked many people but its humor and literary style were praised by critics. Nabokov produced literature and scholarship of beauty, complexity, and inventiveness in both Russian and English. Nabokov himself used to say "My head speaks English, my heart speaks Russian and my ear speaks French". *Synaesthesia: Vladimir Nabobov was a synesthete, as was also his mother, his wife, and his son Dimitri.


BBC Interviewhis view of other writers and the difference between genius and talent 3 min 13

While one of the aspect of this disease(shall I call it that?) is a memory for things, as the movie up top shows. There is some opinion about artistic validation and synesthesia in regards the actually relation.

Further I thought it appropriate to divest oneself of some saintly and spiritual inclination, if one thought this might have been of appeal in my mind. It is. Then I must dissuade such thinking from something more rigorous.

So Sensory INfusion and contrive inherent as to the dsease, was one thing to look at, in relation to creativity, and abilities in science and writing, to move perception forward.

Synesthesia and Artistic Experimentation by Crétien van Campen

ABSTRACT:
Richard Cytowic has argued that synesthetic experimentation by modern artists was based on deliberate contrivances of sensory fusion and not on involuntary experiences of cross-modal association. He has placed artistic experiments with sensory fusion outside the domain of synesthesia research. Artistic experiments, though historically interesting, are considered irrelevant for the study of synesthesia. Contrary to this view I argue that at least Scriabin's and Kandinsky's artistic experiments were based on involuntary experiences of synesthesia. They were investigating perceptual and emotional mechanisms of involuntary synesthetic experiences that meet Cytowic's criteria of synesthesia. Artistic experiments are not only historically interesting, but may also contribute to present synesthesia research.


See:

  • American Synesthesia Association

  • Modulating Phases States: Neural Correlate to Consciousness
  • Monday, February 06, 2006

    My Attempt at Playwriting?

    It's nice we have somebody to keep a tight reign on the transmissions of science in the media? :) I was thinking of those who collaborations are used when developing movie scenarios. "Brian Greene" playing himself on Frequency.

    You played yourself--twice--in the movie, "Frequency". The movie is about a father communicating from 1969 with his son in the present on a ham radio, due to an unusual atmospheric aurora that bounces radio signals across time, not just space. You played Brian Greene being interviewed by Dick Cavett as both a younger and older man. Any reflections on either the interesting premise of the movie, or the adventures of being on the big screen?



    I couldn't help think of

    as an example of Humble Boy by Charlottle Jones?

    In regards to "bumblebee wing rotations." This is my italicized bumbling attempt :( How a waiter with a tray could make a complete loop(bumblebees finding the quickest route while hovering or travelling), so how was it employed in this play(something about bee keeping, but not my version)?

    Here's my attempt.

    I'm Dressed up in a bumblebee suit waiting tables. While working I change my striped waiter vest completely inside out without it leaving my body? Qui Non!

    As the science meme continues, the story unfolds:

    Confused and lost in the abstract world, the waiter mistakenly puts on the suit not realizing he was not to take it so literal. The differentiation between the waking reality, and the one in which he was transported, was a psychological cover to mask the real events going on in his dream life.

    Letting loose the masking and not retaining funtionability with his reality sense based recognitions, he slipped easily over the edge?

    Alien transportation had occurred, and induced psychological dramas did not sway the determination of a mind that had venture into unfamiliar territory. The edge, was what was the limit of the people in the resturaunt, while the waiter, thought his actions normal. :)

    In another scene Alien abductors, are left scratching their heads as to how model implants had been been foiled and taken so literal, when it was realized the waiter had already be abducted once before, and meme introduction had been superimposed over a previous attempt to included natural symbolic functions.

    White Owl and the Bee clashed leaving the poor waiter in a state of actions less then correct while dawning hs suit.

    On Humble Boy

    I have not seen the play of Humble Boy, but the thought about plays was held in my thinking yesterday as Clifford talked about Nature.

