A Majorana fermion (/maɪəˈrɒnə ˈfɛərmiːɒn/[1]), also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesized by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles.
All of the Standard Model fermions except the neutrino behave as Dirac fermions at low energy (after electroweak symmetry breaking), but the nature of the neutrino is not settled and it may be either Dirac or Majorana. In condensed matter physics, Majorana fermions exist as quasiparticle excitations in superconductors and can be used to form Majorana bound states governed by non-abelian statistics.
***
Princeton University scientists have observed an exotic particle that behaves simultaneously like matter and antimatter, a feat of math and engineering that could eventually enable powerful computers based on quantum mechanics. Capping decades of searching, Princeton scientists observe elusive particle that is its own antiparticle.
***
Majorana fermions are predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe) atomic chains on the surface of superconducting lead (Pb). Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero energy end states. This spatially resolved signature provides strong evidence, corroborated by other observations, for the formation of a topological phase and edge-bound Majorana fermions in our atomic chains. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor
***
No comments:
Post a Comment