    So maybe that's the trick then? Read out loud/sound what you've written, brings dimensionality to the written word?:)

    Humble Boy "Links" Borrowed:

  • National Theatre production
  • Manhattan Theatre Club production
  • Interview at Floreat Domus
  • Article in the Daily Telegraph
  • Article in Playbill
  • Article in Physics Today

    Reviews:

  • The British Theatre Guide
  • CurtainUp
  • Daily Telegraph
  • Financial Times
  • The Guardian (1)
  • The Guardian (2)
  • Amanda Hodges
  • Humbug's Guide to London Theatre
  • The Independent (scroll down for review)
  • Tom Keatinge
  • New York
  • The Observer (1)
  • The Observer (2)
  • Online Review London
  • Talkin' Broadway
  • Vengatoro
  • The Village Voice

    Charlotte Jones:

  • Profile at The Guardian
  • Charlotte Jones
  • Saturday, October 22, 2005

    Strings: The First Three Seconds

    I didn't want to invoke God here, but in any "flash" is there not some pattern that mathematically needed to describe the way everything began? A word, or sound?

    An equation means nothing to me unless it expresses a thought of God.Srinivasa Ramanujan



    Before the Beginning
    Interview with Sir Martin Rees, Part 2


    Helen Matsos (HM):
    Last year the big "science event" was measuring the cosmic microwave background and dating the big bang to 13.8 billion years ago, within an 8 to 10 percent margin of error. Can you give us some idea of the boundaries of the big bang -- what was it like in the first seconds, and how far will the universe expand in the future?


    So indeed the universe become entrophically considered, as the evidence starts to make itself known in all it's forms, yet there is a space. Now by itself, such expression of the universe would have one event, but imagine down on earth our moments, can cause such repercussions ahead in time?

    AM:
    You played yourself--twice--in the movie, "Frequency". The movie is about a father communicating from 1969 with his son in the present on a ham radio, due to an unusual atmospheric aurora that bounces radio signals across time, not just space. You played Brian Greene being interviewed by Dick Cavett as both a younger and older man. Any reflections on either the interesting premise of the movie, or the adventures of being on the big screen?


    So how we categorize such encounters with the child in our hopes of encouraging it's future, or our very presence and example lead. As a sign post, of what any society could become in the eye of good moral men and women? So one can move quietly no doubt and remain unseen, while the work can be a gentle reminder, of how we can affect "each" in time. Words like "etc" that could take on greater meaning, to have the hand slight a deletion. Remember how sensitive we can be to music? In Plato's academy I had made this point clear. I make clear what dissonance can do:)It can definitiely ruffle the field. Straight up and straight forward, a comment should do for those that would like to learn.

    Brian Greene
    Time is far more subtle than our everyday experience would lead us to believe. In many ways, time may simply be a psychological construct for organizing the world. It is a device we scientists have found useful, but it may in fact be a dim approximation of something far more complex."


    WEll here is a better view on the relation to the The Powers of Ten

    I talked briefly on the "chance encounter" of a child with a scientist, and the alluring role of powers of ten takes on. As if, it can "reverberate" in the probabilities of a future time.

    Who is responsible for this creative surge?:)Creative endeavors, are always fueled by another?

    IN such a cultural context, how is it that we could not see underlying reality is a musical inclination taken form in what any future could become. So, by the very value of the resonance contained, a feature of any moment?

    Tuesday, July 26, 2005

    Kilometric Radiation?



    So we use physics in ways to change the way we see? Here are some examles from the Cassini Project and Wikipedia.

  • Cassini Plasma Spectrometer (CAPS)
    The Cassini Plasma Spectrometer (CAPS) is a direct sensing instrument that measures the energy and electrical charge of particles such as electrons and protons that the instrument encounters. CAPS will measure the molecules originating from Saturn's ionosphere and also determine the configuration of Saturn's magnetic field. CAPS will also investigate plasma in these areas as well as the solar wind within Saturn's magnetosphere.[1]


  • Cosmic Dust Analyzer (CDA)

    The Cosmic Dust Analyzer (CDA) is a direct sensing instrument that measures the size, speed, and direction of tiny dust grains near Saturn. Some of these particles are orbiting Saturn, while others may come from other solar systems. The Cosmic Dust Analyzer onboard the Cassini orbiter is ultimately designed to help discover more about these mysterious particles, and significantly add to the knowledge of the materials in other celestial bodies and potentially more about the origins of the universe.[2]


  • Composite Infrared Spectrometer (CIRS)

    The Composite Infrared Spectrometer (CIRS) is a remote sensing instrument that measures the infrared light coming from an object (such as an atmosphere or moon surface) to learn more about its temperature and what it's made of. Throughout the Cassini-Huygens mission, CIRS will measure infrared emissions from atmospheres, rings and surfaces in the vast Saturn system to determine their composition, temperatures and thermal properties. It will map the atmosphere of Saturn in three dimensions to determine temperature and pressure profiles with altitude, gas composition, and the distribution of aerosols and clouds. This instrument will also measure thermal characteristics and the composition of satellite surfaces and rings.[3]


  • Ion and Neutral Mass Spectrometer (INMS)

    The Ion and Neutral Mass Spectrometer (INMS) is a direct sensing instrument that analyzes charged particles (like protons and heavier ions) and neutral particles (like atoms) near Titan and Saturn to learn more about their atmospheres. INMS is intended also to measure the positive ion and neutral environments of Saturn's icy satellites and rings.[4]


  • Imaging Science Subsystem (ISS)

    The Imaging Science Subsystem (ISS) is a remote sensing instrument that captures images in visible light, and some in infrared and ultraviolet light. The ISS has a camera that can take a broad, wide-angle picture and a camera that can record small areas in fine detail. Scientists anticipate that Cassini scientists will be able to use ISS to return hundreds of thousands of images of Saturn and its rings and moons. ISS includes two cameras; a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). Each uses a sensitive charge-coupled device (CCD) as its detector. Each CCD consists of a 1,024 square array of pixels, 12 μm on a side. The camera's system allows for many data collection modes, including on-chip data compression. Both cameras are fitted with spectral filters that rotate on a wheel—to view different bands within the electromagnetic spectrum ranging from 0.2 to 1.1 μm.[5]


  • Dual Technique Magnetometer (MAG)

    The Dual Technique Magnetometer (MAG) is a direct sensing instrument that measures the strength and direction of the magnetic field around Saturn. The magnetic fields are generated partly by the intensely hot molten core at Saturn's center. Measuring the magnetic field is one of the ways to probe the core, even though it is far too hot and deep to actually visit. MAG's goals are to develop a three-dimensional model of Saturn's magnetosphere, as well as determine the magnetic state of Titan and its atmosphere, and the icy satellites and their role in the magnetosphere of Saturn.[6]


  • Magnetospheric Imaging Instrument (MIMI)

    The Magnetospheric Imaging Instrument (MIMI) is both a direct and remote sensing instrument that produces images and other data about the particles trapped in Saturn's huge magnetic field, or magnetosphere. This information will be used to study the overall configuration and dynamics of the magnetosphere and its interactions with the solar wind, Saturn's atmosphere, Titan, rings, and icy satellites.[7]


  • Radio Detection and Ranging Instrument (RADAR)

    The Radio Detection and Ranging Instrument (RADAR) is a remote active and remote passive sensing instrument that will produce maps of Titan's surface and measures the height of surface objects (like mountains and canyons) by bouncing radio signals off of Titan's surface and timing their return. Radio waves can penetrate the thick veil of haze surrounding Titan. In addition to bouncing radio waves, the RADAR instrument will listen for radio waves that Saturn or its moons may be producing.[8]


  • Radio and Plasma Wave Science instrument (RPWS)

    The Radio and Plasma Wave Science instrument (RPWS) is a direct and remote sensing instrument that receives and measures the radio signals coming from Saturn, including the radio waves given off by the interaction of the solar wind with Saturn and Titan. The major functions of the RPWS are to measure the electric and magnetic wave fields in the interplanetary medium and planetary magnetospheres. The instrument will also determine the electron density and temperature near Titan and in some regions of Saturn's magnetosphere. RPWS studies the configuration of Saturn's magnetic field and its relationship to Saturn Kilometric Radiation (SKR), as well as monitoring and mapping Saturn's ionosphere, plasma, and lightning from Saturn's (and possibly Titan's) atmosphere.[9]


  • Radio Science Subsystem (RSS)

    The Radio Science Subsystem (RSS) is a remote sensing instrument that uses radio antennas on Earth to observe the way radio signals from the spacecraft change as they are sent through objects, such as Titan's atmosphere or Saturn's rings, or even behind the sun. The RSS also studies the compositions, pressures and temperatures of atmospheres and ionospheres, radial structure and particle size distribution within rings, body and system masses and gravitational waves. The instrument uses the spacecraft X-band communication link as well as S-band downlink and Ka-band uplink and downlink.[10]


  • Ultraviolet Imaging Spectrograph (UVIS)

    The Ultraviolet Imaging Spectrograph (UVIS) is a remote sensing instrument that captures images of the ultraviolet light reflected off an object, such as the clouds of Saturn and/or its rings, to learn more about their structure and composition. Designed to measure ultraviolet light over wavelengths from 55.8 to 190 nm, this instrument is also a valuable tool to help determine the composition, distribution, aerosol particle content and temperatures of their atmospheres. This sensitive instrument is different from other types of spectrometers because it can take both spectral and spatial readings. It is particularly adept at determining the composition of gases. Spatial observations take a wide-by-narrow view, only one pixel tall and 60 pixels across. The spectral dimension is 1,024 pixels per spatial pixel. Additionally, it is capable of taking so many images that it can create movies to show the ways in which this material is moved around by other forces.[11]


  • Visible and Infrared Mapping Spectrometer (VIMS)

    The Visible and Infrared Mapping Spectrometer (VIMS) is a remote sensing instrument that is actually made up of two cameras in one: one is used to measure visible wavelengths, the other infrared. VIMS captures images using visible and infrared light to learn more about the composition of moon surfaces, the rings, and the atmospheres of Saturn and Titan. VIMS also observes the sunlight and starlight that passes through the rings to learn more about ring structure. VIMS is designed to measure reflected and emitted radiation from atmospheres, rings and surfaces over wavelengths from 0.35 to 5.1 mm. It will also help determine the compositions, temperatures and structures of these objects. With VIMS, scientists also plan to perform long-term studies of cloud movement and morphology in the Saturn system, to determine the planet's weather patterns.[12]


  • So how does String/M theory change the way we see?


    The calorimeter design for GLAST produces flashes of light that are used to determine how much energy is in each gamma-ray. A calorimeter ("calorie-meter") is a device that measures the energy (heat: calor) of a particle when it is totally absorbed.


    Smolin added his contribution to the string theory discussion on the new Cosmicvariance.com site that has been created by a group of people that offer perspective. In this case Sean Carroll posted a thread on Two Cheers for String theory, provoked some iteresting responses by minds who are at the forefront of these conversations.

    I responded to this becuase I had been following both avenues Smolin spoke too, so I'll put my comment here as well.

    This topic thread was develope from my reactions based on those who call people who are trying hard to integrate views of the natural world with the physics ideology of the topic of Strings?M theory, these fellows present. If they can not show us these new views as Smolin offers for inspection then what use the models and theories if no onne wants to se these work in the world we undrstand well by seeing around us?

    While some people are looking for consistant means of determinations, others apply "conceptual situations" and bring forth comprehension of a kind. Now to this degree, that "gluonic perception is being adjusted" to see these values. The Smolins and others understood well the limitation of these views? Are there any?


    Radio sounds from the source

    All of the structures we observe in Saturn's radio spectrum are giving us clues about what might be going on in the source of the radio emissions above Saturn's auroras," said Dr. Bill Kurth, deputy principal investigator for the instrument. He is with the University of Iowa, Iowa City. Kurth made the discovery along with Principal Investigator Don Gurnett, a professor at the University. "We believe that the changing frequencies are related to tiny radio sources moving up and down along Saturn's magnetic field lines."


    Has Sound, Changed the way we See?

    Most of us understand the the aurora display do we not, and the resulting interactive play between the sun and the earth? The Auger experiment previously talked about and spoken too, by John Ellis, is a fine example of the diversity of interative features we can hope to see, as we examine the particle nature apart from the LHC rules of energy engagement, above and beyond the limits that have been imposed on us earthlings:)


    The Fly's Eye and the Oh My God Particle


    While the topic is produced for this conversation seems disjointed, the ideology of the string theorist is held to a boundry of thinking in my eyes that such a membrane( here I could link a toy model for comparison), and defined in this bubble context, as rudimentry as it appears in my mind's eye, it follows the developemental processes we see from the eulicidation Einstein offered us by joining Maxwell into the process unfolding in nature and to see the effect of any bulk production as a necessary step beyond the boudaries of this bubble?


    Now in contrast I see the soapy bubble and light refraction dispalyed in such a lovely continuous flow over it's surface, that to me, it does not make sense if such auroric dispalyes are not to give us new ideas about the interactive feature of the sun with earth? Conceptually, thes ideas of hitting metal plates and such present new ideas in how dispersion across that plate could represent other ideas. What are those. Wel that's what I am trying to do is free the mind from th econstraints we had put on it in sucha strick language accompany those that step ahead of us in their own specualtions educationally followed doctrine. What new light and thinking patterns follow these people?

    The auroral ionosphere is a natural emitter of radio waves, and many of these emissions are observable at ground level. Several types of radio emissions have been well documented using a variety of ground-based, stepped-frequency receivers (see reviews by LaBelle [1989] and LaBelle and Weatherwax, [1992]). In particular, auroral roar is a relatively narrowband emission at roughly 2 and 3 times the local electron cyclotron frequency ( ) [Kellogg and Monson, 1979; Kellogg and Monson, 1984; Weatherwax et al., 1993, 1995]. Much effort has been made in characterizing the seasonal, diurnal, and spectral characteristics of auroral roar to aid in determining its generation mechanism [e.g., Weatherwax et al., 1995.




    See also:

    http://www-pw.physics.uiowa.edu/plasma-wave/tutorial/examples.html

    News articles shamelessy borrowed:


  • Space Music

  • The Musical Sounds of Space

  • 'Sun Rings' Shares the Music of
    Space

  • Quartet, Choir Debut NASA's 'Space Music'

  • Out of This World

  • Music of the Stars

  • Music of the Spheres

  • NASA Music Out of This World

  • Sun Rings

  • Turning Sounds From Space Into a Symphony

  • Science and Music Merge for Fall Concert

  • UI Space Physicist's Sounds of Space Inspire Work of Art
  • Monday, July 25, 2005

    Themis


    THEMIS's ground network of all sky imagers will have the density and time resolution to detect auroral onset within 10s and 0.5 degrees of longitude. The University of Calgary will deploy 16 imagers across Canada, combined with imagers in Alaska the THEMIS array will consist of 20 ground-based observatories (GBOs). Each GBO will consist of a white light all sky camera and a host of support equipment such as a computer, GPS antenna, and a satellite dish (in the event that an internet connection is not available at the site). [more information on GBOs]


    It is always important to move the mind to encompass greater potentials, even within the confines of the physics we understand, and move this, to the natural world we see, while we witness it's glory.

    Astronaut's view of the Aurora Australis, or southern lights, from aboard Space Shuttle Discovery 1991 (Courtesy: NASA)


    Those more adventourous, and with better visonistic qualities , and those having consumed models of apprehension, might be able to talk about these things in ways that we are not accustomed too?

    Like learning a new language, and conceptual framework, that loosens those things we hold so tight, that no room is granted for the neurons to fire new pathways?